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ABSTRACT

REPRESENTATION AND LEARNING IN INFORMATION
RETRIEVAL

FEBRUARY 1992
DAviD DOLAN LEWIS
B.A., B.S., MICHIGAN STATE UNIVERSITY
M.S., UNIVERSITY OF MASSACHUSETTS
Pu.D., UNIVERSITY OF MASSACHUSETTS
Directed by: Professor W. Bruce Croft

This dissertation introduces a new theoretical model for text classification sys-
tems, including systems for document retrieval, automated indexing, electronic
mail filtering, and similar tasks. The Concept Learning model emphasizes the
role of manual and automated feature selection and classifier formation in text
classification. It enables drawing on results from statistics and machine learning
in explaining the effectiveness of alternate representations of text, and specifies
desirable characteristics of text representations.

The use of syntactic parsing to produce indexing phrases has been widely in-
vestigated as a possible route to better text representations. Experiments with
syntactic phrase indexing, however, have never yielded significant improvements in
text retrieval performance. The Concept Learning model suggests that the poor
statistical characteristics of a syntactic indexing phrase representation negate its
desirable semantic characteristics. The application of term clustering to this repre-
sentation to improve its statistical properties while retaining its desirable meaning
properties is proposed.

Standard term clustering strategies from information retrieval (IR), based on
cooccurrence of indexing terms in documents or groups of documents, were tested
on a syntactic indexing phrase representation. In experiments using a standard text
retrieval test collection, small effectiveness improvements were obtained.

As a means of evaluating representation quality, a text retrieval test collection
introduces a number of confounding factors. In contrast, the text categorization task
allows much cleaner determination of text representation properties. In preparation
for the use of text categorization to study text representation, a more effective and
theoretically well-founded probabilistic text categorization algorithm was developed,
building on work by Maron, Fuhr, and others.

Text categorization experiments supported a number of predictions of the Con-
cept Learning model about properties of phrasal representations, including dimen-
sionality properties not previously measured for text representations. However,
in carefully controlled experiments using syntactic phrases produced by Church’s
stochastic bracketer, in conjunction with reciprocal nearest neighbor clustering, term
clustering was found to produce essentially no improvement in the properties of the
phrasal representation. New cluster analysis approaches are proposed to remedy the
problems found in traditional term clustering methods.
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CHAPTER 1

INTRODUCTION

In this chapter, we discuss the range of tasks associated with computer-based
access to textual information. We focus on text classification tasks, and in particular
on the tasks of text retrieval and text categorization. Text classification tasks
involve assigning pieces of text to content-based classes. The way in which texts are
represented is a crucial influence on the effectiveness of systems for these tasks, but
attempts to produce text representations enabling greater effectiveness mostly have
been unsuccessful.

The lack of success of attempts to produce more effective text representations
arises in part because current theories of text classification systems do not model
the impact of text representations on the effectiveness of text classification systems.
This means that most research on text representation has been driven by informal
intuitions about the nature of human language.

The goal of this dissertation is to provide a more solid foundation for research
on text representation for text classification. In particular, we propose:

1. To outline a theoretical model that enables the behavior of text classification
systems to be in part predicted from measurable characteristics of text repre-
sentations.

2. To test the predictions of this model on a text representation whose behavior
has been difficult to understand under existing models of text classification.

The formulation of models that make testable predictions about representation
quality should eventually enable the construction of text representations supporting
more effective text classification systems.

Besides introducing the issue of text representation for text classification sys-
tems, this chapter outlines our investigation of this issue, and how the results of
that investigation are presented in this dissertation.

1.1 Content-Based Text Processing

By almost any measure, the amount of information being produced is growing
faster than the ability of information consumers to find, digest, and use this in-
formation. One response has been to publish information in computer-accessible
form rather than by traditional media such as paper, film, audio tape, and video
tape. Businesses and other organizations store an increasing amount of their in-
ternally generated information in computer-accessible form. A small but increasing



proportion of both technical and everyday correspondence and conversation occurs,
and is recorded, by electronic mail and voice mail, adding to the opportunities and
problems created by information growth.

Merely recording information on computer-readable media is only the beginning
of a solution to information overload. Users need methods of finding the particular
information they want, and examining it in its original or a summarized form. For
some kinds of information and some kinds of information needs, this is relatively
straightforward. For instance, database software, spreadsheets, statistics packages,
and graphical display methods have made access to many kinds of numeric data
quite easy.

It is much harder to provide effective access to data that consists of expressions in
human language. This includes technical articles, memos, manuals, electronic mail,
books, newspapers, magazines, journals, and many other forms of text. In addition,
it is desirable to access other forms of data, including speech, images, video, financial
data, and chemical structures, through textual annotations to these complex objects.
Textual data is difficult to access, however, because the relationship between its form
(typically sequences of characters) and its content is less clear than, for instance, in
numeric data.

Content-based text processing tasks can be divided into two broad groups. Text
classification involves the assigning of documents or parts of documents to one or
more of a number of groups. Text understanding involves more complex access to
the content of documents, such as extracting formatted data, answering questions,
and summarization or abstracting.

The division between these tasks is not sharp. In particular, software compo-
nents that accomplish text classification are often embedded in systems for more
complex text processing tasks. This makes text classification, which has been the
focus of information retrieval (IR) researchers and which will be the focus of this
dissertation, of particular interest.

1.2 Text Classification Tasks

“Classification” is an ambiguous term in information retrieval, applied statistics,
psychology, and other fields but almost always refers to processes of grouping of
entities. Text classification therefore is an appropriate term to subsume a number
of information retrieval tasks that are usually considered distinct, but which all
involve grouping of textual entities. We describe seven such tasks in this section,
focusing on the two that have received the most attention in information retrieval:
text retrieval and text categorization. After this, we examine the similarities and
differences between the tasks and the role that the representation of text plays in
them.

1.2.1 Text Retrieval

Text retrieval is the computer selection of a subset of a document database to
display in whole or summary form to a user, usually in response to a user request.



One view of a text retrieval system is that it sorts documents into two classes:

documents that will be displayed to the user, and those that will not. Many advanced

text retrieval systems not only select documents for display, but also attempt to order

displayed documents by importance. These systems can be viewed as computing

the degree of membership of documents in a class without sharp boundaries.

We can describe the text retrieval process as consisting of four main phases !:

1. Indexing: Raw documents must be converted into expressions in some text rep-
resentation. These expressions are sometimes called document representatives,
and must have a structure usable by the text retrieval software.

2. Query formulation: The user must express his or her information need in the
form of a request interpretable by the IR software. The request is sometimes
entered by the user in a form very similar to that used by the system, such as a
boolean expression over words. In other cases the connection may be less direct,
as when the user enters a natural language question or example document and
the IR software selects important words from the user input to use as features
in a statistical classifier. We use the term query to refer to the form of the
user request actually compared to documents, though this will not always be
an easily identifiable data structure in a text retrieval system.

3. Comparison: The system must implicitly or explicitly compare the user query
to the stored documents, and make a classification decision about which doc-
uments to retrieve and in what order. Documents or parts of documents are
displayed to the user.

4. Feedback: An initial retrieval rarely results in exactly the documents desired by
a user. Several iterations of modifying the query are often necessary to achieve
acceptable results. This modification may be done explicitly by the user, if
he or she chooses to enter a new request or modify their original one. On
the other hand, the user may simply communicate to the text retrieval system
judgments about the desirability of each retrieved document, and the system
may implicitly update the query. This latter process is referred to as relevance

feedback.

1.2.2 Text Categorization

Text categorization is the classification of documents with respect to a set
of one or more pre-existing categories. The most common application of text
categorization is in indexing documents for text retrieval, i.e. in producing document
representatives. Manual assignment of subject categories to documents is a widely
used form of text representation. Users can mention these subject categories in
their requests, possibly enabling a more compact and effective query to be formed.
However, manual assignment of categories requires considerable human labor and

1This model is due to Bruce Croft.
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expense. Replacing or aiding manual indexing with automated text categorization
can reduce these costs substantially. Several such systems are operational, in areas
such as indexing of newswire stories for subject specific distribution [HW90], and
indexing of large databases of technical abstracts [BFL*88, FHL*91].

Another application of text categorization is within text understanding systems.
Categorization may be used to filter out documents or parts of documents that are
unlikely to contain extractable data, without incurring the costs of more complex
natural language processing [DLW191, GSM91, Hob91]. Parts of a data extraction
task can sometimes be performed by text categorization alone [BT91, DGCN9I,
DROI1, Lew9la]. In a system that processes texts in many subject areas, catego-
rization may be used to route stories to category specific processing mechanisms
[DeJ82, JRIO].

Finally, the categorization itself may be of direct interest to a human user, as
in judging whether a threatening letter against a government official signifies real
danger [Har88a].

As with text retrieval, a category may be binary (a document either is or is not
a member of the category) or graded (a document can have a degree of membership
in the category). Binary assignments have been used in most applications. When
multiple categories are used, it may be the case that each document is assigned to
exactly one category. On the other hand categories may be assigned independently,
with each document falling into all, some, or no categories.

Text categorization can be described as consisting of the same phases as text
retrieval, though some details are significantly different:

1. Indexing: The same text representation techniques used in text retrieval can
be used here. Speed of indexing is often more critical than in text retrieval,
because large numbers of new documents may need to be processed in real
time.

2. Categorizer Formulation: Like text retrieval, text categorization requires a
specification of how to decide to which categories a document should be as-
signed, based on its text representation structures. For text categorization
systems we will call these internal specifications categorizers. They play the
same role as queries in a text retrieval system.

While text retrieval queries are typically temporary structures, resulting from
an ad hoc user request, a set of categorizers will often be in use over a long
period of time. Substantial expert effort or large scale statistical analysis may
be used in their construction and testing.

3. Comparison: In most text categorization systems, a binary decision is required
from each categorizer about each document. The most important difference
from text retrieval systems is that a document may be compared to a number
of categories at once, and the appropriate decisions may depend on relationships
among categories.



4. Adaptation: Feedback plays two roles in text categorization systems, both
somewhat different from its role in text retrieval. First, when a categorization
system is constructed, there are often large numbers of manually categorized
documents already available. Automated techniques similar to relevance feed-
back can use these examples to construct or aid the construction of categorizers.
Second, while users of the categorized documents are typically not allowed to
provide feedback to alter the categorization system, they can communicate their
reactions to the categorization system maintainers, who may modify, add, or
remove categories and associated categorizers.

1.2.3 Text Routing

Text routing, also known as selective dissemination of information, SDI, or text
filtertng combines aspects of text retrieval and text categorization. Like text cate-
gorization, a text routing system processes documents in real time and assigns them
to zero or more of a set of classes. However, like text retrieval, each class is typically
associated with the information needs of one or a small group of users [Col81]. Each
user or user group can typically add, remove, or modify the standing queries or
profiles associated with their needs. There may or may not be relationships among
profiles, and profiles may or may not be under end user control. Relevance feedback
can be used in text routing and has the potential for being more effective than in
text retrieval, since the information need persists over a longer period of time.

1.2.4 Term Categorization

Term categorization is similar to text categorization, in that pieces of text are
assigned to predefined categories. The difference is the size of the pieces of text.
Where text categorization deals with full documents, or relatively large portions of
documents, term categorization is the assignment of categories to words or small
fragments of text. While there is some blurring of this task into text categoriza-
tion, the techniques applied are different enough to consider this a distinct task.
Applications of term categorization include tagging (the assignment of syntactic or
semantic categories to words to support natural language analysis) and automated
assignment of free-indexing phrases [Fie75, RJ91]. (We describe tagging in more
detail in Section 10.3.2.)

1.2.5 Document Clustering

The final three tasks we will describe differ from the first four in involving not
only the assignment of portions of text to categories, but the creation of those
categories from a corpus of text. Document clustering is the automated generation
of categories of documents, usually based on some similarity measure between
documents, as well as a definition (explicit or implicit) of what characteristics groups
of documents should have. Document clustering has been suggested both as a means
to speed up physical access to stored documents and as a text representation for



improving the effectiveness of text retrieval. In both roles it has provided mixed

results [Wil88].

1.2.6 Term Clustering

Term clustering is similar to document clustering, except that individual words
or small fragments consisting of closely connected words are formed into groups.
Term clustering is described in more detail in Chapter 4. Term clustering has been
investigated for producing better text representations to support text retrieval, so
far without much success. It has also been used as a method for studying word
usage and producing information useful to natural language processing [Hin90].

1.2.7 Latent Indexing

Latent indexing is related to both term clustering and document clustering. It
uses factor analysis or related techniques to transform one representation of a collec-
tion of documents into a new representation with desirable mathematical properties.
Both the original indexing terms and the original documents are reexpressed in
terms of this new representation. This reexpression is meant to support improved
text retrieval [DDFT90], though the technique has not led to significant effectiveness
improvements and is computationally expensive.

1.2.8 Summary

Of the tasks discussed, text retrieval, text categorization, and text routing are
the most directly applicable to human information needs. In contrast, the last
four tasks are mostly performed in support of other text processing tasks. The first
three tasks differ considerably in how classifiers (queries, categorizers, or profiles) are
formed, but all require that classifiers are formed and that documents are represented
in such a way that an effective comparision can be made between the classifier and
documents. Text representations play a related role in document clustering and
latent indexing.

The emphasis in this dissertation will be on the text retrieval and text catego-
rization tasks, but many of the results produced will be directly relevant to text
routing, document clustering, and latent indexing, and indirectly relevant to term
clustering and term categorization.

1.3 Text Representation

The comparison in the previous section showed that text representation plays
a consistent and important role in a variety of text classification tasks, including
the three tasks most widely performed in operational settings: text retrieval, text
categorization, and text routing. In this section we examine current beliefs about
text representation in information retrieval, and consider two paradoxes with respect
to the issue of representation quality.



Investigations of different text representations in information retrieval has been
extensive, particularly with respect to their effect on text retrieval effectiveness.
Reviews of this research have led to the widely held conclusion that no text rep-
resentation is significantly superior to representing documents by isolated words
drawn from the original text, and that text representation has a relatively minor
influence on effectiveness:

e “..artificial indexing languages do not perform strikingly better than natural
language...complex structured descriptions do not perform strikingly better
than simple ones...the characterization of queries is more important than that
of documents...” [Spa81]

e “No support is found in the literature for the claim that text-based retrieval sys-
tems are inferior to conventional systems based on intellectual human input.”

[Sal86]

e “Index languages uncontrolled at the indexing stage do not have an inferior
performance to controlled ones...Syntactical devices used explicitly in searching
(e.g. links, roles, relations) as improvers of precision have a small and minority
influence...the index language vocabulary has a minor influence on performance
compared with query negotiation, searching, and indexing...” [Kee81]

e “Representation of documents with complex, controlled languages that incor-
porate phrases, thesaurus, and other structural relationships has never been
shown to be effective in terms of retrieval performance.” [Cro87]

These pessimistic results can be constrasted with the successes enjoyed by
research on acquiring better requests from users [CD90], mathematical models for
queries [BC8T], and relevance feedback techniques for improving queries [CD90,
SB90].

The failure of human effort to produce better text representations is surprising.
It is easy to imagine terrible text representations that would support no better
than random classification of documents. It is easy to imagine an excellent text
representation that happens to contain a single term indicating exactly the set of
documents specified by the current user. Yet all reasonable text representations
have been found to result in very similar effectiveness on the text retrieval task. We
call this the Equal Effectiveness Paradox.

Another paradox arises from the fact that the effectiveness of current text
retrieval systems, while good enough to make them of practical use, is far from
perfect. Yet most text representations and text retrieval systems in use have the
property that, given almost any subset of the database, it is possible to create a
request that will be translated into a query retrieving exactly those documents.
This is true because, with most text representations in use today, any document
can be uniquely identified by a few terms that occur in few or no other documents.
We call this the Perfect Query Paradoz.

In one sense there is nothing mysterious here. It is not surprising that users do
not enter perfect requests, which might require taking advantage of knowledge of



the peculiarities of a particular document collection. However, the possibility that a
user could do this raises the question of whether it is possible to discuss the quality
of text representations independent of some psychological model of users.

The failure of empirical attempts to produce better text representations, and
the Perfect Query Paradox, suggest that a better theoretical understanding of text
representation is needed. Such a theory may not be sufficient to produce better text
representations, but it is likely to be necessary. This dissertation is a small step
towards such a theory.

1.4 Effectiveness in Text Classification

We have repeatedly referred to text representations providing better or worse
text classification effectiveness, without saying what effectiveness means for text
classification. For the tasks on which we are focusing (text retrieval and text
categorization), the primary question we have about a system is how well it can
assign documents to the correct classes. In text retrieval the class of interest is the
class of documents relevant to the user’s information need. In text categorization
there may be several classes of interest, for instance a group of subject categories.

Consider a single class, and suppose that the text classification system judges
each of a set of documents to belong to the class or not belong to the class. The
system can err in either assigning documents to the class when they are not members,
or in failing to assign documents to the class when they are members. Two important
measures of system effectiveness are recall and precision. Recall is the fraction of
all documents belonging to a class that were assigned by a system to that class.
Precision is the fraction of documents assigned to the class which actually belonged
to the class.

Often text classification systems have parameters that can be varied to increase
or decrease their tendency to assign documents to a class. Such systems usually
exhibit a tradeoff between recall and precision—recall can be increased only by
decreasing precision. It is often desirable to display the recall and precision values
for a text classification system at several parameter levels to see how this tradeoff
varies.

We discuss effectiveness measures in more detail in Section 6.4, emphasizing the
text categorization case since it has received less attention in the past.

1.5 Outline of the Dissertation

This dissertation is in three main parts, one theoretical and two experimental.
The first part, Chapters 2 through 4, addresses the first of the goals set forth in the
introduction:

1. To outline a theoretical model that enables the behavior of text classification
systems to be in part predicted from measurable characteristics of text repre-
sentations.



Chapter 2 is a survey of research on the role of representation in classification sys-
tems. We focus on systems where classifiers are automatically induced from training
data, as in relevance feedback and in the automatic training of text categorization
systems.

In Chapter 3 we turn our survey to previous work on text representation in
information retrieval. We examine previous attempts to provide theoretical models
for the quality of indexing terms and sets of indexing terms. These models have
not, unfortunately, led to better text representations and most have not even made
testable predictions about representation quality. We present the beginnings of a
new model of text classification systems, the concept learning model (CL model).
The core of this model is the claim that there are properties of text representations
that impact the effectiveness of text classifiers whether the classifiers are built by
automated or manual means.

Finally, Chapter 4 examines a particular text representation, syntactic phrase
indexing, in the light of the CL model. Despite the considerable capabilities of
current syntactic analysis technology, attempts to apply syntactic parsing to text
retrieval systems have yielded consistently disappointing results. The CL model
suggests why this has been the case, and we propose a possible way to improve
the quality of this representation by following syntactic phrase indexing with term
clustering.

The second and third parts of the dissertation address our second objective:

2. To test the predictions of this model on a text representation whose behavior
has been difficult to understand under existing models of text classification.

The second part of the dissertation is Chapter 5, which presents a test of
syntactic phrase clustering on a standard text retrieval test collection. The result
was a minor improvement in effectiveness. We also uncovered a number confounding
factors that make it difficult to interpret the impact of text representation on text
retrieval.

The third part of the dissertation is a more extensive investigation of the quality
of syntactic phrase clusters and related text representations. We begin in Chapter 6
by showing how text categorization has some desirable properties as an alternative
task for studying text representation. We consider a number of potential drawbacks,
but conclude that further investigation of syntactic phrase clusters would be best
conducted using a text categorization task.

Chapter 7 describes the software system, Maxcat, that we constructed for our
experiments on text categorization. We emphasize those aspects of Maxcat’s design
that enable increased flexibility in studying text representations.

While having many desirable properties from the standpoint of studying text
representation, text categorization had the disadvantage of being less studied and
less well understood than text retrieval. Before text categorization could be used
to study text representation quality, it was necessary to have a text categorization
procedure whose effectiveness we trusted. In Chapter 8 we replicate the text cat-
egorization method used in an early and widely cited study on categorization and
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uncover a number of disadvantages of the method. Chapter 9 presents results on
a new categorization method that remedies some of these difficulities and achieves
considerably better, though not ideal, results.

In Chapter 10 we return to syntactic phrase clustering, and present the results of
experiments using syntactic phrase clusters and closely related text representations
for text categorization. A number of effects predicted for text representations
by the CL model were found to occur. However, statistical term clustering was
not found to improve the quality of a syntactic phrase representation in the text
categorization task. Given the careful controls on our experiment, we conclude with
some confidence that a range of statistical term clustering methods are unlikely
to provide significant improvements in the quality of a syntactic indexing phrase
representation. Some evidence is presented to suggest that alternate approaches to
clustering would yield an improved text representation.

Finally, Chapter 11 summarizes the theoretical and experimental results of the
dissertation and suggests directions for future research on text representation and
text classification.



CHAPTER 2

REPRESENTATION IN CLASSIFICATION

In this chapter we briefly survey machine learning of classifiers, i.e. functions
that can be used to assign objects to one or more of a set of preexisting classes. We
focus on how the features used to represent objects affect learning of classifiers, and
how feature sets can improved. Our goal in this chapter is to pick out the ideas
from machine learning research that are most important to our examination of text
representation.

2.1 Terminology

The task of assigning objects to one or more of a set of preexisting categories
has been studied in many different disciplines and so is called by many different
names. The most common terms in research that emerges from the statistics
community seem to be classification or classification analysis [Jam85, BFOS84]
and discriminant analysis [GDT8, Lac75]. Unfortunately, both “discrimination”
and “classification” have been widely used with meanings that contradict this one.
Classification is at least as widely used with a meaning synonymous or nearly syn-
onymous with cluster analysis [SJ67, Gor81], which does not even involve preexisting
classes. In research by the artificial intelligence community the task is often called
concept learning [MCMS6], which itself has a distinct meaning in psychology.

Hand [Han81] uses the term discrimination to refer to the process of deriving
classification rules, and the term classification for applying those rules to new ob-
jects. The distinction is relatively clear, even if the terminology is not. In describing
the structure of learning systems, Weiss and Kulikowski distinguish between the
learning system, and the classifier that the learning system builds; the classifier
makes the decision of what class or classes to which an object should be assigned
[WK91]. For the purposes of this study we will use the term learning or supervised
learning to refer to the process of mechanically building a classifier for a set of known
classes, and classification to the process of using the classifier. (Note that the term
“text classification,” as defined in the previous chapter, includes the application of
techniques besides supervised learning.) The term learning sometimes subsumes
techniques like cluster analysis, which discover new classes, but we will always use
the term clustering or, more generally, unsupervised learning for the discovery of
new classes. We will use the term machine learning to refer to the study of both
supervised and unsupervised learning.
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Distinguishing learning from classification is important, since classifiers can
be built by human knowledge engineering, without the using of machine learning
techniques ([Cla85]; [WK91], ch. 7).

We use the term classifier to refer both to a mathematical function and to
instantiations, potentially imperfect, of that function in computer programs. The
domain of a classifier function is the space of all possible inputs that might be given
to the classifier. We will assume that each input consists of a ordered tuple of values,
and that the value on each dimension of the tuple is derived in some fashion from
the object to be classified. These dimensions go by many names, including features,
attributes, observations, variables, tests, and measurements. We will typically use
the term feature. The desired outputs of a classifier, i.e. the decisions about class
membership, are sometimes referred as criterion features, and when using this term
we will call the input features predictor features.

The range of a classifier is the set of possible specifications of classes to which an
input can belong. We will assume that, if we have n classes, the range is the space
of all n-tuples of such specifications. Typically such specifications are either binary
(True vs. False, or 0 vs. 1), or real-valued weights indicating a probability or degree
of membership in a class. The case where classifications can be real-valued blends
into the related task of regression analysis, which is concerned with predicting real
value quantities based on observations. We will call a particular input to a classifier
an instance and a particular output a classification vector.

2.2 Forming Classifiers by Machine Learning

In mathematical statistics, it may be of interest to prove that there exists a
classifier function with certain properties, without necessarily displaying it. For
applications, however, we need explicit examples of such functions, typically instan-
tiated in the form of computer programs. Classifiers can be built by a variety of
means, including human design with no use of mechanical methods, as in expert
systems. It is often desirable, however, to replace or augment human effort by
mechanical means. A common division of effort is for the human engineer to create
a set of features by which objects will be described, and then use machine learning
to find a function that approximates the desired mapping from feature vectors to
classification vectors.

There are a variety of methods by which a machine learning system can construct
a classifier. Most of these methods involve making available to the program a set
of training instances: a set of feature vectors paired with the desired classification
vectors. The learning program then attempts to find a classification function that
in some specified fashion agrees with the training instances of the desired mapping.
The hope is that the function found will reproduce the desired mapping not just on
the training instances, but on previously unseen test instances.

The process by which a learning program produces a classifier function varies
greatly from method to method and program to program. In work on learning in
the artificial intelligence community, this process is often treated as one of search
[Mit82]. The program is viewed as considering candidate functions from an implicit
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or explicit hypothesis space, evaluating them in some fashion, and choosing one that
meets some criterion. If one is willing to allow sufficiently implicit representations
of the hypothesis space and sufficiently loose definitions of evaluating alternatives,
even learning methods that are based on estimating parameters of a probability

distribution or fitting a curve to points can be viewed as search.
The hypothesis space that a learning program explores is typically determined

by two main factors. One is the set of features used to describe objects. It is
obviously pointless for the learning algorithm to explore functions that depend on
features of instances that will not be available when the classifier is used. However,
learning programs will sometimes construct new features defined in terms of the

initial features (see Section 2.4.2).
The second factor is the class of functions that the program can consider,

sometimes called the form, the model, or the language bias [Hau88]. The class
of functions is often defined explicitly and in terms of mathematical properties of
the functions, such as a restriction to linear polynomials or disjunctive normal form
over boolean variables.

2.3 The Quality of Feature Sets

Typically there are many possible hypotheses that agree with a set of training
data, so machine learning algorithms need additional constraints to choose one
of these hypotheses. The set of all these constraints is the bias of the learning
algorithm [Utg86]. We have already mentioned the language bias, the part of the
bias introduced by the class of functions an algorithm is willing to consider. Given
our focus on text representation, we are interested in a different bias—the one that
results from the set of features used to describe objects—and how this bias can
interfere with learning. In the following we discuss a number of ways in which a
feature set may make learning a classifier difficult or impossible.

2.3.1 Feature Set Does Not Sufficiently Distinguish Instances

An initial set of features has been defined to be epistemologically adequate if it
allows every possible instance to be distinguished [Ren88]. Quinlan gives a similar

definition but uses just the term adequate [Qui86b].
Clearly if the feature set is not epistemologically adequate, then it may not be

possible to learn the desired function with 100% accuracy. Some distinct instances
will appear the same to the learning system, and the desired function may take on
different values for those instances. Of course, in order to say that a set of features
is not epistemologically adequate, we must ourselves be using some additional infor-
mation to distinguish instances that are not distinguished by the available features,
and this additional information potentially could be used to create new features.

2.3.2  Feature Set Fxcludes Concept from Hypothesis Space

A set of epistemologically adequate features means that some function exists
that implements the desired concept. However, the combination of the feature
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set and the language bias may result in a hypothesis space that does not contain
the concept, or does not contain a function that approximates the concept to the
desired accuracy. For instance, the learning system might be searching a space of
linear classifiers, but there may be no hyperplane that separates the positive from

negative instances in the space defined by the features.
Note that given a sufficiently good set of features, almost any language bias will

result in a hypothesis space that contains the desired concept. In particular, if some
single feature already implements the desired concept, any language bias that allows
that feature to be used will allow a perfect classifier.

2.3.8 Feature Set Results in “Too Big” a Hypothesis Space

The effect of the number of features on the ability of a learning algorithm to find
an accurate classifier has been widely investigated. One’s first intuition is that more
features carry more information and must always result in a more accurate classifier.
A less obvious counterbalancing intuition is that more features increase the number
of hypotheses and make it harder to find an accurate classifier. The problem of
having too many features is sometimes refered to as “the curse of dimensionality”

(IDHT73], p. 95).

The true situation is more complicated than either of these intuitions, and is by
no means completely understood. Jain and Chandrasekaran survey a large body of
theoretical and empirical work in statistical pattern classification showing that, for
a fixed number of training instances, there is often a maximum number of features
beyond which effectiveness of the induced classifier starts to decline [JC82]. They
cite as a general rule of practice that the number of training instances should be
five to ten times the number of features. Chatfield suggests at least four times as
many training instances as features when fitting multiple linear regression models,
and prefers limiting the number of features to four or five ([Cha88], p. 199). Banerji
[Ban71] cites an example where the sample size must be 20 times the dimensionality
of the space to achieve 95% accuracy in training a classifier. For a text classification

task, Fuhr suggests 50-100 samples per parameter are needed [FB90].
A very rich line of theoretical research has emerged from a formalization by

Valiant [Val84] of the intuitive ideas of hypothesis space “size”, “ability to find
hypothesis”, and “accurate classifier” we mentioned above. Results can be derived
under the Valiant model for the minimum number of training instances necessary to
learn concepts with various language biases, under suitable assumptions [Hau88]. All
these results show the number of training instances needed to rise with the number
of features. Results under the Valiant model are worst-case estimates and deviate
substantially from numbers of samples required for real world applications. However,
they provide some guidance, and attempts have been made toward producing more
empirically useful estimates [Paz90, Kad91].

2.3.4 Feature Set Violates Assumptions of Search Algorithm

A feature set may result in the desired concept being present in the hypothesis
space, but may make it difficult or impossible for a search algorithm to find the



15

desired function. A wide variety of assumptions are made by different algorithms
and can be violated:

e A classic method by Fisher [Fis36] forms the optimal linear discriminant func-
tion (given known population parameters) only when the feature set is such
that a concept and its inverse have a multivariate normal distribution, with
equal covariance matrices, over the space defined by the feature set ([Jam85],
p. 29). In practice, the method tends to find reasonable classifiers even under
deviations from normality ([Jam85], p. 61). The corresponding optimal method
for multivariate normal distributions with unequal covariance matrices is much
less robust to deviations from normality ([Lac75], p. 20; [Jam85], p. 61). Other
sorts of distributional assumptions can be made, and violated, as well, such as
independence of conditional probabilities (see Chapter 8).

e Many learning algorithms, for example those used with connectionist networks,
make use of gradient descent or hill-climbing through the space of hypotheses
([WK91], ch. 4). These methods are guided by some direct or indirect measure
of the quality of hypotheses. If the feature set is such that the quality measure
has local minima on the hypothesis space, then the search procedure may
terminate before finding the desired function.

e Many empirical learning methods assume that the desired function is contin-
uous or nearly continuous on the instance space and are harmed by feature
sets that result in discontinuous concept functions [Mat91]. Similar sorts of
assumptions, such as assuming a relatively small perimeter for the concept in
the instance space [KA88] can also lead to problems when violated.

Many other examples could be given. From one standpoint, a characteristic of
a feature set is a problem exactly because it violates some assumption, implicit or
explicit, of commonly used learning algorithms. The examples listed above are just
cases where the assumptions are more explicit and well-defined than usual.

2.3.5 Feature Set Is Noisy

Features may be noisy. In statistical communication theory [Sel65, Ham80], the
concept of noise is well defined. The noise introduced by the physical properties of a
communication channel or of a sensor device can often be modeled quite accurately
as a random process added to the true signal.

For most machine learning applications, the concept of noise is much less well
defined. Quinlan [Qui86b] talks extensively about the effect of noise on learning,
but does not directly define the term, instead giving this description:

In real-world classification tasks, the description of an object will often
contain errors. Some sources of these errors are faulty measurement,
ill-defined thresholds (e.g. when is a person “tall”’?), and subjective in-
terpretation of a multitude of inputs (e.g., what criteria are used when
describing a person as “athletic”?).
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Weiss and Kulikowsi’s text ([WK91], p. 11) is similarly informal:

Those features that are no more predictive than chance can be considered
noise. For any given application, features will probably range from those
that are completely noisy, to somewhat noisy, to completely predictive.
Features that appear noisy on their own may prove to be highly predictive
when combined with other features.

Whatever the definition, noise can lead a learning mechanism to induce a different,
usually poorer classifier than it would from noise-free data, and can reduce the
accuracy of any classifier when applied to new instances.

Closely related to noise is the problem of missing values. The value of a feature
may not be available for all training or test instances. It may sometimes be known
that data is missing, but missing data can also manifest itself as noise. A feature
may return a default value such as 0, for instance, rather than explicitly indicating
that no data was available. If the value 0 has some additional meaning besides
indicating missing data, missing data appears as noise in feature values. Most

learning algorithms assume that all feature values are available, requiring a variety
of special fixes to be developed to handle missing values ([WKO91], pp. 172-173).

2.3.6  Feature Set May Contain Redundancy

Features that appear to be distinct may actually be measurements of the same
underlying property of an object. How serious this problem is depends on the
learning algorithm. For instance, redundant features can make the distance mea-
sures used by nearest neighbor methods misleading ([WK91], p. 73). On the other
hand, learning methods that incorporate feature selection (see below) may be able
to detect and ignore redundant features in some cases [Qui86b]. Redundancy can
even be desirable, since when treated appropriately it can help correct for missing

values or noise ([WK91], p. 73; [Dra9l]).

2.3.7 Other Problems

There are many other ways, mostly poorly understood, in which feature sets
can deviate from ideal. Often these problems are described in terms of their effect
on the shape of desired function over the instance space. We mentioned earlier
that feature sets that cause the target function to be discontinuous over the feature
space violate the search bias of many learning algorithms. Stating the problem in
this way tends to make one think in terms of finding an algorithm with a different
search bias. We can always imagine an algorithm that just happens to find the
desired hypothesis, no matter how bizarre the form of the hypothesis, given the
current feature space. Yet clearly this will not happen in real learning systems. One
is left with a strong intuition that some feature sets are bad for all sensible learning
algorithms. Connections between data compression, a simplicity bias in the order in
which learning algorithms explore hypotheses, and computational complexity theory
may be useful in formalizing this intuition [Sax91].
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2.4 Improving Feature Sets

In the previous section we discussed ways in which the set of features used to
represent instances can adversely affect the ability of a learning program to find a
function that accurately classifies new instances. This sensitivity of learning systems
to instance representation has led researchers to develop methods of improving
representations. We can broadly classify these strategies into two main groups:
feature selection and feature extraction [Kit86]. A great deal of research has been
done in both areas, and we present only a relatively brief survey of it below.

2.4.1 Feature Selection

Feature selection involves choosing some subset of d features from an original
set of D features, where d < D.! In almost any practical classification problem,
considerable feature selection will have been done by human beings in choosing
measurements to report that are likely to be of use in classification. However, it is
equally true that the best subset of features is often not readily apparent, so that
automated methods of feature selection are useful. In addition, if new features are
created by the learning algorithm during learning, then automated selection among
these may be needed.

Automated feature selection requires the ability to evaluate the quality of in-
dividual features or subsets of features. The intuitive quality measure is the error
rate of the classifier on unseen instances, or perhaps the expected cost of errors.
Estimating these measures, however, is computationally expensive and may require
more test samples than are available ([Jam85], p. 127). Even when the probability
of error can be estimated, it may not be an ideal quality measure for features or
feature sets [Ben82].

A wide range of other measures, based on overlap of probability density func-
tions, statistical dependence, information-theoretic measures, distance measures,
cluster analysis, dispersion measures, and others have been suggested ([Kit86];
[Jam85], ch. 8; [JD78]). In examinations of algorithms for inducing decision trees,
Breiman, et al ([BFOS84], p. 38) and Mingers [Min89] found that a wide range of
feature selection algorithms yielded similar classification effectiveness. Ben-Bassat
[Ben82| cites results where a variety of feature evaluation methods were found to
produce similar feature rankings, and suggests that computational efficiency be a
primary consideration.

Once a feature quality measure is selected, it is then necessary to evaluate
potential subsets of the feature set. Since there are D!/(D — d)!d! subsets of size d,
exhaustive search is usually not practical, and heuristic techniques or assumptions
about the independence of feature quality are necessary. The simplest approach
is to evaluate the quality of each individual feature and pick the d best. This

!We take our usage of the terms feature selection and feature extraction from Kittler’s survey
[Kit86]. Other authors have defined these terms differently or used other terms to describe the
same or related procedures.
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does not ensure good effectiveness of the resulting subset of d features, even when
features are known to be conditionally independent [Ben82]. Stepwise procedures,
which incrementally add features, discard features, or both, evaluating the subset
of features that would be produced by each proposed change, are more effective
([Jam85], pp. 127-129; [Kit86]; [WKI1], pp. 74-75). Feature selection can be done
before training, during training, and even during classification, particularly when
incremental learning algorithms are used.

Evaluation of feature sets during feature selection not only increases the ef-
fectiveness of classification, but also gives insight into whether the original set of
features is adequate to perform the classification task. If the set is not adequate,
then feature extraction may be appropriate.

2.4.2 Feature Extraction

Feature selection can eliminate low quality features and produce a lower dimen-
sional instance space. Feature selection risks losing information, however, and is not
effective if none of the original features are good. Therefore, the creation of new
features, called feature extraction or constructive induction, may be desirable. As
with feature selection, considerable feature extraction is often done in choosing what
observations to make of the environment, designing sensors or reporting procedures,
and so on. Much of this work, for instance research on knowledge-based vision or
extracting phonetic features in speech understanding, is very domain specific.

The literature on feature extraction is vast, particularly in applied statistics,
where it is discussed under headings such as transformations ([Tuk57], [BC64],
[Cha88], pp. 43-44; [Han81], chs. 5 & 6), re-expressing the data ([Tuk77], ch. 3),
and smoothing ([Tuk77], chs. 7 & 16). We therefore survey below only some of the
main issues and some important techniques in this area, concentrating on literature
from the machine learning community.

2.4.2.1 Operators

All feature extraction methods require the use of some set of operators that can
be applied to one or more current features to produce one or more new features.
We can view an operator as a function that maps from sets of features to sets of
features. Operators vary in their range of applicability. Logical operators such as
conjunction and disjunction can be applied to all boolean features. Operators such
as the arithmetic mean, multiplication, linear combination, and threshold functions
can be sensibly applied to many numeric features. Operators can also be specific to
a particular problem, such as operators for generalizing tic-tac-toe board features

[Mat90].

2.4.2.2 Range and Domain of Operators

Operators can be classified according to the number of features they examine
and the number of features they create.
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A one-to-one operator maps a single existing feature into a single new feature.
Transformations that replace feature values by roots or logarithms, such as are
widely used in applied statistics, are examples of one-to-one operators.

One-to-many operators are unusual, though of course any set of one-to-one
operators can be considered a one-to-many operator. A more interesting case of a
one-to-many operator is the replacement of a k-valued nominal feature with & binary
features, each corresponding to one of the original values ([Han81], p. 91). This sort
of transformation is necessary to apply numeric-oriented learning algorithms, such
as linear classifier builders, to nominal data.

Many-to-one operators are widely used, since they are a natural approach to
dimensionality reduction. A widely used strategy is the application of conjunction
or disjunction to boolean features. For numeric variables, linear combinations are
a common approach [BFOS84, UB90]. When a set of original features are thought
to be redundant manifestations of the same underlying feature, replacing them
with a single feature corresponding to their sum, disjunction, mean, or some other
cumulative operation is a good approach.

One widely used class of many-to-many operators, variously called factor anal-
ysis, principal components analysis, canonical analysis, and discriminant analysis
produces a new set of features that is a linear transformation of the original features
[Rum70, DH73, Bow84, Jam85, Kit86]. Another approach, which appears to have
been used mostly in information retrieval, is to apply cluster analysis to the original
feature set, resulting in a group of new features with less dependence among features
[LCY0]. Note that each of the individual features that result from a many-to-many
operator is a feature that could have also been obtained by some many-to-one
operator. The difference is that a many-to-many operator attempts to optimize
some property of the entire output feature set, rather than a property of individual
features.

2.4.2.3 When Are Operators Applied?

Operators may be applied at several points during the learning process. Many
can be applied directly to definitions of features before the values of those features
on any instances are known. Others, such as scaling a numeric feature to have mean
0 and variance 1 on the training set, require an initial analysis of the training corpus
before application. One could even imagine operators that would, for instance, scale
a numeric feature to have mean 0 and variance 1 on the test set, though this would
restrict the classifier to acting on batches of instances.

Application of feature extraction operators can also be interleaved with learning,
allowing characteristics of the classifier being induced to guide feature extraction.
When feature extaction is interleaved with classifier formation it may be difficult
to distinguish the two. For instance, training a connectionist network with hidden
units can be viewed as parameter adjustment on a very complex functional form. On
the other hand, the hidden units can be viewed as doing feature extraction [SW90],
with a relatively simple classifier being trained to use these features.
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2.4.2.4 What Information is Used to Control Feature Extraction

If the operators used are few and limited in their domain, then it may be practical
to apply all operators to all applicable features. In most cases, however, applying all
operators available to all features would be too expensive computationally and would
lead to too many new features. Matheus and Rendell [MR&9] list four approaches
to controlling the application of feature extraction operators: algorithm biases,
training set biases, concept-based biases, and domain-based biases. These correspond,
respectively, making use of no information (random or arbitrary control), making
use of properties of the training instances, making use of properties of the evolving
classifier, and making use of domain knowledge.

This is a useful starting point, but we believe a finer-grained breakdown is
desirable, as well as one that emphasizes what data is examined in deciding which
features to construct:

1. Fixed control
2. Random control

3. Training set control

(a) Unsupervised training set control

(b) Supervised training set control
4. Classifier control

(a) Intra-concept classifier control

i. Structural intra-concept classifer control

ii. Accuracy-based intra-concept classifier control
(b) Inter-concept classifier control

1. Structural inter-concept classifer control

ii. Accuracy-based inter-concept classifier control
5. Knowledge-based control

Many systems will, of course, use a combination of these methods.

In fized control, the algorithm applies feature extraction operators in some
predefined order, which may be arbitrary or may have been chosen with expected
characteristics of a class of problems in mind. In random control, there is a random
component to which feature extraction operators are applied, usually with the
assumption that a feature selection stage will choose the best of the resulting
features. Research on genetic algorithms in machine learning [DeJ88] makes use
of this approach.

Unsupervised training set control of feature extraction involves examining the
values of predictor features on training instances, but not the values of criterion
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features. For example, in using factor analysis to extract linear combinations of
the original features, the extraction of features can be ordered by how much of the
variance they explain in the training data. Canonical analysis is a supervised variant
on this approach, extracting first those features that best distinguish the criterion
classes on the training data ([Jam85], ch. 7).

There are a variety of ways to let the evolving classifier drive the construction
of features. An example of using the structure of the evolving classifier is the
FRINGE algorithm, which forms new features from pairs of features occurring near
the leaves of a decision tree [Pag89]. Accuracy of the learned classifier can be used
to guide feature formation when cross-validation (holding out part of the training
set for evaluating classifier accuracy) is used ([BFOS84], p. 140) or in an incremental
context [FU91].

If multiple classifiers are to be learned over the same data, either sequentially or
simultaneously, the structure or accuracy of one classifier could be used to control
operator application in learning other concepts. An example of the simultaneous
case is the implicit formation of shared features at hidden units when training
multi-output neural nets [DHB90]. The sequential case has been investigated in
information retrieval, where learning of multiple concepts over the same database is
the rule rather than exception (see Section 3.3.2.1). Both structural and accuracy-
based methods are possible.

We reserve the term knowledge-based control to refer to the use of an explicit
knowledge base separate from the learning algorithm to control the application of
feature extraction operators. This can be distinguished from fixed control (which
may have involved world knowledge on the part of the implementer) and the use
of knowledge-based operators (discussed later in this chapter). As an example,
the CITRE system makes use of knowledge-based control over the application of a
knowledge-free operator, conjunction [MR89].

Control over feature generation can be exercised before the features are actually
generated, based on known properties of the operators, or after feature generation by
first generating features and then using feature selection to choose among generated
features. Seshu, et al [SRT88] have argued for a strategy of test incorporation, where
the evaluation of attribute quality is incorporated into the early stages of the feature
extraction process, so that large sets of nonuseful attributes are ruled out as quickly
as possible.

2.4.2.5 Replacement or Augmentation

If old features are retained when new ones are created, then dimensionality is
increased, which is usually not desirable. Many-to-many operators, such as factor
analysis, are used to replace the original feature set with an entirely new set. Often,
however, it is desirable to use a mixture of old and new features. A common approach
is to follow feature extraction by feature selection from the union of old and new
features. Systems that incrementally create new features in response to classification
effectiveness sometimes set a limit on the number of features, so that a new feature
is accepted only if it can displace an old one [FU91].
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Always keeping the best scoring features has the difficulty that a number of
individually high scoring but redundant features may be selected. Stepwise feature
selection methods can help with this. Alternately, when there are known rela-
tionships between features as, for instance, when one is constructed from another
deductively [DR89, DCR89] it may be possible to substitute one feature for another
in a controlled fashion.

2.4.2.6  What Information is Used in Constructing Features

The question of what information is used by operators in forming features is
very similar to the question of what information is used in controlling operators. To
some extent, the distinction between the two depends on the granularity at which one
examines the learning system. A system like CITRE can be viewed as using domain
knowledge to control the application of a simple operator (AND), or alternately can
be viewed as having a complex knowledge-based operator whose output happens to
end up being conjunctions. On the other hand, there does seem to be a difference
between, say, favoring the use of AND over OR as an operator because many features
have skewed distributions on the training corpus, versus creating a numeric feature
that incorporates the sample mean of an original feature on the training corpus (see
below). The latter clearly is information accessed by the operator, rather than by
the mechanism applying the operator.

A similar breakdown of information sources as used in discussing control is
appropriate:

1. Fixed operators
2. Random operators

3. Training-set-based operators

(a) Unsupervised training-set-based operators

(b) Supervised training-set-based operators

4. Classifier-based operators

5. Knowledge-based operators

We deemphasize the classifier-based case, as discussed below.
The simplest cases again are fized operators, such as conjunction or multipli-

cation, which make no use of additional knowledge in forming features. Random
operators make use of some random component and their use is hard to distinguish

from random application of nonrandom operators.
An important example of an operator that makes unsupervised use of the train-

ing set is:

where g is the mean value of original feature f(x) on the training set, and o is the
standard deviation of f(x) on the training set. The new feature, g(x) has mean 0 and
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variance 1 on the training set and, it is intended, approximates these characteristics
on test sets ([JD88], p. 24). This and similar transformations are often used to
keep features with large values or high variance from dominating the classification.
Feature clustering and factor analysis are other examples of unsupervised feature
extraction.

Supervised training-set-based operators are supervised learning mechanisms them-
selves, since they examine labeled training data and form a new function, in this case
one intended to be used as a feature. The reason behind using an additional learning
algorithm to form features is usually to compensate for too strong a hypothesis
space bias in the primary learning algorithm, as in the use of linear discriminants
at decision tree nodes [UB90].

Classtfier-based operators examine not the labeled training data, but a classifier
that has been formed from labeled training data. All the variations that were
discussed under classifier-based control are available, and all are similar in that they
examine some learned classifier, and typically make some subpart of it or modified
subpart a new feature.

It is important to recognize that all the methods described above are limited, just
as the main learning algorithm is, by the information available in the training data.
Fawcett and Utgoff [FU91] would classify all of them as being empirical methods,
to be constrasted with analytical, or knowledge-based methods. The use of domain
knowledge is widely believed to be important in feature formation. Horn, discussing
classification in computer vision, puts it this way ([Hor86], p. 344): “When you have
difficulty in classification, do not look for ever more esoteric mathematical tricks;
instead, find better features.”

While domain knowledge is widely used in the original human selection of
features for classification problems, only recently have methods been explored for
automatically using a domain knowledge base during feature extraction. Domain-
knowledge-based operators typically are transformations to be applied to statements
in a logical language, such as propositional logic [DCR89] or predicate calculus
[CU91]. They result in new features defined in terms of existing features by expres-
sions in the appropriate language.

An alternative is to use a domain theory in a more limited way, to specify
what initial features should be combined to form new features, while leaving it to
some other mechanism to find the exact method of combining them. An example is
research on knowledge-based neural networks [TSN90], where connections to hidden
nodes are specified by a domain theory but backpropagation is used to weight these
connections.

2.5 Summary

The preceding sections can be summarized in one sentence: Learning is hard, and
there is a limited amount that can be done to make it easier without introducing new
features. Quinlan presents an example where defining features for a classification
problem required two man-months of effort, after which learning a perfect classifier
was trivial [Qui83].
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The importance of features has led to considerable research on what makes a
set of features good, and on feature selection and feature extraction. A good deal is
known, particularly about ways of addressing feature set inadequacies of a statistical
nature, such as high dimensionality, noise, and redundancy. However, much remains
to be learned, particularly with respect to the use of domain knowledge in feature
extraction.

Having looked at issues of representation in the general case of classification, we
turn to the issue of representation for the particular classification task of interest
here, text classification.



CHAPTER 3

REPRESENTATION IN INFORMATION
RETRIEVAL

In this chapter, we take an approach similar to that of Chapter 2, but focus
exclusively on representation quality in information retrieval, and on the text rep-
resentations used in text classification tasks. We first review some of the kinds of
text representations used in IR, and clarify the relationship between indexing terms
in IR and features in machine learning. We then survey theoretical research on
representation quality in IR, particularly research on models that make predictions
about representation quality. Following that we examine feature selection and
feature extraction methods in IR, drawing parallels with research from machine
learning. Finally, we discuss what conclusions can be drawn based on our survey of
representation quality. In particular, we present the framework for a new theoretical
model of text classification in which representation quality plays a more natural role.
We also present a list of desirable properties of text representations.

3.1 A Review of Text Representations

In Chapter 1 we left the concept of a text representation rather vague. Having
reviewed research on classification in Chapter 2, we can see that a text represen-
tation plays the same role in text classification systems that a feature set does for
classification systems in general. We first discuss some of the terminology and ideas
associated with features and feature values in IR, and then briefly consider the major
kinds of text representations in use.

3.1.1 Terms and Term Weighting

A text representation or indexing language is a set of indexing terms. The phrase
indexing term or just term is used in IR to refer to the same kind of entity as a
feature in classification, that is, a function from instances (in this case documents)
to some set of values.! We will refer to the value of a term for a document, just

! As in other classification tasks, there has been some use in text classification of representations
that do not fit the feature set model [LCB89]. However, since there is little in the way of theoretical
or experimental results about such representations for text classification, we will not treat them
here.
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as we refer to the value of feature for an instance. However, there are also ways in
which terms are talked about in IR that vary considerably from how features are
talked about in classification, and some discussion of this terminology is important

to understanding the IR literature on text representation.
The form of a document that is initially available to a text classification system

is typically a string of characters. To determine what the value of a term for a
document is, the character string must be examined by some feature extraction
process. For instance, the feature extraction process may consist of a human indexer
reading the document and making an intellectual decision about which of a set of
terms best captures the document’s content. For binary terms, we say that a term
is present in or assigned to a document to indicate that the term takes on the value
1 or True for that document. Conversely we say that the term is not present in or

not assigned to the document if it takes on the value 0 or False.
One often encounters the notion of the number of occurrences of a term in

a document, referred to as the within document frequency (wdf) or, somewhat
ambiguously, as the term frequency (tf). The within document frequency of a term
refers to the number of separate occurrences in a document’s character string of
a linguistic clue indicating that the term should have a nondefault value for the
document. One may talk about the within document frequency of a binary term, or
may actually use the within document frequency as the term’s value, in which case
we have an integer-valued term. Numeric transformations of the within document

frequency are also widely used, producing real-valued terms.
In discussing text retrieval, reference is often made to the query terms. These

are the terms that constitute the feature set for a particular retrieval. Typically
the query terms are only a small subset of the terms in the text representation, and
are selected via some interaction with the user of the text retrieval system. This
interaction often involves analysis of the natural language text of a request by the
user. Query expansion refers to adding terms to the feature set for a retrieval, and
may be done on the basis of interaction with the user or analysis of initially retrieved
documents. When expansion is done using terms from retrieved documents, the new
terms are called feedback terms. This form of query expansion is similar to feature

selection mechanisms used in incremental machine learning algorithms.
In IR, term weighting refers to any mechanism that associates non-binary nu-

meric values with terms. From the standpoint of classification, there are two very
different mechanisms that are lumped together under the heading of term weighting.
The first, called term significance weights [Cro81, Cro83], describes the importance
of a term in representing a particular document. These are just feature values, and

are sometimes referred to as the document weights of terms.
On the other hand, IR also uses weights derived from properties of the term in

the whole collection or in a set of identified relevant and nonrelevant documents.
These are sometimes called query weights. Mathematically, some of these weights
can be viewed as initial parameter values for a classifier function, and others are pa-
rameters in parameterized transformations of the original term values. An example
is the inverse document frequency or idf weight [Spa72]. If we let n; be the number
of documents in the text database containing term ¢, a common definition for the
idf weight is log N/n;, where N is the total number of documents.
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A widely used retrieval method is tf x idf weighting [SB87]. In this method a
document j has a score found by taking the sum over all terms in the query of the
product tf;; x idf; for each term ¢, usually with some normalization for document
length. The tf weight for term 2 in document j will typically be some numeric
transformation of the within document frequency weight, and usually will be 0 for
many term/document pairs. In implementing ¢fx idf weighting, the product ¢fx idfis
often stored rather than the term value ¢f. This increases efficiency at retrieval time,
and is possible because idf values for terms stay constant as long as the collection
of documents does not change.

There are at least two possible interpretations of tf x udf weighting from a
classification viewpoint. The first is that ¢f weights are feature values, and idf
weights are parameters to a classifier. The second is that ¢f weights are the original
feature values, but that we transform the original features by multiplying by udf
weights. The parameters to the classifier in this case are all 1.0. The situation is
even less clear in variants of ¢fx tdf weighting where idf values are used in computing
both classifier weights and term values [SB8T].

In the end, whether a weight should be considered a feature value, a transfor-
mation parameter, or a classifier parameter depends on the theoretical model from
which the weights are derived. For instance, a Bayesian justificiation has been given
for idf weights. In this model idf weights are parameter values of a classifier [Cro81].
The theoretical basis for using them in a multiplicative transformation of feature
values is less clear.

The above discussion has assumed that however feature values are defined, they

are known exactly. An important alternate view is probabilistic indexing, which is
described in Section 9.2.2.3.

3.1.2 Major Text Representations

There are two major dimensions along which text representations are distin-

guished ([Sal89], p. 276):

e Indexing by humans vs. indexing by automated methods.

o Indexing based on the original text vs. indexing using a fixed set of terms.

From a classification standpoint, the four combinations of these methods are
four different approaches to extracting features from the raw sequence of characters
for the text. Automated indexing using terms drawn from the original text means
that some automated feature extraction procedure is used. This typically involves
isolating from documents those substrings or other linguistic clues likely to corre-
spond to words or larger structures in a natural language. Each term corresponds
to one such linguistic clue, and the set of terms corresponds to the set of all distinct
clues encountered, under some definition of distinctness. The value of a term for
a document typically depends on the number and position of occurrences of the
linguistic clues in the document, as discussed above. One characteristic of automated
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indexing from free text is that the set of features can grow as new documents are
encountered.

The other widely used combination of methods is human assignment of terms
from a fixed set, or manual controlled vocabulary indexing. Here the set of features
is specified manually. Specification of the value of each feature for each document is
also done manually. Usually these values are binary, or ordinal with grades such as
magjor/minor/not present. As mentioned in Chapter 1, the effectiveness of controlled
vocabulary indexing has been found to be quite similar to that of automated indexing
from text.

Manual assignment of terms from free text is fairly widely used as well, though
not as often as controlled vocabulary indexing, and usually as a supplement to
controlled vocabulary indexing. Automated assignment of controlled vocabulary
terms is simply the use of text categorization as a feature extraction strategy rather
than as an end in itself, and in operational settings may be used either autonomously
or as an aid for human indexers.

Within each of these four broad classes of representation there are substantial
variations. Many of these variations can be viewed as resulting from the application
of feature selection or feature extraction to simpler text representations. In addition,
there are a variety of other representations that fit less well into the above model.
Salton refers to information about documents such as author name, publisher, and
citation data, as objective identifiers, since there is little debate about how to assign
them to documents [Sal89]. However, these objective identifiers can also be used
as indirect clues to content, and for this purpose can be treated much like other
content features [FNL88].

3.2 The Quality of Text Representations

Experimental comparisons of text representation quality have been widespread
in information retrieval. Most of these comparisons have applied a fixed retrieval
method to the requests and documents of some IR test collection, and then varied
the text representation used for documents. Almost all such experiments have been
done using the text retrieval task, rather than other text classification tasks.

An experiment of this sort measures the relative quality of text representations
given a particular retrieval method, a particular request set, and a particular doc-
ument set. If the result holds up for other retrieval methods, other document sets,
and other request sets then we can begin to have confidence in generalizations, such
as those we listed in Chapter 1, about the text representations. If the same result
holds up for a range of text representations sharing some characteristic, then we may
be able to draw some conclusion about the relationship between that characteristic
and text classification effectiveness.

Unfortunately, the characteristics of text representations measured in and con-
trolled for in many of these experiments do not give us much insight into how
text representations impact effectiveness or what the quality of proposed new text
representations might be. This is particularly true for studies on manually produced
representations, where the variation among manually defined sets of categories,
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and the variation in the behavior of human indexers, is substantial and difficult
to characterize. Other studies are hard to interpret because characteristics of the
text representations are described only vaguely, or because of uncontrolled influences
on effectiveness.

Nevertheless, some research has pursued connections between measurable char-
acteristics of text representations and the effectiveness of these representations for
text classification. We review this research below, first considering measures of
the quality of individual indexing terms, and then measures of the quality of full
text representations. We focus on research that presents theoretical models of
representation quality that have the potential to predict the quality of new text
representations.

3.2.1 What Makes a Good Indexing Term?

In this section we consider theoretical models that specify what characteristics
a good indexing term should have, i.e. what makes a function from documents to
values a good feature for text classification tasks. Two main types of models have
been explored: those based on similarity measures between documents and those
based on decision-theoretic cost estimates.

3.2.1.1 The Term Discrimination Model and Related Models

Salton, Yang, and Yu [SYYT75] introduced the idea of the discrimination value of
an indexing term. Their term discrimination model assumes documents are vectors
of indexing term values, and that the similarity between documents is inversely
proportional to the angle between these vectors. The discrimination value of an
indexing term is the increase or to decrease in the mean inter-document distance
caused by adding the indexing term to a text representation.

The term discrimination model assumes that increasing the average distance
between documents will lead to better retrieval effectiveness, by allowing documents
to be distinguished more easily from their neighbors. Therefore a term with a
high discrimination value is a desirable indexing term. Salton, Wong, and Yang
present examples of four feature set transformations where the increase or decrease
in effectiveness has the relationship to average distance predicted by the term
discrimination model [SWYT75].

Empirical studies show that the discrimination value of an individual term
is strongly correlated with the document frequency of a term, i.e. the number of
documents for which the term takes on a nonzero value [SYY75]. Terms with the
highest document frequency are the worst discriminators, but terms with very low
frequency are also poor discriminators. Terms with document frequency of n/100
to n/10, where n is the number of documents in the collection, were found to have
the highest discrimination values.

Based on this evidence, Salton [Sal86] suggests that high frequency terms be
used as components in multi-term indexing phrases (which will have lower frequency
than their parts), while low frequency terms should be grouped in thesaurus classes
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(which will have higher frequencies than any of their individual members). Some
experimental results have shown increases in retrieval effectiveness from the use of

indexing phrases and clusters, though these improvements have been erratic.

Yu and Salton [YST77] have proven that certain transformations suggested by
the term discrimination model will improve effectiveness. However, extensive as-
sumptions are necessary for the proof, in particular the assumption that the query
terms with higher document frequency occur in proportionally more nonrelevant
documents, and that it is somehow known what terms to combine into thesaurus
classes and phrases. Their analysis is also based on assuming that different term
combinations are formed for each request. The proofs also apply only to vector
space retrieval.

From the standpoint of giving guidance to the design of text representations for
actual use, the predictions of the term discrimination model are weak. For instance,
the model suggests that low frequency terms be combined to form thesaurus classes,
but does not specify any other characteristics of terms to be combined. One is left
to choose among a huge number of possible term combinations, most of them useless
or harmful.

A variant on the term discrimination model, term precision weighting has also
has been proven to improve effectiveness under certain assumptions, in this case
assumptions more plausible than those described above. We discuss this method
further in Section 3.3.2.

3.2.1.2 Probabilistic and Decision-Theoretic Models

Bookstein and Swanson [BS74] and Cooper [CooT78] have claimed that indexing
should be done on decision-theoretic grounds by estimating the average cost across
all users of indexing a document on a particular term. In other words, whether a
particular index term should have a nondefault value for a document should depend
on whether this is likely to increase or decrease the average cost to users of satistying
their information need.

Cooper suggested that this cost be estimated by thought experiments on the
part of a human indexer, but this of course does not yield an automatic proce-
dure. Bookstein, Swanson, and Harter [BS75, Har75b, Har75a] developed a utility-
estimating model based on statistical assumptions about the distribution of terms.
In particular, it assumes that a collection of documents is divided into two or more
groups, each of which is about the concept specified by the indexing term to a
differing degree. Terms are assumed to have values equal to their within document
frequency. The distribution of these values within each group of documents is
assumed to follow a Poisson distribution.

An approach to assigning terms to documents in a binary fashion has been
developed for a special case of the above model where each term is characterized by
exactly two Poisson distributions [Har75a]. However, this approach to computing
term values has been found to be inferior to a simple binary model of term occurrence
[Los88].

Maron [Mar79] develops a similar decision-theoretic model where each term
is evaluated according to the probability that users mentioning that term in their



31

request will want a particular document. All terms for which this probability is above
some threshold are assigned. No method for estimating the relevant probabilities is
provided, however.

The Bookstein, Swanson, Harter model and the Maron model include a threshold
that can be varied according to the cost of retrieving a nonrelevant document and
the cost of missing a relevant document. Decreasing the threshold increases the
probability that a term will be assigned to a document. Maron argues that this idea
of a threshold should supersede the traditional notion of exhaustivity or indexing
depth, which is usually operationalized as the average number of terms assigned to
a document ([Tag81], p. 62).

A survey of decision-theoretic indexing models is presented in [CM78]. These
models have had considerably more success from a standpoint of theoretical clean-
liness than from one of text classification effectiveness.

3.2.2 What Makes a Good Set of Indexing Terms?

We turn in this section from characteristics of individual terms to characteristics
of complete text representations (sets of indexing terms). Our focus is on attempts to
find theoretical models connecting measurable characteristics of text representations
to the effectiveness of text retrieval using those representations. We treat only briefly
discussions of manual indexing of documents.

Svenonius [Sve86] gives a good review of what is known about controlled vo-
cabularies and what questions are still open. She stresses linguistic justifications
(synonymy and ambiguity of natural language words) as reasons why controlled vo-
cabularies should work better. One strategy in controlled vocabulary indexing is to
replace what would be synonymous terms in a word-based representation by a single
identifier in the controlled vocabulary. Svenonius suggests that control for synonymy
may have different effects for different collections, based on Bhattacharyya’s measure
of the average terminological consistency [BhaT4] of the discipline from which the
text is drawn. This value is defined as:

1 &1
I= n ; S;
where n is the number of “concept terms” in the field, and s; is the number of
synonyms of the ¢th concept term. However, since there is no widely accepted
definition of what a concept term is, or even of what a synonym is, this measure is
not important helpful. The only clear finding Svenonius claims for previous research
on controlled vocabulary indexing is that different representations tend to retrieve
different documents [KMT+82]. This phenomenon has been used to increase text
retrieval effectiveness by combining multiple text representations [CLC88, FNLSS,
Tur90].

Svenonius mentions, but expresses some doubt in, the theoretical and empirical
result that increasing the exhaustivity of indexing tends to increase recall and
decrease precision. Sparck Jones [Spa8l], among others, draws this conclusion
from previous work, but has also pointed out that degree of exhaustivity can be
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compensated for in query formation [Spa73b]. This is under the traditional definition
of exhaustivity, i.e. the number of terms assigned per document. This traditional
measure actually confounds three text representation characteristics: dimensionality
(number of terms in the text representation), the set of concepts represented in the
vocabulary (in particular how specific or general they are), and an indexing threshold
of the type discussed by Maron and Harter. Only the first two characteristics are
inherent to the text representation.

Other research on the quality of term sets has come not from attempting to
formulate satisfactory policies for manual indexing, but instead from trying to
understand why existing representations exhibit good or bad effectiveness. The best
example of this research was Sparck Jones’ attempt to explain why term clustering
led to improved effectiveness on one test collection and not on two others [Spa73a].
She proposed, tested, and rejected a number of hypotheses before adapting the
test Van Rijsbergen proposed for the Cluster Hypothesis [Jv71, van72]. This test
compares the distribution of a similarity measure over two groups of document
pairs. One group contains all pairwise combinations of relevant documents, while
the other contains all pairs consisting of one relevant document and one nonrelevant
document. The more the distributions overlap, the worse the separation between
relevant and nonrelevant documents. For the collections that Sparck Jones was
studying, a much larger overlap was found for the two poorly performing collections
than for the well-performing collection.

This led Van Rijsbergen and Sparck Jones [vST3] to propose the use of this
Cluster Hypothesis Test (CHT) as a way of determining whether an initial set of
terms will be improved by methods such as term clustering, which are meant to
drive apart relevant and nonrelevant documents. They also suggest that the test
can be used to determine whether a new indexing vocabulary for a collection will
actually lead to effectiveness improvements. The CHT was later used by Burnett,
et al [BCL*79] to compare a number of indexing vocabularies of various sizes, and
the results generally showed that representation quality as predicted by the test
correlated with retrieval effectiveness. The CHT has so far been used only in a
heuristic fashion. Further tests of its efficacy, and a theoretical explanation for its
usefulness, would be desirable.

Another measure, also proposed in terms of evaluating collections and also
applicable as a measure of representation quality, is Sparck Jones’s “performance
yardstick” [Spa75]. This involves finding the recall-precision curve achieved by
weighting query terms according to their distribution in the complete set of relevant
and nonrelevant documents. What this really means is that one forms the optimal
classifier possible within the limits of a given machine learning algorithm, and testing
on the training data. FEffectiveness is usually not perfect since only query terms
derived from typically short user requests are used as features.

Wong, Yao, and Bollman [WYBS88] applied a similar strategy, using a feature
set including all terms in a text representation, to make claims about the adequacy
of linear classifiers in IR. They used gradient descent on the perceptron criterion
function to train perfect or near-perfect linear classifiers for all requests in two
collections. However, this tells us nothing about the representations used except
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that their dimensionality was large in comparison to the number of documents.
The same can be said for the small, optimal boolean queries found by Gifford and
Baumanis [GB69)].

Another view on the nature of good term sets comes from Brookes’ information-
theoretic analysis of IR [Bro72]. Under the assumption that we want to maximize
the information transmitted per term assigned, given a fixed total number of term
assignments, then we want each term to be assigned to the same number of doc-
uments. Since free-text terms actually follow a Zipt’s law distribution, this would
suggest that considerable improvements are possible by representation changes, such
as those suggested by Salton on term discrimination grounds, that tend to equalize
the frequency of terms. On the other hand, Brookes points out that since terms
will undoubtedly not be distributed equifrequently in user queries, achieving equal
information content per term may not be desirable. Brookes does not investigate how
one would derive the ideal distribution of document terms given a known distribution
of query terms.

3.3 Improving Text Representations

Improving of text representations has been an area of considerable interest in
information retrieval. We will see that many of the same issues are encountered as
in feature selection and feature extraction for machine learning in general. How-
ever, the specific characteristics of text classification tasks have led to some novel
approaches.

3.3.1 Feature Selection for Text Representation

Feature selection mechanisms are important in classification problems when
the number of potential features is large in comparison to the number of training
instances, or when features have any of a variety of problems with quality. In this
section we discuss feature selection for text retrieval and for text categorization.

3.3.1.1 Feature Selection for Text Retrieval

Text retrieval is an extreme case of the need for feature selection, since there
are often tens of thousands of features (indexing terms) and few or, in the initial
retrieval, no training examples available. This means that information other than
training instances must be used in feature selection.

One approach to feature selection for the initial retrieval is to use the user
request. The usual approach is to apply the same language-processing mechanism
used to determine feature values for documents to the text of the user’s natural
language request. The set of features that would be given nondefault values if the
request was a document is used as the initial text representation for that retrieval.
This is the approach taken in probabilistic retrieval methods [CHT79].

Another approach is to form a classifier that is less affected by a high dimen-
sionality feature set. This is the case in vector space retrieval [SM83]. Again the
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user request is processed in a fashion similar to that for documents, and serves as a
prototype against which other documents are compared. The cosine correlation is
used to measure how similar each document is to the prototype, and this similarity
value is the system’s estimate of a document’s membership in the class of relevant
documents. Feature selection is avoided (or perhaps should be viewed as implicit)
by setting the value of all features that were not detected in the request to 0. Such
features, no matter how many there are, can have no effect on the classifier output,
under the cosine similarity formula.

Other sources of information can be used to eliminate certain features before any
user requests are processed. One common strategy is a stop list—a fixed set of words
that are never used to index documents. The justification for using such a list is
usually asserted to be both linguistic and statistical. Van Rijsbergen ([van79], p. 17)
talks about “the removal of high frequency words, ‘stop words’, or ‘fluff” words”,
Salton and McGill ([SM83], p. 71) call them the “high-frequency function words”,
and Vickery and Vickery ([VV8T], p. 122) “very frequent non-significant words.”
There is some contradiction in these views, since some words that are function
words have low frequency, and some very high frequency words are not function
words. This includes some of the words contained in typical stop lists, such as Van
Rijsbergen’s ([van79] , pp. 18-19). However, we can view stop lists as primarily being
defined linguistically, and they are perhaps the only solidly successful application of
linguistic knowledge to improving representation quality in IR.

The problem of feature selection becomes more traditional, but also more acute,
in a relevance feedback context. Since the user has been shown a small number
of documents and has indicated whether each is relevant or non-relevant, there is
a small training set available. This training set can be used for feature selection,
as well as for adjusting parameters of the classifier. (Note that before relevance
feedback, default or user-supplied values must be used for these parameters.)

The small number of training examples available during relevance feedback
affects feature selection as well as classifier formation. There is considerable con-
troversy over the degree to which feature selection should be done during rel-
evance feedback. Some authors suggest expanding the query with all features
that have non-default values in documents judged to be relevant [SK86, SB90],
while others suggest more selective automatic methods or relying on user judgment
[Hv78, vHP81, Sv83, Har88b, CDY0]. Results in direct comparisons have been mixed
[SB90, CD90]. Still another approach is to leave the set of features suggested
by the user request unchanged, and use the feedback documents only for tuning
the classifier parameters [Spa79, WS81]. This latter approach is called relevance
weighting.

3.3.1.2 Feature Selection for Text Categorization

Feature selection in a text categorization context is more like the usual machine
learning case than is feature selection in text retrieval. A large number of classified
examples are often available. Despite this, relatively few of the automated feature
selection techniques explored in machine learning have been tried for this task. A
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few measures of association between term occurrences and category occurrences have
been used or suggested [Mar61, Fie7h, HZ80, BFL*88]. For the most part, however,
manual feature selection has been relied on, along with stop lists as described above.
Given that the classifiers for a text categorization system can be expected to be in
use over a long period of time, the investment of human effort in feature selection is
not unreasonable, though it seems likely that automated aid would both save effort
and increase effectiveness.

3.3.2  Feature Extraction for Text Representation

As with feature selection, feature extraction has been the subject of considerable
research in information retrieval, again almost solely for text retrieval rather than
text categorization. We separate our discussion here into methods that have been
or could be used outside of text classification, and those that are specific to text
classification problems.

3.3.2.1 Domain-Independent Feature Extraction in IR

Many of the domain independent feature extraction mechanisms described in
Chapter 2, particularly the ones developed in statistics, have been applied in the IR
context. One-to-one transformations, such as taking logarithms, are often used alone
or as part of term weighting formulas. One-to-many operators are rare, however, as
in most other classification tasks.

The primary many-to-one operator used is indexing phrase formation.? An
indexing phrase is an indexing term that corresponds to the presence of two or more
single word indexing terms. Many phrase formation techniques used are specific
to the IR domain, since they are based on relationships between words in text.
However, one method of phrase formation is simply to take the conjunction of two
or more existing terms, a method widely used in machine learning.

Many-to-many transformations applied to IR have included feature clustering
(term clustering), pattern clustering (document clustering), and factor analysis
(latent indexing). As with related techniques in machine learning, these domain-
independent feature extraction strategies usually have yielded only small effective-
ness improvements.

Text retrieval is unusual among classification tasks in that it is necessary to
induce large numbers of classifiers over the same set of data. FEach time a user
makes use of the text retrieval system, one or more new classifiers is created. This
has led IR researchers to investigate a variety of methods for intra-concept classifier
control in feature extraction.

A number of researchers have investigated document space modification, i.e.
changing the value that each term has for a particular document, based on whether

?In the IR literature, the term “phrase”, rather than the longer “indexing phrase” is usually
used. We will usually use the longer term, as “phrase” is widely used with other meanings in
natural language processing and linguistics.
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or not that document should have been classified as relevant by classifiers using that
term in their feature sets [FMW71, Bra7l, Gor88a, Gor88b]. This is an unusual type
of feature extraction, in that the value of the new feature for a document will depend
on when the document entered the database, the requests for which it was retrieved,
and to which of those requests it was judged relevant.

A drawback of document space modification methods is that term values change
only for documents that have been the subject of relevance judgments, and then
only for those terms that appeared in the query or the document. An approach
that changes the value of a term for all documents containing the linguistic clue
for the term is term precision weighting. In this approach, a sample of queries
and relevance judgments is used to estimate the tendency of a term to occur in
relevant vs. nonrelevant documents. Terms with a greater tendency to appear in
relevant documents are weighted more highly for future queries. Yu and Salton
have proven, under certain assumptions, that term precision weighting will improve
retrieval effectiveness [YS76] and have demonstrated, under conditions somewhat
different from those of the theoretical case, small improvements in effectiveness
from this weighting [SWW76].

Fuhr and Buckley have recently demonstrated a method that allows transfor-
mation of all feature values for all documents [FB90]. The method assumes that
several different ways of determining the value of a feature are available (such
as the idf weight, the wdf weight, document length, and so on). The method
trains the parameters of a polynominal combination of these different values. Even
though only a subset of features and a subset of documents are seen during training,
sufficient information is gathered about appropriate feature value combinations to
show substantially increased effectiveness on new classifiers.

Traditional many-to-many feature extraction methods can also be guided by
relevance judgments on previous user requests. This has been attempted with both
term clustering [YR77] and document clustering [WorT71].

It should be pointed out that all studies in the area of intra-classifier feature ex-
traction in IR have suffered from the relatively small number of requests, documents,
and relevance judgments available in standard test collections.

3.3.2.2  Domain-Dependent Feature Extraction in IR

A variety of domain specific feature extraction methods have been developed in
information retrieval. The four main approaches to text representation described
earlier are simply four broad classes of feature extraction techniques, within which
a number of variations have been tried.

Since documents are instances of human language, research on feature extraction
for text classification tasks often draws explicitly or implicitly on notions of linguistic
structure. Some of the linguistic assumptions made are so basic as to be almost
unnoticable. For instance, documents are often discussed as if they were sequences
of words, with the assumption that there is a single, straightforward technique
for creating a text representation whose terms correspond to words. The form in
which documents are usually made available to the computer is actually a string of
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characters, however, and there are a number of significant decisions made in deciding
how to segment that string into words. This is particularly true in languages such
as Japanese, where the writing system does little to indicate word boundaries. Even
in English, many unclear cases arise, particularly with respect to compound words,
names, and hyphenated words. It is not even necessary to have a notion of words
at all to derive a reasonable text representation, since indexing on short sequences
of characters provides a representation with effectiveness not much worse than that
of indexing on words [Wil79].

Nevertheless, most work on text representation has assumed a set of basic
features corresponding to words. The most widely used feature extraction method
applied to a word-based feature set is stemming ([van79], pp. 17-22; [SM83], pp. 71—
73). Stemming is a knowledge-based feature clustering procedure. It applies heuris-
tics for removing affixes from the word forms corresponding to terms, and forms
clusters from terms that are reduced to the same form by this process. A term
corresponding to the group of related terms is formed, and this term’s value for a
document is typically the disjunction or the sum of the values of the terms in the
cluster. So, for instance, the terms corresponding to the words computer, compute,
computing, and computational might be collapsed to form a single term, which might
be denoted by the form comput-. Often this clustering process is incorporated into
the procedure that produces the original text representation from the character
strings for documents, so that terms corresponding to unstemmed words are never
actually formed. A stemmed representation has been widely, but not uniformly
[Har87], found to be more effective than an unstemmed one.

Another approach to knowledge-based feature extraction is to focus on the mean-
ing of words. Thesaurt are knowledge sources that specity semantic relationships
between words. One approach to feature extraction using thesauri is to replace single
word terms with clusters of terms specified as being related by a thesaurus. Another
is to specify that the value of a term for a document takes on a nondefault value
not only when the linguistic clue for that term is present, but also when a linguistic
clue for a related term is present. Some experiments on thesaurus-based feature
extraction have shown improvements in retrieval effectiveness [Fox80, WV85], but
this technique is still poorly understood.

Any approach to text representation based on the meaning of words must
address the dual problems of ambiguity (the fact that words can have several
meanings) and synonymy (the fact that several words can have the same or closely
related meanings). To address these problems, Krovetz has suggested that indexing
terms correspond to word senses from a machine-readable dictionary rather than
correspond to words [KC89].

Other text representation techniques have attempted to form indexing terms
that correspond to linguistic structures larger than a word. A variety of techniques
for multi-word indexing or phrasal indexing have been investigated. An approach
that makes some use of document structure is proximity phrase indexing, where
the phrasal term has its maximum value for a document only when linguistic clues
for the words in a phrase are found within a certain distance of each other in the
document. Frequency information is often used to decide which words to combine in
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a proximity phrase, so these phrases are sometimes referred to as statistical phrases.
A limiting case of proximity phrases is when the distance between linguistic clues
for the component words is ignored, and we have the conjunction or sum of two
terms, as discussed in the previous section.

A number of researchers have investigated syntactic phrase indexing, in which
a phrase takes on its maximum value for a document only if the component words
are in a specified syntactic relationship. Syntactic phrase indexing is discussed at
length in Chapter 4. Surveys of approaches to both syntactic and statistical phrase
indexing have appeared elsewhere [Fag87, CTLI1].

We have not dealt here with manual indexing, since properties of this method
are so affected by human variability. The Svenonius survey provides good pointers
into this area [Sve86].

3.3.8 Contrasts with Machine Learning

Comparing work on feature set improvement in text classification with work in
the more general field of machine learning shows many similar techniques have been
applied. This is particularly true for methods that both fields have drawn from
statistics, such as transformations, clustering, and factor analysis. Information-
theoretic techniques for evaluating and selecting features have also been widely used
by both fields.

However, text classification has also investigated methods rarely examined in
machine learning. The emphasis on human feature selection, via the text of a user
request or other interaction with the IR system, is the most notable case. Buntine
[Bun90] and others have argued for just such an interactive approach to induction
in the more general machine learning context. Another important area explored in
information retrieval, but rarely in machine learning, is taking advantage of multiple
concepts learned over the same set of instances. Finally, as in any classification
application area, there are techniques specific to the domain. In the case of IR,
these include manual indexing and various natural language processing methods.

Conversely, text classification research has taken little advantage of the more ad-
vanced techniques for feature extraction developed in machine learning. Techniques
that make use of domain knowledge in some form may be of particular interest in
counteracting the role of small training set size in relevance feedback [Lew91b]. On
the whole, the methods used for building classifiers in text classification systems
have been simple in comparison to recent methods developed in machine learning.
Whether these more complex methods, which often interleave feature extraction and
classifier formation, will be more effective remains to be seen.

Information retrieval and machine learning diverge from each other the most
in their theoretical and heuristic attempts to understand the quality of feature
sets. This is not surprising, since most research into text representation quality in
information retrieval has focused on the text retrieval task, where the influences
of human query formation, multiple queries, and, sometimes, manual indexing
are predominant. Machine learning research on feature set quality, on the other
hand, has focused on a traditional learning from examples paradigm. The closest
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overlap is in techniques that are based on known groups of relevant and nonrelevant
documents. For instance, the Cluster Hypothesis Test is similar to techniques for
evaluating feature sets based on overlap of probability density functions [Kit86].

3.4 Discussion: Towards a Theory of Text Representation

Boyce and Kraft, in a survey of theories and models in IR [BK85] conclude :

What we know about the characterization of documents on a level beyond
practical rules of thumb is, however, not extensive.

and

One may use probability theory, utility theory, the theory of syntax,
or information theory to gain insight into the process of representing
documents, but no such approach gives us a general theory of document
representation.

On the other hand, it seems clear that representation is important. Gordon puts it
this way [Gor88a:

Document retrieval is primarily a problem of representation: representing
documents by storing some form of description of them in a database;
and representing an inquirer’s information needs with queries that can
be processed by computer. If forming adequate representations of both
documents and users’ needs were completely understood, there would be
no need for further research in this field.

Clearly there is still a need for further research in this field. However, the beginnings
of an understanding of text representation can be drawn from the research surveyed
in this and the previous chapter.

In this section we present two results of our examination of the role of represen-
tation in classification and text classification. The first is a new model of IR systems
that emphasizes the role of classification and provides an answer to the Perfect Query
Paradox. The second is a list of desirable properties of text representations, culled
from the machine learning and IR literature, and motivated by our emphasis on the
machine learning aspects of text classification.

3.4.1 The Concept Learning Model

The similarities of work on representation in text classification to that in the
general field of machine learning are striking. Both fields have devoted considerable
effort to addressing the difficulties for classification caused by the high dimension-
ality and low quality of feature sets. Some of the techniques used have been the
same, and some have been different. Considerably more effort has been devoted in
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machine learning than in IR to modeling the effect of representation on classifier
effectiveness. The potential exists to draw on this work in developing theories of
representation for IR.

Before this can be done, however, we must consider one substantial difference
between text classification and most other classification tasks—the role of human
beings in constructing classifiers. The influence of manual construction in text
retrieval and text filtering is always substantial, and it can be substantial in text
categorization too. The argument could be made that results on representation from
machine learning are not relevant to text classification, since most text classifica-
tion procedures involve a human component in addition to computer induction of
classifiers.

One approach to this problem would be to look to machine learning for advice
only in those cases where fully automated text classification is done, as in some text
categorization systems. Some other approach would be required to deal with, for
instance, text retrieval, where the role of the initial user request is so important.

An alternative is available, however, that allows us to apply more broadly results
and insights from machine learning. Recall the Perfect Query Paradox introduced
in Chapter 1: almost all current text representations allow perfect text retrieval
with almost all query forms in use, but actual text retrieval effectiveness is far
from perfect. Current models of text retrieval may explain the effectiveness of those
components of an IR system that operate purely by machine learning, but they have
nothing to say about the initial user request.

Suppose, however, that we step back and consider as a whole the IR system
and the human user or, in the case of categorization systems, the human knowledge
engineer. The result of their interaction at any point in time is a query, or profile,
or categorizer than can be applied to documents to make a classification decision.
Let us also make the (admittedly controversial) assumption that a human being
can be usefully modeled as a finite computational device. Then the combination of
IR system and human is a finite computational device that ezamines examples and
outputs a classifier. It is a machine learning system.

We call this view of IR systems the concept learning (CL) model. Under this
model the Perfect Query Paradox goes away. Like any machine learning system,
the composite IR system will have some bias in its search of the space of possible
classifiers. This bias may be such that it does not find the ideal classifier, or even a
very good classifier. The bias of the composite system will result from the interaction
of the biases of the human and mechanical components. In the CL model it is
meaningful to talk about the effect of text representations on the composite bias of
human and machine learning algorithm. This is not the case under IR models that
cover only the machine learning component. The CL model also covers those cases
where a text classifier is produced by purely automated means.

The CL model gives less insight into the Equal Effectiveness Paradox. It does
suggest that we look for the answer in the interaction between the kinds of classes
desired by users of text retrieval systems, and the kinds of classes defined by terms
in common text representations. It is worth noting that both natural languages and
controlled vocabularies are languages evolving from human populations.



41

As presented above the CL. model is a mere skeleton. For the CL model to make
strong predictions, it must be accompanied by models of the bias of the machine and
human components, the latter of course being more difficult. Considerable research
has been done on human limitations in request formulation for text retrieval systems
[Fid91] and human biases in category formation [SM81], so useful models are not
an impossible proposition.

For our current purposes the CL. model as presented above suffices. It allows
room for the possibility that one text representation can be better than another,
and suggests that properties of representations found important in machine learning
may be important in the special case of information retrieval.

3.4.2 Desirable Properties of Text Representations

In the following we provide a list of characteristics of representations found to
impact effectiveness in previous research on classification or text classification. We
have attempted to choose those characteristics that are supported by several threads
of research, and to define the characteristics so that they are operational, i.e. can
actually be assessed, at least qualitatively, for a representation. We also try to
indicate some of the open questions associated with these measures.

1. Small number of indexing terms.

It is a theoretical and empiricial result in machine learning that, except in certain
ideal conditions, there is a maximum number of features beyond which effectiveness
of an induced classifier will begin to decline, given a fixed number of training
instances. This “curse of dimensionality” holds even for induction methods that
have the ability to downweight poor features or that incorporate feature selection. A
crucial point to remember is that statistical feature selection methods are themselves

inductive and therefore also are affected by large numbers of features.
The only case where the dimensionality effect has been directly tested in in-

formation retrieval is in query expansion during relevance feedback. Results here
are currently controversial, with some authors arguing that all terms from relevant
documents should be used for expansion (i.e. dimensionality is not a significant
problem), and others arguing that only selected terms should be used (i.e. dimen-
sionality is a significant problem, and feature selection is necessary). Experimental
results are available supporting both positions, and the issue is complicated by the
presence of terms from the original user request, and by the fact that training is
done from a small, but high quality retrieved set. Taking the larger view, however,
no researcher suggests that all terms in the entire text representation be used for
feedback, something that is logically possible once a feedback set is available, and
few suggest including terms from documents judged to be nonrelevant. To that

extent all agree that dimensionality is an issue.
The problem of high dimensionality is more serious in the automated induction of

classifiers for text categorization, since there is no user request as the default source
for feature selection. While dimensionality effects are rarely discussed explicitly in
the literature on text categorization, these effects are implicitly acknowledged by
the widespread use of manual and automated feature selection in these systems.
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2. Flat distribution of values for an indexing term.

For a feature taking on discrete values, it is desirable that the prior probabilities
for these values be close to equal. For a feature taking on continuous values, the
cumulative distribution function should be close to linear in the range where the
feature takes on its values.

One theoretical argument for this characteristic comes from information-theoretic
models, which indicate that a feature transmits maximum information when equiprob-
ability of values holds [Bro72]. Of course, we are less concerned with the absolute
information content of a feature than with the information it carries about the class
or classes for which we want to learn classifiers.

Another argument is based on assuming that, implicitly or explicitly, the ma-
chine learning procedure used is based on estimates of the probability that a feature
will take on particular values under particular conditions. For instance, it is often
desirable to estimate the a priori probability that a feature takes on a particular
value for an instance. If that value is taken on for very few members of a training
corpus, then the estimate of the a priori probability is likely to be inaccurate [CG91].

Empirical results provide mixed evidence for the desirability of a flat distribution
of feature values. Omission of high frequency terms is often found to improve
effectiveness. Empirical results also show that medium frequency terms are the
best discriminators under the assumptions of Salton’s term discrimination model.
However, the significance of these results is clouded by the fact that high frequency
terms are often just plain bad content indicators, particularly when terms correspond
to words from natural language.

To some extent the problems of skewed feature value distributions can be over-
come by the use of domain knowledge. The reason that low frequency terms
are found to be valuable in text retrieval experiments is probably that human
beings rely on domain knowledge rather than or in addition to statistical properties
when selecting such terms to include in requests. It is likely that low frequency
terms are less useful in query expansion than when present in initial requests,
but we do not know of experiments that have addressed this issue directly. A
proper comparison would require controlling for the quality of the terms as content
indicators. One approach might be to split high frequency terms randomly into
artificial low frequency terms.

3. Lack of redundancy among terms.

We use the term “redundancy” to cover several problems whose influence is hard
to tease apart. One is the notion that it is undesirable to have multiple indexing
terms corresponding to the same underlying property of an object or to a closely
related property. This results in counting the same piece of evidence more than
once in deciding to which class a document should belong. Of course, defining
notions such as “same underlying property” and “same piece of evidence” outside
of artificial situations is quite difficult. For indexing terms that are derived from
natural language text the linguistic notion of synonymy is clearly relevant here, but
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we must rely on human judgment with respect to just what linguistic structures are
SyNnonymous.

A closely related issue is statistical dependence. Two events, A and B, are
statistically independent if P(AB) = P(A) x P(B). A number of machine learning
models, including most of those used in IR, explicitly or implicitly assume that
terms take on values independently of each other under certain conditions. Also,
from an information-theoretic viewpoint, the amount of information conveyed by a
set of dependent features is less than the amount of information conveyed by a set
of independent features.

Attempts to develop statistical text classification methods that specifically take
into account term dependence have been hampered by the small number of training
examples available in a relevance feedback context. Harper and Van Rijsbergen have
shown that a limited dependence model improved effectiveness over an independence
model in a retrospective retrieval test, where the entire collection is used for training
parameters [Hv78]. This involves training on test data, so the results are useful
only as upper bounds. For the standard retrieval environment they resorted to an
independence model, using dependence information only for query expansion. More
success has been obtained by taking advantage of human-provided information about
term dependencies, and using this information in a nonlinear classifier [SFW83,
Tur90, CTLI1].

The relationship between statistical dependence and synonymy is complex and
will not be explored here. The possibility of noise, and the range of possible defi-
nitions of underlying meaning, rule out any simple or uniform relationship between
these properties. All else being equal, however, synonymy would tend to imply some
degree of statistical dependence.

4. Low notise in indexing term values.

The concept of noise is elusive in classification in general, and is no less so in
text classification. A term can only be said to be noisy with respect to some model
of what its correct values should be, something that is rarely available for terms
in text classification. Relatively unambiguous cases of noise are those introduced
into word-based terms by spelling errors, optical character recognition, or speech
recognition. It is much more difficult to say what it means for a term corresponding
to a correctly recognized word to be noisy.

Even when we cannot specifically detect noise in a text representation, it can still
be a useful concept, however. Combining redundant features can reduce whatever
noise is present, and if no noise is present we are no worse off. So the possible
presence of noise is another argument for combining redundant terms.

5. Lack of ambiguity for linguistically derived terms.

The previous four characteristics are present in the general classification litera-
ture as well as the text classification literature. Ambiguity, however, is a character-
istic particular to human language. Ambiguity is hard to define explicitly beyond
the rather vague notion of a word or other linguistic structure having more than
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one meaning. From a text classification standpoint, an ambiguous word might be
viewed as a disjunction over two or more unrelated subconcepts. Ambiguity is
an undesirable characteristic in a text representation because random collections
of unrelated subconcepts are unlikely to be combined in the class or classes to be

distinguished by the text classification system.
Ambiguity has long been recognized as a problem in information retrieval. Direct

approaches, i.e. attempting to define linguistic criteria for recognizing which sense of
a word is being used are receiving increasing interest [KC89]. Indirect approaches to
dealing with ambiguity included both term clustering [Spa7l1] and phrase formation
(see Chapter 4).

6. Terms should be related to the classes to be induced.

This is just another way of saying, as we did in Chapter 2, that we would like a
good set of features, a set of features that makes it easy to learn classifiers for the
classes of interest. In text classification, as in other classification tasks, a great deal
remains to be learned about what makes a good set of features.

There are a few nontrivial things that can be said about good terms. One is that
in most text classification tasks we are interested in learning multiple classifiers over
the same feature set and data. The quality of a set of terms must be considered with
respect to a set of classes (as in many text categorization systems) or a distribution
of possible classes (as in a text retrieval system), rather than with respect to a single
class. Note that there is a tension between the desire to have a small feature set
and the desire to have a feature set that contains good features for a wide variety
of user information needs.

Another point is that many text classification systems include a human compo-
nent, such as the user who produces a request to a text retrieval system. This raises
a host of issues about the ability of humans to select terms from text representations.
We have not attempted to deal with these issues here, but they are undoubtedly
significant.

It is possible that the relative quality of text representations for the same set
of documents may vary with the particular text classification task being performed.
For instance, user needs in a text retrieval environment tend to be narrower in
scope than, for instance, the categories used in a text categorization environment.
Indexing terms with meanings whose breadth is comparable to that of single words
might therefore be more appropriate for text categorization, while phrasal terms
might be more appropriate for text retrieval. The other factors we have described
would of course interfere with any simple relationship of this sort.

3.5 Summary

This chapter has surveyed research on text representation in information re-
trieval. Many of the techniques for representation quality improvement used in
machine learning have also been investigated for text classification. However, there
are techniques on both sides that have not been investigated by the other, so there
are undoubtedly many profitable interactions that have not yet been explored.
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A number of theoretical models of representation quality for IR have been
developed. With the possible exception of the term discrimination model, they have
had little impact on IR practice. The guidance provided to a representation designer
by the term discrimination model is quite weak, however, and the representation
improvement strategies suggested by it have had mixed results.

The applicability of results from machine learning can be questioned on the
grounds of the substantial human role in classifier formation for many text classifi-
cation tasks. We propose the concept learning model of text classification systems.
The central tenet of this model is that both the human user or knowledge engi-
neer, and the text classification system, have some bias in searching the space of
possible classifiers. Understanding the quality of text representations will require
understanding both of these biases. However, just making the assumption that the
human bias is not perfect enables us to talk meaningfully about the relative quality
of representations that would have to be considered equally effective under a perfect
human bias.

Another result from our survey was a list of desirable characteristics of text rep-
resentations, supported by theoretical and empirical work in both machine learning
and text classification. These characteristics can provide guidance in constructing
new text representations and understanding existing ones. We make just such an
attempt in the next chapter with respect to a particularly difficult question in text
representation, that of syntactic phrase indexing.



CHAPTER 4

SYNTACTIC PHRASE INDEXING

Our survey of previous research on representation led to a new model of text
classification systems in which the role of text representation can be better under-
stood. For the CL model to be useful, it should make testable predictions about
the properties of text representations. Ideally, it should also lead to strategies for
changing or replacing those representations so as to improve the effectiveness of text
classification systems.

In this chapter, we examine a particular text representation, syntactic indexing
phrases, from the standpoint of the CL model. Syntactic phrase indexing has been
viewed as having great potential, but in text retrieval experiments has never led to
significant effectiveness improvements. We provide an explanation for these results
in terms of properties of a syntactic indexing phrase representation. We then suggest
why a particular representation change technique, term clustering, might improve
the properties of this representation.

We end the chapter by presenting the hypothesis that term clustering of syntactic
indexing phrases will improve the effectiveness of a text classification system. This is
the hypothesis that was explored in the research reported in the remaining chapters
of this dissertation.

4.1 Research on Syntactic Phrase Indexing

By syntactic phrase indexing, we mean the application of analyses of the syntac-
tic structure of natural language text to produce multi-word indexing terms. This
was one of the earliest artificial intelligence techniques to be applied to IR, and has
been one of the most widely investigated. The interest in this technique stems from
the belief that many text retrieval errors are the result of representing documents
at the level of individual words. Clearly the relationships among words in a piece of
text are important to a human reader, and if some of these relationships were made
available to an IR system, increased effectiveness might result.

The use of syntactic information for phrasal indexing has been surveyed else-
where [Fag87, Sv88, LCB89], so we will keep our survey brief, emphasizing ex-
perimental comparisons of text retrieval effectiveness with and without syntactic
phrase indexing. We divide the techniques investigated into two major classes:
template-based and grammar-based.
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Dillon and Gray’s FASIT system [DG83] is typical of template-based phrasal
indexers. Adjacent groups of words from documents are matched against a library
of templates, such as <JJ-NN NN> (adjective noun), and <NN PP NN> (noun
preposition noun), and those matching some template are retained. Most templates
in FASIT and other template-based systems are oriented toward finding contigu-
ous sequences of words that represent noun phrases. Phrases are normalized by
stemming and removal of function words. Klingbiel’s MAI system used a similar
strategy [Kli73], while the TMC Indexer  MWRRS86] and LEADER [HK69] combined
limited parsing with templates. Most of these studies did not present effectiveness
results. Dillon and Gray did compare FASIT’s phrasal indexing with a conventional
word-based indexing. Average precision of FASIT was found to be superior to that
of word-based indexing, but only by a few percentage points and not at all recall
levels.

Grammar-based strategies attempt to analyze entire sentences or significant
parts of sentences in producing syntactic indexing phrases. Fagan [Fag87], for
example, used the PLNLP parser to parse completely the text of two test collections
and extract indexing phrases. We summarize Fagan’s procedure in Figure 4.1.
The sophistication of the PLNLP grammar enabled Fagan to handle complex noun
phrases with prepositional and clausal postmodifiers, as well as some adjectival
constructions. Fagan also used a number of hand-built exclusion lists of words
which signaled that a phrase should not be generated, or should be generated in a
special fashion.

On two test collections Fagan’s syntactic indexing phrases produced improve-
ments of 1.2% and 8.7% in average precision over indexing on words alone. De-
spite the care with which Fagan’s phrases were formed, this was less than the
improvement (2.2% and 22.7%) provided by very simple statistically defined phrases.
Furthermore, Sembok’s system [Sem89] achieved similar results to Fagan using
only a very simple noun phrase grammar. Smeaton’s method [Sv88] provided
a somewhat smaller improvement over single word indexing than the above two
systems, but required parsing only of noun phrases in requests, followed by looking
for co-occurrence of phrase components in documents.

In summary, experiments on syntactic phrase formation have not found it su-
perior to simple statistical techniques for phrase formation, and have not found
much correlation between the sophistication of phrase formation and the resulting
effectiveness improvements. This has led some researchers to suggest that current
NLP technology is simply not powerful enough to be of use in indexing for IR [SS89].
We believe that such a conclusion is premature without a better understanding
of why attempts to index on syntactic structures have failed to yield significant
improvements in effectiveness.

4.2 Why Syntactic Phrase Indexing Hasn’t Worked

Syntactic phrase indexing techniques produce an alternative representation of
text, one which in most experiments has been combined with a word-based repre-
sentation, in the hopes of providing effectiveness superior to either representation
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Using a syntactic parser and grammar, produce a parse tree for a sentence.

Select from the parse tree all pairs of words that satisfy specified structural
configurations. Usually these configurations are chosen so that one word is the
head of a noun phrase and the other a modifier of that head, though certain
verbal constructions are processed as well.

. Group together into a single indexing phrase all head-modifier pairs based on

morphologically related words. For instance, Fagan’s system would form the
syntactic phrase quer analys (after stemming) from all the following sentences

([Fag87], p. 158):

They designed a query analysis system.

They designed a system for analyzing the queries.
o The system analyzing the queries s automatic.

o The queries analyzed by the system are well-constructed.

They designed a system to analyze queries automatically.

. Indexing documents on those phrases whose collection frequency is not too

high. (Restricting very frequent phrases was found to have a small beneficial
effect on effectiveness.)

Figure 4.1  Fagan’s strategy for syntactic phrase indexing.

alone. In all cases, retrieval effectiveness with this new representation has been
found to be the same or only slightly better than with a word-based representation.

the

1.

To gain insight into this, recall some of the characteristics that we concluded in
previous chapter were desirable in a text representation:

Small number of indexing terms.

. Flat distribution of values for an indexing term.
. Lack of redundancy among terms.
. Low notse in indexing term values.

. Lack of ambiguity for linguistically derived terms.

Terms should be related to the classes to be induced.

If we consider how syntactic indexing phrases are formed, it becomes apparent

that they will tend to fare badly on the first four of these criteria. If there are d
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distinct words in the collection, then there potentially would be d* attributes in the
indexing phrase representation. We have already commented on how even d tends
to be much too large to allow effective learning from examples in IR systems, and
the problem is even worse with d? attributes.

Almost all of these d* attributes will take on the value 0 for all documents, and
even more will take on the value 0 for almost all documents. This is a consequence
of the fact that the total number of attribute-value pairs with non-zero value will be
about the same for this representation as for a free-text representation, even though
the number of attributes has increased immensely. The root cause of this, in turn,
is the fact that the number of pairs of grammatically related words in a sentence
is linear in the number of words in the sentence.! There are other ways of using
syntactic information that would change the particulars of this calculation, but not
the basic problem.

Obviously, there are relationships among words that assure that certain pairs
are much more likely than others. But in general very few pairs will have a frequency
high enough to give them a good term discrimination value, to use Salton’s measure.
This is the conclusion at which Fagan ([Fag87], pp. 185-189) arrived: that syntactic
phrases simply had too low frequency to be good identifiers.

Syntactic indexing phrase representations are also redundant and noisy. The
causes of this are synonymy (several words can represent the same meaning) and
compositionality (meanings of natural language structures are often formed directly
from the meanings of their component parts). If each of the words in a particular
phrase has k synonyms, then it is reasonable to expect that there will be at least
k? phrases that could have the same meaning. A phrase representation is therefore
highly redundant.

This redundancy is hidden by what can be viewed as a high noise level. If two
phrases do have identical meanings then ideally we would want them to be assigned
to all the same documents. However, the opposite is likely to be the case with
natural language text. In short texts such as abstracts, there simply will not be
occasion to refer to a concept enough times to use all the synonymous phrases for
it. In longer documents the tendency of the author and communities of authors
to reuse certain phrases will interfere with all synonymous phrases being assigned.
One way to view this problem is as a kind of noise that converts non-zero values for
terms into zero values, especially when synonymous terms are present.

On the characteristic of ambiguity, syntactic indexing phrases stack up much
better. Fach of the words in a phrase provides a context that limits the meanings of
the other words in the phrase. Syntactic context has been used for disambiguation
in computational and corpus linguistics [Atk87, Hir87] as well as in IR [EarT73,
VBRV&7].?

!Sentence structures involving conjunction can produce more than a linear number of pairs of
grammatically related words, but this does not significantly increase the total number of pairs.

2 A wide variety of evidence besides syntactic context can be used in disambiguation, as discussed

by Krovetz [KC89].
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To give an example, consider the word group. In a collection of abstracts from,
say, Communications of the ACM, this word can mean a collection of entities,
a collection of people in particular, a mathematical construct, or the action of
collecting together things. However, if we look at some of the words that group
has direct syntactic connections with, we see that it is less ambiguous in context:

e COLLECTION OF OBJECTS: group of items, large group, another group,
group of people, group of lines, linkage into groupings, group of subjects

e COLLECTION OF PEOPLE: systems group, work of group, scheduling group
(i.e. we were scheduling the group), group has written, ALCOR group, goals for
group, group in project

e TO COLLECT: group records (to group records), group variables (to group
variables), grouping requests (i.e. we were grouping requests)

e MATH STRUCTURE: automorphism groups, finite groups, group theory, sym-
metric group

To the extent meanings of syntactic structures are compositionally formed from
the meanings of component words, unambiguous words imply unambiguous phrases.

Besides being less ambiguous than individual words, syntactic indexing phrases
for the most part have meanings that are narrower than those of their component
words. If we take the view that the meaning of a word is a set of entities in the
universe, then the set of entities corresponding to a phrase is almost always smaller
than the set corresponding to either of the individual words. For example silicon
chip is more specific than chip or silicon thing, and Jones proved is more specific
than anyone proved or Jones did something.®> We might therefore hope for a better
match between the underlying concepts for phrases and those for user requests to
text retrieval systems, which tend to be much narrower in scope than the concepts
corresponding to individual words. The fit for text categorization and text filtering
systems would depend on the category or profile set.

Given the extent of the problems with syntactic indexing phrase representations,
it is not surprising that they have not resulted in significant effectiveness improve-
ments. However, it is crucial to note that the problems with phrases are for the
most part statistical, and that these indexing terms have good semantic properties.
Fortunately, more is understood about improving the statistical properties of rep-
resentations than about improving their semantic properties. In the next section
we propose a scheme for improving the statistical properties of a syntactic indexing
phrase representation while keeping its semantic properties intact.

3This is an extremely simplified view of the complexities of natural language semantics.



51

4.3 Dimensionality Reduction

In the previous section we pointed out that, considered as a feature set, syntactic
indexing phrases suffer from high dimensionality, skewed feature value distributions,
redundancy, and noise. These characteristics suggested that we investigate the
use of a dimensionality reduction technique. The major dimensionality reduction
techniques that have been explored in IR have been:

1. feature selection (term selection)
2. factor analysis (latent indexing)
3. pattern clustering (document clustering)

4. feature clustering (term clustering)

Of these, we rejected factor analysis on the basis of computational expense, given
the very large sets of features produced by syntactic phrase indexing. Document
clustering would affect most or all of the problem characteristics of an indexing
phrase representation, probably beneficially. However, it is difficult to predict or
control these changes, because the effect on the text representation is indirect, via
changes in what is considered a unit of text to be indexed. In addition, documents
cannot be clustered without some existing text representation, which raises questions
about the interaction of that representation and the phrasal one we want to improve.

Feature selection and term clustering are the techniques that most directly alter
the properties of a text representation. Feature selection would have reduced the
dimensionality and, potentially, the redundancy of a syntactic indexing phrase repre-
sentation, by selecting only a subset of the phrases to use. This would not, however,
change the skewed feature value distribution, since each phrase would retain its set
of assignments. Nor would it have improved the problem of inconsistency of feature
assignment.

Term clustering, on the other hand, had the potential to address all four prob-
lems. The point of term clustering is to recognize redundancies between terms and
cluster these terms. By replacing individual terms with clustered terms, dimension-
ality would be reduced. By assigning the clustered term to all documents to which
the component terms were assigned, noise would be reduced. Finally, the clustered
term would take on non-default values in more documents that the individual term,
so the skew in feature value distribution would be reduced.

Another reason we suspected term clustering might help is the results by Fa-
gan [Fag87] and Salton ([SM83], p. 286) showing proximity phrases outperforming
syntactic phrases. It seemed unlikely that proximity phrases were superior on the
basis of having a more coherent meaning. Two words that merely occur within
some specified number of words of each other could have a wide variety of syntactic
and semantic relationships between their occurrences. We believed it was more
likely that proximity phrases are superior on the basis of having a higher frequency
than syntactic phrases, even if this higher frequency comes at the cost of including
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some inappropriate syntactic structures. If clusters were restricted to structures
with related meanings then effectiveness should be even better. In addition, more
predictable improvements might be achieved, in contrast with improvements that
vary widely between test collections, as with proximity phrases [Fag87].

As we will report in subsequent chapters, the particular term clustering tech-
niques we investigated in this dissertation did not yield significant effectiveness
improvements in text retrieval and text categorization tests. We discuss in Sec-
tion 10.6 why these predictions were not borne out. It is important to note that these
negative results apply only to the traditional statistical term clustering techniques
we experimented with.

In the next section, we review previous work on term clustering, showing that
clustering of syntactic phrases was, before the work reported in this dissertation, a
mostly unexplored approach to text representation.

4.4 Term Clustering

Term clustering is the application of feature clustering to text representations.
The idea is to detect groups of terms within a text representation that have the
same or related meanings. These groups can be used to replace or supplement the
original terms in the text representation. Most research on term clustering has been
done in the context of text retrieval systems, and much of it has been driven by the
desire to improve the recall of text retrieval systems, by allowing requests to match
documents with similar content but dissimilar words.

Any clustering algorithm requires some way to measure the similarity or dissim-
ilarity of the items to be clustered. Typically this is done by associating a set of
feature values with each item, and then measuring how similar the feature values
are for pairs of items. In feature clustering, the items to be clustered are themselves
features of other objects. For clarity we will use the term metafeatures to refer to
the features of features. Metafeatures for term clustering will be discussed in the
next section.

4.4.1 Term Clustering of Words

The largest body of research on term clustering was performed by Sparck Jones
[SpaTl, SBT1, Spa73a]. She investigated the effect of varying clustering strategies,
term similarity measures, and vocabulary characteristics on the text retrieval ef-
fectiveness achieved with a clustered representation. Some of her most important
conclusions were that clusters should be restricted to relatively infrequent and highly
similar terms, clusters should be used to supplement the original terms rather than
replace them, and that clustering was unlikely to be effective if the relevant and
non-relevant documents were not well separated on the input representation. The
particular shape of clusters formed and the particular measure of similarity between
terms was not found to have a significant effect. Of the several collections she
experimented with, only one had its retrieval effectiveness significantly improved by
term clustering.
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Similar early experiments were performed by Salton and Lesk [SL68], Lesk
[Les69], and Minker, et al [MWZ72]. Salton and Lesk compared statistical term
clustering with manually constructed thesauri on three test collections. No sig-
nificant effectiveness improvements were found for statistical term clustering, in
comparison with significant improvements for two out of three collections for the
manual thesauri.

Lesk’s experiments were, strictly speaking, with association lists rather than
clusters, the difference being that a term A can be considered similar to a term B
without the reverse holding. Lesk expanded both queries and document descriptions
with similar terms of moderate collection frequency, but achieved no large effective-
ness improvements. Lesk studied the term similarities that were actually produced
and concluded that the small size of his collections (40,000 to 110,000 words) meant
that the similarities were local to the collections, and were not good indications of
the general meanings of the words.

Minker and colleagues experimented with two collections, and with three differ-
ent text representations for each. Terms from all six representations were clustered
using a variety of graph-theoretic algorithms. Like Sparck Jones, Minker found
that small clusters performed the best, but he found no significant effectiveness
improvements over indexing on terms.

All of the above researchers used co-occurrence in documents as the basis for
term similarity. This means that each metafeature corresponded to a document,
and the metafeature value was 1 or 0 depending on whether the term occurred in
document associated with the metafeature. Other sources for metafeatures in term
clustering have been co-occurrence in syntactic relationships with particular words
[HGS75] and presence in pairings between queries and relevant documents [YRT77].
Crouch recently achieved significant effectiveness improvements on two collections
by first clustering documents, and then grouping low frequency terms that occurred
in all documents of a document cluster [Cro88].

4.4.2  Integration of Syntactic Phrase Indexing and Clustering

While there has been extensive research on both term clustering and syntactic
phrase indexing, the two techniques have not been directly combined before. Of
course, almost all phrase generation systems in effect do some clustering when they
normalize phrases, mainly through stemming. The FASIT system [DG83] combined
all phrases that had a particular word in common into a group, a simple form of
clustering that did not appear to be effective. Antoniadis, et al describe a similar
method, but it is not clear if it was actually used in their system [ALBPR88].

More traditional statistical clustering techniques have been used in at least two
IR interfaces to suggest terms, including syntactically formed phrasal terms, that a
user might want to include in their request. The LEADER system [HK69] formed
cliques of phrases based on co-occurrence in full document texts, and the REALIST
system used unspecified statistical techniques to provide lists of strongly correlated
terms [Thu86]. Neither study presented any effectiveness data resulting from the
use of these strategies, however.
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Salton [Sal68] investigated indexing documents on criterion trees. These were
equivalent to hand-constructed clusters of syntactic structures, with individual words
replaced by class labels from a manually constructed thesaurus. A related strategy is
Sparck Jones and Tait’s [ST84] generation of groups of alternative indexing phrases
from a semantic interpretation of a request text. The phrases generated by this
method only contained words from the request, but a thesaurus could have been
used, as with criterion trees. Neither of these methods were tested on large enough

collections to draw firm conclusions about their efficacy.
Lochbaum and Streeter have recently reported on the use of a factor analysis

technique, singular value decomposition (SVD) for text retrieval [LS89]. SVD was
used to detect and extract redundancies in the relationship between indexing terms
and documents. It was found that the inclusion of some noun phrases in addition to
single words improved the effectiveness achieved with the compressed representation.
Since SVD operates by detecting and collapsing redundancies among terms (as well
as among documents), this result is suggestive that term clustering of phrases will
provide an improved representation.

4.4.3 Discussion

Applying term clustering to improve syntactic phrase indexing made sense only
if term clustering itself was understood well enough that it could be applied plausibly
to a new class of indexing terms. Previous research in the area of term clustering
revealed a few important guidelines, and considerable evidence that many other
choices are not of much significance. With respect to term clustering, the particular
clustering algorithm used has not been found to make much difference, as long as
clusters are small and composed of low frequency terms. This is fortunate, since

any one set of experiments could only explore one or a few clustering algorithms.
On the other hand, there was some evidence that the metafeatures taken into

account in computing the similarity between terms can have an important effect.
Crouch’s strategy, for instance, partially addressed the dilemma that infrequent
terms are the very terms that most benefit from clustering, but are also the most
difficult on which to get accurate co-occurrence data. Again, any one set of exper-
iments would only be able to explore a few metafeature definitions, and here there
was reason to believe that results would not be applicable to other metafeature
definitions. However, Crouch’s results gave some encouragement that at least some

metafeature definitions were reasonable.
So, despite a lack of significant effectiveness improvements in previous research,

it appeared that a good deal was known about better and worse approaches to
statistical term clustering. It therefore appeared to be reasonable to investigate this

strategy for improving the effectiveness of a syntactic indexing phrase representation.
It is important to note that only a limited set of approaches to forming terms

corresponding to groups of syntactic phrases were tested, and to a considerable
extent found ineffective, in the research reported in the remaining chapters. Many
other approaches to forming groups of syntactic phrases would also have beneficial
effects on the statistical properties of the syntactic phrase representation, and have
not yet been tested. Some of these approaches will be mentioned in Chapter 11.
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4.5 Conclusion

By examining syntactic phrase indexing from a machine learning standpoint,
we found that the disappointing results of previous experiments are not surprising.
However, the characteristics of syntactic phrases that are most problematic for text
classification—high dimensionality, skewed feature value distribution, redundancy,
and inconsistency of assignment—appeared susceptible to improvement by statisti-
cal dimensionality reduction methods. In surveying the literature on applications of
one such dimensionality reduction technique, term clustering, we found that it too
had not led to significant effectiveness improvements in the past. However, it had
not been applied to a syntactic phrase representation before, and it appeared that
the two techniques are complementary.

Therefore, the following hypothesis guided the research reported in the subse-
quent chapters of this dissertation:

Main Hypothesis: A text representation consisting of clusters of syntactic
phrases will allow more effective text classification than a representation
consisting of individual words or individual syntactic phrases.

We turn in the remaining chapters to our experiments investigating whether
using both techniques actually leads to significant improvements in text clasification
effectiveness. Given that previous research on both techniques focused almost exclu-
sively on text retrieval, as opposed to text categorization or document clustering, our
first experiments investigated combining syntactic phrase indexing and statistical
term clustering for text retrieval.



CHAPTER 5

REPRESENTATION QUALITY IN TEXT
RETRIEVAL: EXPERIMENTS

The research reported in this chapter was our first investigation of the hypothesis
that term clustering would improve the effectiveness of a syntactic indexing phrase
representation for text classification systems, and in particular for text retrieval
systems. We begin by discussing the specifics of our syntactic phrase generator
and the phrases formed. We then turn to the clustering of phrases. While the low
frequency of occurrence of phrases makes them desirable to cluster, it also introduces
problems for traditional similarity measures based on co-occurrence in documents.
We instead formed clusters based on co-occurrence in groups of documents defined
by controlled vocabulary indexing.

We present a variety of experiments varying specifics of the clustering process
in ways found in the past to be important to the effectiveness of term clustering.
For the most part results from experiments on clustering words were found to hold
for clustering phrases as well.

These initial experiments produced only small effectiveness improvements, and
suggested that larger corpora would be necessary, if not sufficient, to produce high
quality phrase clusters by statistical term clustering.

5.1 Extracting Syntactic Phrases

This section first describes a particular goal for phrase formation and how our
system approximated this ideal. We then show some of the strengths and weaknesses
of the system by the analysis of an example sentence. Finally, we present statistics
on phrase formation for the CACM-3204 corpus.

5.1.1 Syntactic Analysis Technology

One factor that makes previous research on syntactic indexing hard to evaluate is
the wide range of heuristic techniques used in generating syntactic indexing phrases.
Since none of these variations has proven strikingly superior to others, we opted for
a definition of phrases that was as simple as possible linguistically. We defined a
syntactic indexing phrase to be any pair of non-function words in a sentence that
were heads of syntactic structures connected by a grammatical relation. Examples
are a verb and the head noun of a noun phrase that is its subject, a noun and
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a modifying adjective, or a noun and the head noun of a modifying prepositional
phrase. This is essentially the definition used by Fagan [Fag87], except that we form
phrases from all verbal, adverbial, and adjectival constructions, and do not maintain
exclusion lists of specially treated words.

It is important to distinguish the definition of syntactic phrases used by a system
from the actual set of phrases produced. Current syntactic analysis systems are far
from perfect, so any definition of syntactic phrases that is not of the form “syntactic
phrases are what my program produces” can only be approximated. Even the
PLNLP parser used by Fagan produced a correct analysis of only 32% of a typical
set of sentences [SS89], and that system was the result of a large-scale corporate
development effort.

In designing our phrase generation system we attempted to generate all phrases
that suited our definition, while avoiding the complexity and ambiguity of producing
a full parse for each sentence. Our approach was to parse only the constituents of a
sentence below the clause level. The analysis of a sentence, therefore, was a sequence
of noun phrases, adjective phrases, adverb phrases, verb groups, and miscellaneous
punctuation and function words. Since much of the complexity in typical natural
language grammars is in rules to capture clause level structure, we were able to
restrict ourselves to a grammar of only 66 rules.

Limiting the complexity of analysis does not limit the need for a large lexicon,
since every word still had to be interpreted. We used the machine-readable version
of the Longman Dictionary of Contemporary English (LDOCE) [BB87], which
provided syntactic categories for about 35,000 words. A morphological analyzer
for inflectional suffixes was used to extend the effective vocabulary of the system.
Even so, a substantial number of words encountered in text were not present in the
dictionary. These tended to be compound words, proper nouns, or very technical
terms. These unknown words were assumed to be ambiguous between the categories
noun, verb, and adverb, and were allowed to be disambiguated during parsing.

Parsing was performed by a chart parser operating in bottom-up mode.! The
bottom-up parsing strategy produced a large number of overlapping parse trees cov-
ering parts of the sentence. The parser then selected a small set of non-overlapping
trees that together covered the entire sentence. Phrase formation used these trees
in two ways. Phrases were generated from complete constituents by means of
annotations to each grammar rule. These annotations indicated which components
of a tree corresponding to that rule should be combined into a syntactic indexing
phrase.

It sometimes was desirable to produce phrases from neighboring constituents
as well. For instance, if a verb group was followed by a noun phrase, we wanted
to combine the verb with the head noun of the noun phrase, on the assumption
that such a noun phrase was often the syntactic object of the verb. Heuristics for
forming phrases under these circumstances, including the handling of conjunction,

!The parser was designed and implemented at the University of Massachusetts by John Brolio,
who also was the principal designer of the syntactic grammar.
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punctuation, and function words, were encoded in a small (5 state) pushdown
automaton.

Note that the two words in a phrase were considered to be unordered, and no
distinction was made between phrases formed from different syntactic structures.

5.1.2 An Erample of Phrase Generation

As an example, consider the following sentence from the CACM-3204 collection:

Analytical, simulation, and statistical performance evaluation tools are
employed to investigate the feasibility of a dynamic response time monitor
that is capable of providing comparative response time information for
users wishing to process various computing applications at some network
computing node.

A complete and correct analysis of this sentence would be extremely complex
and would have to be distinguished from a large number of plausible alternatives.
However, the partial syntactic constituents produced by our system capture much
of the structure necessary to produce reasonable phrases. The greatest advantage
of this approach is that reasonable analyses can be produced for any sentence. In
Figure 5.1.2 we show the phrases that would be produced from a perfect parse of the
sentence, and those that were produced by our system. Bracketed phrases are ones
that would not have been produced by a perfect system, though some are reasonable
indexing phrases.

The phrases generated from this example sentence exhibit some of the strengths
and weaknesses of our system. For instance, the words analytical, statistical, evalu-
ation, and feasibility were not present in the lexicon. Grammatical constraints were
able to disambiguate evaluation and feasibility correctly to nouns, while analytical
and statistical were incorrectly disambiguated to nouns. However, the incorrect
disambiguations did not affect the generation of phrases, since premodifying nouns
and adjectives are treated identically.

The presence of a word in LDOCE did not guarantee that the correct syn-
tactic class would be assigned to it. The words tool, dynamic, time, monitor,
provide/providing, comparative, wish, and process all had multiple syntactic classes
in LDOCE. Of these, dynamic, providing, comparative, wishing, and process were
disambiguated incorrectly. The only case where phrase generation was seriously
impaired was in the interpretation of providing as a conjunction.? This meant that
the phrases providing information and providing users were not generated. The
interpretation of wishing and process as nouns, and the resulting interpretation of a
clausal structure as a noun phrase, while atrocious from a linguistic point of view,
had a relatively minor effect on phrase generation.

20Qne price of using a machine-readable dictionary as a syntactic lexicon is the occasional odd
classification.



Figure 5.1

DESIRED PHRASES

PHRASES PRODUCED

analytical tools
stmulation tools
statistical tools
performance evaluation
evaluation tools

tools employed
employed investigate
investigate feasibility
feasibility monitor
response time

time monitor

dynamic time

monitor capable
capable providing
providing information
comparative information
response time

time information
information users

users wishing

wishing process
process applications
various applications
computing applications
process node

network node
computing node

<analytical employed>
<employed simulation>
statistical tools
<performance tools>
evaluation tools

tools employed
employed investigate
investigate feasibility
feasibility monitor
<response moniltor>
time monitor
<dynamic monitor>

<capable feasibility>
<capable information>
comparative information
<response information>
time information
<information wishing>
<information applications>
users wishing

<wishing applications>
process applications
various applications
computing applications
<applications node>
<wishing node>
network node

computing node

99

Desired and actual phrases for example sentence. Bracketed phrases

should not have been produced.
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Table 5.1 Statistics on phrase generation for 1,425 CACM documents.

Collection Unstemmed Stemmed

Frequency No. Distinct | Total Phrase || No. Distinct | Total Phrase
(in 1,425 Docs) Phrases | Occurrences Phrases | Occurrences
1 41,500 43,612 32,470 34,689
2 3,399 7,336 4,056 8,866
3 906 3,015 1,284 4,299
4 370 1,687 576 2,584
5 169 963 309 1,735
6 124 850 218 1,503
7 57 443 108 855
8 47 458 90 814
9+ 128 2,157 281 5,176
Total 46,700 60,521 39,392 60,521

5.1.3 Phrase Statistics

For the experiments reported here we parsed and generated phrases from the
titles and abstracts of 1,425 documents, totaling 110,198 words, from the CACM-
3204 collection. We used only those documents that have Computing Reviews
categories assigned to them, since our clustering strategy required that controlled
vocabulary indexing be available for documents. Table 5.1 breaks down the phrases
generated according to the number of times they occurred in these 1,425 documents.

As expected, the number of phrases was very large, and few phrases had many
occurrences. We used the Porter stemmer [Por80] to stem the words in phrases,
which increased phrase frequency somewhat. These stemmed phrases were used for
all the experiments reported here.

5.2 Clustering Phrases

Given the few differences found between text representations produced by dif-
ferent clustering algorithms, we chose to form the very simple clusters that Sparck
Jones referred to as stars [SB71]. These clusters consist of a seed item and those
items most similar to it. A fixed number of nearest neighbors, a minimum similarity
threshold, or both can be used. Here are some randomly chosen example clusters
formed from CACM phrases when clusters were restricted to a size of 4:

{ linear function, comput measur, produc result, log bound }

{ princip featur, draw design, draw display, bast spline, system repres }
{ error rule, explain techniqu, program involv, key data }

{ substant increas, time respect, increase program, respect program}
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The seed phrases are underlined above. Some clusters contain more than 4 elements,
since elements with negligibly greater dissimilarity to the seed than the fourth
element were also retained.

The clusters formed rarely contained any exact synonyms for the seed phrase.
This is not surprising since, of the large number of phrases with a given meaning,
one will usually be considerably more frequent than the others. Given the relatively
small size of the CACM corpus, only the most frequent of the synonymous phrases
will have more than one occurrence. Since we required that a phrase must occur at
least in at least two documents to be clustered, synonymous phrases were almost
never clustered. However, some good clusters of closely related phrases were formed,
along with many accidental clusters of essentially unrelated phrases.

The rest of this section discusses how clusters were formed and how they were
used in scoring documents. Section 5.3 will then discuss our experimental results.

5.2.1 Co-occurrence In Controlled Vocabulary Indexing Categories

The dilemma between the desire to cluster infrequent terms and the lack of
information on which to judge their similarity is even more severe for phrases than
for words. Given that only 1.8% of the distinct phrases in our corpus occurred more
than 5 times, it was unreasonable to expect that many phrases would have any
substantial number of co-occurrences in documents.

Crouch’s strategy of looking for co-occurrence in document clusters was a promis-
ing alternative, but we knew that document clustering does not necessarily produce
meaningful clusters. Therefore, instead of producing document clusters, we made
use of the document clustering implicit in the controlled vocabulary indexing of
the CACM collection. A total of 1,425 of the CACM documents are indexed with
respect to a set of 201 Computing Reviews (CR) categories [FNL88, Lew90]. Of
those categories, 193 are assigned to one or more documents. Since CR categories
are arranged in a three-level hierarchy, we assumed that whenever a document was
assigned to a category it was also assigned to all ancestors of that category.

This means we had available a set of 193 metafeatures for phrases, each corre-
sponding to a CR category. We then needed a method for deciding what the value
of each metafeature was for each phrase. Crouch found the set of low frequency
terms in each of the documents in a cluster and took the intersection of these sets.
This corresponds to using binary valued metafeatures and a very strict clustering
method.

The large and quite variable size of the CR clusters makes a binary metafeature
approach questionable, since presence in one document out of two assigned to a CR
category seems more important than presence in one document out of one hundred
assigned to a category. Metafeatures that took on a value between 0 and 1 seemed
more appropriate. We used a metafeature value of n,./n., where n,, was the number
of occurrences of phrase p in category ¢, and n. was the total number of occurrences
of all phrases in category ¢. This treated multiple occurrences of a phrase as being
more significant than single occurrences, and also normalized for the large differences
in the number of documents, and thus phrases, appearing in the different categories.
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The cosine correlation was used to compute the similarity between metafeature
vectors for different phrases. This had the effect of normalizing for overall phrase
frequency. All phrases occurring in 2 or more documents were used in clustering,
expect when otherwise mentioned in results.

5.2.2 Wewghting of Clusters

The point of forming clusters, of course, was to use them in retrieval. This
required a method for incrementing the scores of documents based on the presence
of phrases and clusters of phrases in queries and documents. We chose to use the
same weighting methods used by Fagan for phrases and by Crouch for clusters, since
these methods had shown some effectiveness in the past.

Fagan [Fag87, Fag89] assigned a two-word phrase a weight (in both queries and
documents) equal to the mean of the weights of its component stems. The stem
weights themselves are computed as usual for the vector space model. The inner
products were computed separately for stems and phrases and then added together,
potentially with different weightings.

Crouch [Cro88] used a very similar method for clusters, giving them a weight in
a query (or a document) equal to the mean of the weights of the cluster members in
the query (or the document). The resulting weights were then multiplied by 0.5 in
both documents and queries, for an overall downweighting factor of 0.25 for clusters
with respect to terms.

Combining these gave the following similarity function to be used for ranking
documents:

SIM(q,d) = (cs - 1p(gs;,ds)) + (cp - ip(gp, dp)) + (cc - ip(ge, d.))

where ¢p is the inner product function, ¢, g,, and ¢. are the weight vectors of stems,
phrases, and phrase clusters for queries, d;, d,, and d. are the vectors for documents,
and ¢, ¢,, and ¢, are the relative weights of stems, phrases, and phrase clusters.

5.3 Experiments

The main goal of the experiments reported here was to discover whether applying
statistical term clustering to syntactic indexing phrases from a small corpus would
result in an improved text representation for text retrieval. Another goal was to
explore whether the factors that have been found to be most important in clustering
of words would have the same impact on clustering of phrases. These include the size
of clusters formed, the frequency of items clustered, and the maximum dissimilarity
tolerated between cluster members.

All retrieval results are based on the full CACM collection of 3,204 documents.
We used only the 50 requests that do not ask for documents by particular authors,
and for which there are one or more relevant documents.
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Table 5.2 Effectiveness using phrase clusters and stems.

Precision

Recall Clusters + Stems Phrases
Level Size 2 Size4 Size 8 Size 12 4+ Stems Stems
0.10 55.5 55.5 57.9 57.1 58.1 56.3
0.20 43.2 42.0 42.2 411.9 15.4 41.0
0.30 37.7 37.0 36.5 36.2 38.0 35.7
0.40 31.1 30.5 30.8 30.0 30.2 29.6
0.50 23.3 23.3 22.2 22.3 23.4 22.0
0.60 19.5 19.3 18.2 18.3 19.0 18.8
0.70 13.5 13.3 13.3 13.3 13.7 13.8
0.80 9.2 9.4 9.4 9.3 9.5 9.9
0.90 5.5 5.8 5.6 5.6 5.6 6.1
1.00 4.2 4.1 4.1 4.1 4.1 4.7
Avg. Prec. 24.3 24.0 24.0 23.8 24.7 23.8

Change  42.1% +40.8% +0.8% +0.0% +3.8%

5.3.1 Elffectiveness of Syntactic Phrase Clusters

Our first concern was whether the clusters of syntactic phrases formed from
this small corpus would be sufficient to improve retrieval effectiveness. Table 5.2
compares recall and precision figures for four sizes of clusters to the figures for word
stems and for stems combined with syntactic phrases. Clusters produce a smaller
improvement than phrases, and neither is significantly better than the use of stems
alone.

Using both clusters and phrases (Table 5.3) provides the most improvement.
These results would be classified as “noticeable” (> 5.0%) but not “material” (>
10.0%) according to Sparck Jones’ criteria [SB77]. We investigated varying the
weighting of the cluster and phrase vectors (¢, and c¢,, respectively), but found
only trivial and inconsistent improvements resulting from any values besides 1.0. In
particular, reducing weighting of clusters to Crouch’s value of 0.25 caused a small
decrement in effectiveness, providing some evidence that clusters of phrases are
better content indicators than clusters of words.

5.3.2  Factors Affecting Phrase Clustering

In our survey on term clustering, we mentioned a number of factors that had
been found in the past to impact the effectiveness of term clustering. We have
already mentioned the effect of cluster size. Sparck Jones found small, tight clusters,
of size 2 to 4, to be most effective, and our results are in agreement with this. We
also found that using clusters of phrases in addition to phrases, rather than instead
of phrases, was most effective. This again is in agreement with Sparck Jones’ results
on clustering of stems.
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Table 5.3 Effectiveness using phrase clusters, phrases, and stems.

Precision

Recall Clusters + Phrases 4+ Stems Phrases
Level Size 2 Size4 Size 8 Size 12 4+ Stems Stems
0.10 57.4 60.0 59.3 58.5 58.5 56.3
0.20 16.4 16.4 16.1 45.0 15.4 41.0
0.30 38.8 39.5 38.9 37.7 38.0 35.7
0.40 31.3 31.1 31.1 30.8 30.2 29.6
0.50 23.0 23.1 23.1 23.1 23.4 22.0
0.60 19.3 19.5 19.5 19.5 19.0 18.8
0.70 13.9 13.9 13.8 13.7 13.7 13.8
0.80 9.6 9.8 9.7 9.6 9.5 9.9
0.90 5.7 5.7 5.7 5.7 5.6 6.1
1.00 4.2 4.2 4.2 4.2 4.1 4.7
Avg. Prec. 25.0 25.3 25.1 24.8 24.7 23.8

Change  45.0% +6.3% +5.5% +4.2% +3.8%

Another approach to forming tight clusters would be to require that phrases
have no greater than a fixed dissimilarity with the seed phrase. This causes some
phrases not to cluster at all. We investigated several dissimilarity thresholds for
cluster membership, but found only trivial improvements, and some degradations,
in effectiveness.

Another factor that has been found to impact term clustering is the frequency of
the terms being clustered. The exclusion of high frequency terms from clusters was
found by Sparck Jones in particular to be important in achieving an effective term
clustering. Maximum frequency thresholds used by Sparck Jones included 20 out of
200 (10%) documents, 20 out of 541 documents (3.6%), and 25 out 797 documents
(3.1%) [SpaT3al.

Since only 8 stemmed phrases occurred in more than 45 (3.2%) of the 1,425
documents used for clustering, it was questionable whether omitting frequent phrases
would be useful. We experimented with forbidding phrases that occurred in more
than 45 documents from participating in clusters, and found this actually produced
a slight decrease in effectiveness. Forbidding phrases occurring in more than 30
documents produced a larger decrease. Examining the 8 phrases of frequency greater
than 45 shows that even here there are several which are moderately good content
indicators (oper system, comput program, program languag, comput system, system
design) as well as several fairly bad ones (paper describ, paper present, and present
algorithm). Therefore, omitting the most frequent phrases does not appear to be
an appropriate strategy when clustering phrases.

One can also argue that very infrequent phrases should be omitted from clusters.
If a term does not occur a sufficient number of times then we will have not have
enough data on its distribution to cluster it accurately. Most work on term clustering
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has required that terms occur in two or more documents to become part of a cluster,

but higher thresholds conceivably could result in more accurate clusters.
We investigated requiring that phrases occur in at least 3, 4, 5, or 6 documents

in order to be clustered. These were fairly severe restrictions considering the low
frequency of phrases, resulting in reducing the number of phrases available for
clustering from 6922 to 2866, 1582, 1015, and 706 respectively. Small effectiveness
improvements resulted for some of these restrictions in combination with some
cluster sizes. However, the improvements vanished when clusters were used in
combination with phrases as well as stems. These results do help confirm that
the small amount of frequency data available on phrases was a major impediment
to forming effective clusters.

5.4 Analysis

In this section we report on a range of possible reasons for the failure of syntactic
phrase clusters to improve retrieval effectiveness significantly. Our goal was to
discover what the most significant influences were on the effectiveness of syntactic
phrase clusters, and suggest what new approaches might be pursued.

5.4.1 Document Scoring Method

The first possibility to consider is that there was nothing wrong with the clusters
themselves, but only with how we used them. In other words, the coefficients of
the classification functions (queries) derived from requests, or the numeric values
assigned to the cluster attributes, might have been inappropriate. There is some
merit in this suggestion, since the cluster and phrase weighting methods currently

used are heuristic, and are based on experiments on relatively few collections.
On the other hand, scoring is unlikely to be the only problem. Simply examining

a random selection of clusters, such as those listed in Section 5.2, shows they leave
much to be desired as content indicators. We therefore need to consider reasons
why the clusters formed were inappropriate.

5.4.2 Statistical Problems

The simplest explanation for the low quality of clusters is that not enough text
was used in forming them. Table 5.1 gives considerable evidence that this is the
case. The majority of occurrences of phrases were of phrases that occurred only
once, and only 17.6% of distinct phrases occurred two or more times. We restricted
cluster formation to phrases that occurred at least twice, and most of these phrases
occurred exactly twice. This means that we were trying to group phrases based on
the similarity of distributions estimated from very little data. Church [CGHHS89]
and others have stressed the need for large amounts of data in studying statistical
properties of words, and this is even more necessary when studying phrases, with

their lower frequency of occurrence.
Another statistical issue arises in the calculation of similarities between phrases.

We associated with each phrase a vector of metafeature values of the form n,./ Y- ny.,
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where n,. 1s the number of occurrences of phrase p in documents assigned to Comput-
ing Reviews category ¢, and the denominator is the total number of occurrences of all
phrases in category c. This is the maximum likelihood estimator of the probability
that a randomly selected phrase from documents in the category will be the given
phrase. Problems with the maximum likelihood estimator for small samples are well

known [FH89, CG89], so this may have had an adverse impact on cluster quality.
Another question is whether the clustering method used might have been inap-

propriate. Previous research in IR has not found large differences between different
methods for clustering words, and all clustering methods are likely to be affected by
the other problems described in this section, so experimenting with different cluster-

ing methods deserves lower priority than addressing the other problems discussed.
A final issue is raised by the fact that using clusters and phrases together

produced effectiveness superior to using either clusters or phrases alone. One way
of interpreting this is that the seed phrase of a cluster is a better piece of evidence
for the presence of the cluster than are the other cluster members. This raises the
possibility that explicit clusters should not be formed at all, but rather that every
phrase be considered good evidence for its own presence, and somewhat less good
evidence for the presence of phrases with similar distributions.® Again, investigating
this is not likely to be profitable until other problems are addressed.

5.4.3 Weaknesses in Syntactic Phrase Formation

Another set of factors potentially affecting the effectiveness of phrase clustering
is the phrases themselves. Our syntactic parsing is by no means perfect. Incorrect
phrases could both cause bad matches between queries and documents, and interfere

with the distributional estimates on which clustering is based.
It is difficult to gauge directly the latter effect, but we can measure whether

syntactically malformed phrases seem to be significantly worse content identifiers
than syntactically correct ones. To determine this we found all matches between
queries and relevant documents on syntactic phrases. We examined the original
request text to see whether the phrase was correctly formed or whether it was the
result of a parsing error, and did the same for the phrase occurrence in the document.
We then gathered the same data for about 20% of the matches (randomly selected)

between queries and nonrelevant documents.
The results are shown in Table 5.4. We see that for both relevant and nonrelevant

documents, the majority of matches are on syntactically correct phrases. The
proportion of invalid matches is somewhat higher for nonrelevant documents, but
the small difference suggests that syntactically malformed phrases are not a primary
problem.

5.4.4 Correct Phrases with Poor Semantics

In proposing the clustering of syntactic phrases, we argued that the semantic
properties of individual phrases were good, and only their statistical properties

3Ken Church suggested this idea to us.
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Table 5.4 Syntactic correctness of query phrases and phrase occurrences in docu-
ments.

Query / Relevant Document Matches
(229 Pairs Total)

Correct Phrase | Flawed Phrase
in Doc in Doc
Correct Phrase | 84.3% (193) 6.6% (15)
in Query
Flawed Phrase 3.5% (8) 4.8% (11)
in Query

Query / Nonrelevant Document Matches
(424 Pairs in Random Sample)

Correct Phrase | Flawed Phrase
in Doc in Doc
Correct Phrase | 77.6% (324) 13.0% (55)
in Query
Flawed Phrase 4.5% (19) 5.0% (21)
in Query

needed improving. This clearly was not true, since phrases such as paper gives
(from sentences such as This paper gives results on...) are poor indicators of a
document’s content.

We believed, however, that such phrases would tend to cluster together, and
none of the phrases in these clusters would match query phrases. Unfortunately,
almost the opposite happened. While we did not gather statistics, it appeared that
these bad phrases, with their relatively flat distribution, proved to be similar to
many other phrases and so were included in many otherwise coherent clusters. As
mentioned earlier, we experimented with addressing this problem by omitting high
frequency phrases, but this approach actually decreased effectiveness.

Fagan, who did the most comprehensive study [Fag87] of phrasal indexing to
date, used a number of techniques to screen out low quality phrases. For instance,
he only formed phrases that contained a head noun and one of its modifiers, while
we formed phrases from all pairs of syntactically connected content words. Since
many of our low quality phrases resulted from verb / argument combinations, we
reconsidered this choice in the later experiments for this dissertation.

Fagan also maintained a number of lists of semantically general content words
that were to be omitted from phrases or that triggered special purpose phrase
formation rules. We chose not to replicate this technique, due to the modifications
required to our phrase generator, and the lack of guidelines by Fagan on how to

choose an appropriate exemption list for a particular corpus or domain.
We did, however, conduct a simpler experiment that suggests distinguishing

between phrases of varying qualities will be important. A graduate student who
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Table 5.5 Effectiveness with human-selected query phrases.

Precision

Recall Clusters + Phrases 4+ Stems Phrases
Level Size 2 Size 4 Size 8 Size 12 4+ Stems Stems
0.10 60.7 61.9 61.5 61.4 61.4 56.3
0.20 45.8 45.9 45.9 45.9 415.2 41.0
0.30 40.6 40.3 39.8 39.8 39.5 35.7
0.40 34.2 33.4 33.5 33.5 33.2 29.6
0.50 25.0 25.1 25.2 25.2 25.3 22.0
0.60 19.8 20.7 20.7 20.6 20.9 18.8
0.70 13.8 14.6 14.5 14.6 14.6 13.8
0.80 9.4 10.2 10.0 10.0 10.0 9.9
0.90 5.6 6.3 6.2 6.3 6.2 6.1
1.00 4.2 4.9 4.9 4.9 4.9 4.7
Avg. Prec. 25.9 26.3 26.2 26.2 26.1 23.8

Change  +8.8% +10.5% +10.1% +10.1% +9.7%

was not involved in the phrase clustering experiments identified for each CACM
request a set of pairs of words he felt to be good content identifiers. We then
treated these pairs of words just as if they had been the set of syntactic phrases
produced from the request. This gave the results shown in Table 5.5. As can be
seen, retrieval effectiveness was considerably improved, even though the phrases
assigned to documents and to clusters did not change. (More results on eliciting
good identifiers from users are discussed in work by Croft and Das [CD90].)

Given this evidence that not all syntactic phrases were equally desirable identi-
fiers, we tried one more experiment. We have mentioned that many poor phrases had
relatively flat distributions across the Computing Reviews categories. Potentially
this very flatness might be used to detect and screen out these low quality phrases.
To test this idea, we ranked all phrases that occurred in 8 or more documents by
the similarity of their Computing Reviews vectors to that of a hypothetical phrase
with even distribution across all categories.

The top-ranked phrases, i.e. those with the flattest distributions, are found in
Table 5.6. Unfortunately, while some of these phrases are bad identifiers, others
are reasonably good. More apparent is a strong correlation between flatness of
distribution and occurrence in a large number of documents. This suggests that
once again we are being tripped up by small sample estimation problems, this
time manifesting itself as disproportionately skewed distributions of low frequency
phrases. The use of better estimators may help this technique, but once again
a larger corpus seems called for. Another approach might be to compare the
distribution of a phrase in a corpus from a narrow domain with a corpus that is
representative of the language as a whole. Phrases that have the same behavior in
the corpus of interest as in a very general corpus are probably not good content
indicators.
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Table 5.6 Syntactic phrases with least skewed distribution across Computing
Reviews categories, and number of documents they appear in.

Similarity
Phrase to (1...1) | No. Docs
describ paper .61 D7
algorithm present .H6 64
design system D5 54
comput system H4 75
system use .52 43
paper present bl AT
languag program A48 71
describ system AT 26
requir time AT 22
data structur A7 38
process system 46 21
inform system A5 26
oper system 44 59
program use 44 27
model system A4 26
execut time 43 28
problem solut A3 45
requir storag 42 24
techniqu use A2 40
gener system A1 22

5.5 Summary

The fact that phrase clusters provided small improvements in effectiveness was
encouraging, but the most clear conclusion from the above analysis was that syntac-
tic phrase clustering needed to be tried on much larger corpora. While the presence
of other problems, particularly the low semantic quality of some phrases, suggested
that larger corpora might not be sufficient for statistical term clustering to produce
high quality phrase clusters, such corpora definitely appeared necessary.

Our need for a larger corpus posed some problems for evaluation, since the
CACM collection is one of the larger of the currently available text retrieval test
collections. Since significantly larger text retrieval test collections were not available,
we considered other approaches for further experimentation. One was to form
clusters on a corpus different from the one on which the retrieval experiments are
performed. If the content and style of the texts are similar enough, the clusters
should still be usable.

However, there were other problems besides small corpus size that resulted
from using a text retrieval test collection to evaluate text representation strategies.
Current text retrieval collections have only a small number of requests, which means
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that only a small proportion of the terms in a new text representation will be
evaluated at all. Those terms that do show up are usually represented in only one
or two queries. Fox ([Fox83], p. 78) mentions this shortage of requests as interfering
with the ability to evaluate phrasal indexing strategies. Until text collections with
thousands or tens of thousands of requests are available, this problem will persist.

Finally, there is a problem inherent in using textual requests to evaluate complex
text representations. It is relatively straightforward to decide what set of words a
request is specifying for use in a query, though even here there are alternate views of
stoplists, stemming, and so on. It is much more difficult to decide what the set of,
say, syntactic indexing phrases specified by a request is. The syntactic structure of
requests is often different from that of sentences in documents. For instance, requests
often include lists of words or phrases with no syntactic connections between them.
Therefore, there is no particular reason to assume that the same syntactic analysis
strategy used for documents should be used on requests. The question becomes even
more complex for clustered representations.

Selecting a subset of a text representation to use in a particular query based
on a natural language request is an important capacity for text retrieval systems to
have, and should be the subject of continued investigation. However, this is a sep-
arate issue from that of creating text representations, and introduces a substantial
confounding factor into studies of text representation.

Given the above difficulties, we considered whether a different text classification
task might be appropriate for our studies of text representation. In the next chapter
we discuss the text categorization task and its advantages for the study of text
representation.



CHAPTER 6

TEXT CATEGORIZATION

Text retrieval is not the only text classification task. Given some of the dif-
ficulties discussed in the previous chapter, we examined whether some other text
classification task might provide a better vehicle for studying text representation.

Text categorization, the assignment of documents to one or more of a set
of preexisting categories, is an obvious candidate. However, we found only one
precedent for text categorization as a vehicle for studying text representation [BB64].
Therefore, a number of questions needed to be answered:

1. Importance: Is it interesting, from a scientific, engineering, or application
viewpoint, what the impact of text representation on text categorization is?

2. Advantages: Does text categorization have significant advantages for studying
text representation? Are any other text classification tasks even more advan-
tageous?

3. Standardization: Do text categorization strategies exist that are widely enough
used and understood to serve as a vehicle for studying text representation?

4. Evaluation: Do we know how to measure the effectiveness of text categorization
runs, and from these measurements can we draw conclusions about the relative
merits of text representations?

We will claim in the rest of this chapter that the answer to all these questions
is, to one degree or another, positive, and that text categorization is an excellent
alternative to text retrieval for studying text representation.

6.1 Importance of Text Categorization

The impact of text representation on text categorization is of interest for two
reasons. First, results from text categorization experiments are of interest for
the light they shed on other text classification tasks, in particular text retrieval.
Methods for text categorization, particularly statistical methods, are very similar
to those used in text retrieval and text routing. In particular, the same machine
learning algorithms used for relevance feedback in text retrieval can be used in
statistical text categorization systems.

Secondly, text categorization itself has considerable practical applications. In
Chapter 1 we cited examples of three classes of such applications: as an indexing
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mechanism for text retrieval, as a component in text understanding systems, and as

end in itself when categorization of documents is of interest.
The most important and most controversial application is in indexing documents

for text retrieval. As mentioned in Chapter 1, there is considerable support for the
idea that manual assignment of subject categories for documents does not provide a
better representation than the extraction of words from free text. On the other hand,
some experimental results suggest combining free text and controlled vocabuary
representations can result in better effectiveness than using either alone [KMT*82,
FK88, Tur90]. In any case, there has been a substantial financial investment in
manual controlled vocabulary indexing by large organizations, such as the National
Library of Medicine. Such organizations are unlikely to discontinue their use of
controlled vocabulary indexing, so the development of automated techniques to aid
or replace this currently human-intensive process would be of considerable interest.

6.2 Advantages of Text Categorization

In discussing our results on the CACM collection we mentioned a number of
problems with comparing text representations on a standard text retrieval test
collection. Briefly, the problems were the relatively small number of features tested
in existing collections of test requests, the uncertainty of the mapping between
textual requests and features used in queries, and the small amount of training data

these collections make available for feature extraction.
Text categorization as a vehicle for studying text representation addresses all

three of these problems. The first two problems are addressed by the fact that
text categorization can be successfully performed using automated feature selection.
Such human intervention may improve effectiveness, but it is not neccessary for rea-
sonable effectiveness, as shown by studies where feature selection was accomplished
wholly or in part by automatic means [Fie75, HZ80, BFL*88, Lew9la]. The ability
to factor human feature selection out of categorization means that the inherent
properties of the feature set can be studied more clearly. Categorization effectiveness

on each of several complete feature sets may be easily compared.
The problem of the amount of data available for feature formation is also

addressed by text categorization. As discussed in the previous section, large amounts
of human effort have been devoted to assigning controlled vocabulary categories to
documents. The resulting large document sets provide a substantial opportunity for

unsupervised learning for feature extraction.
Are there any other text classification tasks that might provide an even better

vehicle for studying text representation? Text routing shares the same disadvantages
as text retrieval, with the additional problem that standard test collections are
currently lacking. Document clustering has some of the same advantages as text
categorization, but it is difficult to decide whether the clustering formed with one

text representation is better than another.
Of text classification tasks, text categorization seems best suited to studying

text representation. Text categorization of course has its own disadvantages for
studying text representation. What these are and how they may be addressed is
discussed in the next two sections.
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6.3 Standardization in Text Categorization

A strong argument in favor of studying text representation via text retrieval,
as we did with the CACM collection, is that there are widely investigated and well
understood techniques—probabilistic and vector space retrieval—for accomplishing
this task. This means that text representations can be compared with some confi-
dence that the retrieval method making use of them is not the source of unexpected
variations in effectiveness or is so inadequate that effectiveness differences are unin-
teresting.

Do similar methods exist for text categorization, and if so do these techniques
have the other advantages we sought, in particular the ability to factor out human
intervention? While a range of techniques have been investigated for text cate-
gorization, it is certainly the case that this investigation has been less extensive
than for text retrieval. There are not one or two widely used methods, as in
text retrieval. This results in part from the fact that text categorization has been
investigated by researchers from several fields, for a variety of real world applications
with application-specific demands.

On the other hand, two classes of techniques have been investigated enough that
we can have reasonable confidence in the broad details of their operation. First,
a number of systems [VS87, Har88a, HANS90] have embodied techniques similar
to those used in expert systems for classification or diagnosis [Cla85]. Knowledge
engineers define one or more layers of intermediate conclusions between the input
evidence (words and other textual features) and the output categories and write
rules for mapping from one layer to another. While a promising approach to text
categorization, the large human influence in such an approach makes it inappropriate
for our purpose of comparing text representations.

Of more interest to us, techniques based on statistical correlations between
occurrences of words and assignments of manual indexing categories on a large
corpus have been widely investigated and have achieved good results. The particular
statistical technique used has varied widely, and has included Bayesian classification
[Mar61, KW75], summing conditional probabilities [Hoy73, HZ80], factor analysis
[BB63, BB64, Bor64], fuzzy sets [COL83], linear regression [BFL*88], and ad hoc
“adhesion” coefficients [Fie75, Har82].

Some of these techniques have been used alone, and others in combination with
additional knowledge bases. Together, however, they suggest that the basic strat-
egy of categorizing documents based on observing statistical associations between
textual features and categories is reasonable.

Competing techniques have rarely been compared on the same corpus, so it
is possible that some of the above techniques are significantly better than others.
However, the differences in effectiveness so far reported in the literature are well
within the range of variation that experience with text retrieval suggests could arise
solely from the characteristics of different test collections. In addition, the one direct
comparison of which we are aware, between Bayesian and factor analytic techniques
[BB64], showed essentially identical effectiveness for the two techniques. So it seems
likely that any of the above mentioned techniques would be reasonable for comparing
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text representations. We can therefore feel confident in choosing techniques on other
criteria, such as how well they are described in the literature or whether they are
supported by a theoretical model.

One aspect that has not seen much exploration in previous work on statistical
text categorization is the categorization of texts with respect to many categories
at once. Some studies have dealt only with the assignment or nonassignment of a
single category, or have assumed that each document will be assigned to exactly one
category. Most of those that have dealt with assignment of multiple categories have
treated each category as a completely independent decision.

This is not necessarily a problem—independence assumptions are often made
in information retrieval research. What this means, however, is that little is known
about how to choose parameter settings for statistical categorizers in order to achieve
reasonable results on an entire set of categories at once.

The problem may be made clearer by looking at the analogous situation in
text retrieval. Suppose that a text retrieval system assigns some score to each
document. Can we choose a single threshold such that, if we retrieve for each query
all documents above that threshold, we will get a given level of recall (or precision)?
The answer, for most current statistical retrieval methods, is no. The range of scores
for relevant documents vary wildly between queries. Even if we put a threshold on
the rank of documents rather than on their scores, we are unlikely to achieve good
overall effectiveness, given the wide variation in the number of relevant documents
per query.

We discuss in Section 6.4.5 how this problem has been finessed in research
on text retrieval systems. For text categorization systems, this problem needs to
be addressed more directly, and any use of text categorization to compare text
representations will also have to involve some experimentation with methods for
multiple categorization.

6.4 Evaluation in Text Categorization

If we are to claim that one text representation is superior to another for text
categorization, we need to be able to tell when the output of one text categorization
run is more effective than another. Perhaps because text categorization has been
investigated by a wide variety of researchers for a wide variety of purposes, effective-
ness measures have tended to vary widely between studies, and some studies have
been flawed by inappropriate evaluations.

On the other hand, most of the more careful evaluations of effectiveness in text
categorization have used the same model of decision making by the categorization
system, and this is same model underlying most effectiveness measures for text
retrieval as well.

We begin by discussing this contingency table model, which motivates a small
number of simple and widely used effectiveness measures. Complexities arise, how-
ever, in how to compute and interpret these measures in the context of a text
categorization experiment. The bulk of the discussion concerns these complexities.
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Table 6.1 Contingency table for a set of binary decisions.

Yes is No is

Correct | Correct

Decides Yes a b a+b

Decides No c d c+d

a-+c b+d |a+b+c+d=n

6.4.1 The Contingency Table

Consider a system that is required to make n binary decisions, each of which
has exactly one correct answer (either Yes or No). The result of n such decisions
can be summarized in a contingency table, as shown in Table 6.1. Each entry in the
table specifies the number of decisions with the specified result. For instance, a is
the number of times the system decided Yes, and Yes was the correct answer.

Given the contingency table, three important measures of the system’s effective-
ness are:

(1) recall = a/(a+ )
(2) precision = a/(a + b)
(3) fallout = b/(b+ d)

Measures equivalent to recall and fallout made their first appearance in signal
detection theory [Swe64], where they play a central role. Recall and precision are
ubiquitous in evaluating text retrieval, where they measure the proportion of relevant
documents retrieved and the proportion of retrieved documents that are relevant,
respectively. For text retrieval, fallout measures the proportion of nonrelevant
documents that are retrieved, and has also seen considerable use.

A decision maker can achieve very high recall by rarely deciding No, or very
high precision (and low fallout) by rarely deciding Yes. For this reason at least the
pair of measures recall and precision, or the pair of measures recall and fallout, are
necessary to ensure a nontrivial evaluation of a decision maker’s effectiveness under
the above model.

Another measure sometimes used in categorization experiments is overlap:

(4) overlap = a/(a 4 b+ ¢)
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This measure is symmetric with respect to b and ¢, and so is sometimes used to
measure how much two categorizations are alike without defining one or the other
to be correct.

It is appropriate at this point to mention some of the limitations of the contin-
gency table model. It does not take into account the possibility that different errors
have different costs; doing so requires more general decision-theoretic models. The
contingency table also requires all decisions to be binary. For some applications,
it may be desirable for category assignments to be weighted rather than binary.
This is likely to be the case when text categorization is used for automated subject
indexing.

However, our interest in text categorization is less in a particular application
than in seeing how its effectiveness changes under different text representations.
Therefore, the contingency table model, which is uniform and abstracted from
particular applications, seems appropriate.

6.4.2 Defining Decistons and Averaging Effectiveness

The contingency table model presented above is applicable to a wide range of
decision making situations. In this section, we will first consider how text retrieval
has been evaluated under this model, and then consider how text categorization can
be evaluated under the same model.

In a text retrieval system, the basic decision is whether or not to retrieve a
particular document for a particular query. For a set of ¢ queries and d documents
a total of n = ¢d decisions are made. Given those gd decisions, two ways of
computing effectiveness are available. Microaveraging considers all gd decisions as
a single group and computes recall, precision, fallout, or overlap as defined above.
Macroaveraging computes these effectiveness measures separately for the set of d
documents associated with each query, and then c