Execution Performancelssuesin Full-Text
I nfor mation Retrieval

Eric W Brown

Technical Report 95-81
October 1995

Computer Science Department
University of Massachusetts at Amherst






EXECUTION PERFORMANCE ISSUESIN FULL-TEXT
INFORMATION RETRIEVAL

A Dissertation Presented

by

ERIC WILLIAM BROWN

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY
February 1996

Department of Computer Science



(© Copyright by Eric William Brown 1996

All Rights Reserved



To Jennifer






ACKNOWLEDGEMENTS

The long road to a Ph.D. is never walked alone. Along the way many people have

offered me encouragement, support, and guidance. To all of them | give my deepest thanks,
especially
My advisor, Bruce Croft, for hisinsight, direction, perspective, and vision.

Eliot Moss and Tony Hosking, for teaching sound research principles and

ingtilling a passion for experimental performance evaluation.

Jamie Callan, for tutoring mein information retrieval, fielding countless ques-
tions about INQUERY, and working as my closest colleague throughout this
effort.

The rest of my dissertation committee, Howard Turtle and Graham Gal, for

their commentsand suggestions, which have greatly improved thisdissertation.

The students and staff of the Object Systems Lab and Center for Intelligent

I nformation Retrieval who have contributed to the systemsused in thisresearch.

My close friendsand comrades, for provocative conversation, intellectual stim-

ulation, welcome distraction, and occasional commiseration.
My family, for their understanding and patience.

My wife, Jennifer, who, more than anyone else, made thisall possible with her

encouragement, support, and love.

This research has been supported by the National Science Foundation Center for Intel-

ligent Information Retrieval at the University of Massachusetts, Amherst.



Vi



ABSTRACT

EXECUTION PERFORMANCE ISSUESIN FULL-TEXT
INFORMATION RETRIEVAL

FEBRUARY 1996
ERIC WILLIAM BROWN
B.Sc., UNIVERSITY OF VERMONT
M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor W. Bruce Croft

The task of an information retrieval system isto identify documents that will satisfy a
user’s information need. Effective fulfillment of this task has long been an active area of
research, leading to sophisticated retrieval models for representing information content in
documents and queries and measuring similarity between thetwo. The maturity and proven
effectiveness of these systems has resulted in demand for increased capacity, performance,
scalability, and functionality, especially as information retrieval is integrated into more
traditional database management environments.

I nthisdissertation we exploreanumber of functionality and performanceissuesininfor-
meation retrieval. First, we consider creation and modification of the document collection,
concentrating on management of theinverted fileindex. Aninverted file architecture based
on a persistent object storeis described and experimental results are presented for inverted
file creation and modification. Our architecture provides performance that scales well with
document collection size and the database features supported by the persistent object store

provide many solutions to issues that arise during integration of information retrieval into

vii



more genera database environments. Wethen turn to query evaluation speed and introduce
anew optimizationtechniquefor statistical ranking retrieval systemsthat support structured
gueries. Experimental results from a variety of query sets show that execution time can be
reduced by more than 50% with no noticeable impact on retrieval effectiveness, making
these more complex retrieval models attractive alternatives for environments that demand

high performance.

viii



TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . . . . . . . e e e e e e e %

ABSTRACT . . . . . e vii

LISTOFTABLES . . . . . . . e e e e Xiii

LISTOFFIGURES . . . . . . . . e e e e e XV
Chapter

1. INTRODUCTION . . . . . e e e e e 1

11 OVEIVIEW . . . o e e 2

12 ResearchSummary . . . . ... . . . . . . e 10

1.3 ResearchContributions . . . . . ... .. ... ... ... . ..., . 14

1.4 Outlineof theDissertation . . . . . . .. ... . ... ... ... ..... 15

2. RELATED WORK . . . . . e 17

21 InvertedFileManagement . . . . .. ... ... ... ... ... ..., 17

2.1.1 Traditiona Database SupportforIlR . . . .. ... ... .. .... 17

212 CustomlInvertedListManagement. . . . . . ... ... .. .... 20

213 InvertedFileAlternatives . . . . ... ... ... .. ... .... 21

22 Query Optimization . . . . . . . . . . o 23

221 TermWeight MagnitudeOrdering . . . . . . . .. ... ... ... 25

222 DocumentBasedOrdering . . . . . .. .. ..., 27

223 TemBasedOrdering. . . . . . . . .. . i 29

3. INDEXING . . . . e 33

31 DocumentInversion. . . . . . . . .. e 36

311 Parsing . . ... e e 39

312 Meging. . . ... e 44

32 ThelnvertedFileManager . . . ... .. ... . ... . .. .. ..., 47



3.21 InvertedList Characteristics . . . . . . .. . . . . .. ... .... 50

3.22 TheMnemePersstent Object Store . . . . . ... ... .. .... 53
3.23 TheMnemeSolution . . . . . .. . .. .. . . .. ... ... ... 56
3231 InvertedListStorage . ... ... ... ... .. .... 56

3232 InvertedListLookup . ... ............... 59

3.2.3.3 Document Additions. . . .. ... ... .. ... . ... 62

3234 DocumentDeetions. . . .. ... ... ... ... ... 66

33 Experimenta Results . . . . .. ... ... ... ... 68
331 Platform . . . . . . 69
332 TestCollection . . . . . . . . . . . . 69
333 Bukindexing .. ... ... ... ... .. 71
334 IncrementalUpdate. . . ... .. ... ... ... ... ...... 78
34 Conclusions . . . . . . . . .. e 88
4. QUERY EVALUATION . . . . . . e e e e 93
41 StructuredQueries . . . . . ... e 95
411 ProbabilisicRetrieva . . . ... ... . ... ... .. 95
412 Inference Network-based Retrieval . . . . . . . . ... . ... .. 98
413 INQUERY . .. . . . . e 101

4.2 Structured Query Optimization . . . . . . . . . . .. ... . ... 106
421 Safe . .. .. . e 106
422 Unsafe . .. .. . . e 108

43 Implementation . . . . . . ... .. 111
44 PeformanceEvaluation. . . . . . . . . . ... 114
441 Plaform . . . . . . . e 114
442 TesCollections. . . . . . . . . . 115
443 Query SES . . .. e 117
444 PeformanceResults . . . . . . . .. 118
4441 Sdafe . ... 118

4442 Unsafe . . .. . .. .. 121

445 Retrieva Effectiveness . . . . . . . .. 126

45 EBEXtensionS. . . . . . .. e e 132
46 ShortUnstructuredQueries . . . . . . . . . . ... 144
47 Conclusions . . . . . . .. e 157
5. CONCLUSIONS . . . . . e e s e s, 165



5.1 Futurework . . . . . . . e 167

511 Smalupdates. . . ... ... ... ... 168
512 Multi-usersupport . . . . ... 169
513 Hardwarebased optimization . . ... ... ... ... ...... 170
BIBLIOGRAPHY . . . . . 173

Xi



Xii



Table
31
3.2
3.3
34
41
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
412
413
414
4.15
4.16
417

LIST OF TABLES

Page
TIPSTER document collection file characteristics . . . . . ... ... ... 70
TIPSTERfileparsingresults . . . . . .. ... ... ... ... ...... 71
TIPSTER Inverted fileobject statistics . . . . . ... ... .. ... .... 74
Indexing variationsfor 3.2 GB TIPSTER collection . . . . ... ... ... 75
Test collectionstatistics . . . . . . . . . . .. 115
Inverted file spacerequirements(MB) . . . . . ... ... . ... ... .. 116
Number of documentsevaluated . . . . . ... ... ... .. ... ... 122
Wall-clocktimes . . ... ... . ... 123
Precison at standard recall ptsfor Tipl, Query Set1 . . . ... ... ... 127
Precison at standard recall ptsfor Tipl2, Query Set1 . . . . .. ... ... 128
Precison at standard recall ptsfor Tipl23, Query Set1 . . . .. ... ... 129
Precison at standard recall ptsfor Tipl, Query Set2 . . . ... ... ... 130
Precison at standard recall ptsfor Tipl2, Query Set2 . . . . .. ... ... 131
Precision at standard recall ptsfor Tipl2, Query Set 1, extended . . . . . . 135
Precision at standard recall ptsfor Tipl2, Query Set 2, extended . . . . . . 136
Precision at standard recall ptsfor Tipl2, Query Set 1, optimized . . . . . . 140
Precision at standard recall ptsfor Tipl2, Query Set 2, optimized . . . . . . 143
Precision at standard recall ptsfor Tipl2, Query Set 3, optimized . . . . . . 147
Precision at standard recall ptsfor Tipl2, Query Sets3and4 . . . . . . .. 148
Precision at standard recall ptsfor Tipl2, Query Set 4, optimized . . . . . . 150

Precision at standard recall ptsfor Tipl2, Query Sets 3 and 4, optimized . . 152

Xiii



4.18 Precision at standard recall ptsfor Tipl2, Query Set 5, optimized

4.19 Wall-clock time summary for Tipl2 (seconds) . . . . ... . ..

Xiv



Figure
11
31
3.2
33
34
35
3.6
3.7
38
39
3.10
311
3.12
3.13
3.14
3.15
41
4.2
4.3
4.4
45

LIST OF FIGURES

Page
Invertedfileissues . . . . . . . ... 7
Document collectiontuples . . . . . . . . ... ... .. oL 37
Document buffer binarytree . . . . . . . . ... oL 39
Batch bufferhashtable . . . . . ... ... .. ... ... ... .. ... 41
Inverted list sizedistributions . . . . . .. ... ... 50
Inverted filehashtable . . . .. ... ... ... ... ... ... .. ... 60
Hashtablebucket . . . . . . .. ... . .. ... ... 61
Deletioninalonginvertedlist . . . . .. ... ... ... ......... 68
Bulkindexingtimes. . . . . . . . . . .. ... 73
Incremental updatetimes . . . . . . . ... 79
Parsetimecomparison . . . . . . . . . . . ... 80
Invertedfiledataread perupdate . . . . . . .. . ... ... ... .. ... 81
Incremental mergetimeversusdataread . . . . . .. ... ... 81
TIPSTER vocabulary growth . . . . . . . . .. ... ... ... .. .... 83
Logof TIPSTER vocabulary growth . . . . . . ... ... ... .. .... 83
Cumulative mergetimecomparison . . . . . . . .. ... .. ... 87
Inference network for informationretrieval . . . . . ... ... L. 99
Examplequery ininternal treeform . . . . .. ... oo oL 102
Longinvertedliststructure . . . . . . . ... Lo 112
Linked versus Splitinverted listswall-clock time . . . .. ... ... ... 119
Query Set 1 wall-clock timebreakdown . . . . ... ... ... ...... 125

XV



46
4.7

4.8

4.9

4.10
411
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
421
4.22
4.23
4.24
4.25
4.26

Query Set 2wall-clock timebreakdown . . . . ... ... ......... 125

Recall-Precison curvesfor Tipl, Query Set1 . . . . .. ... ... .... 127
Recall-Precison curvesfor Tipl2, Query Set1 . . . ... ... ... ... 128
Recall-Precison curvesfor Tipl23,Query Set1 . . . . . . ... ... ... 129
Recall-Precison curvesfor Tipl, Query Set2 . . . . ... ... ... ... 130
Recall-Precison curvesfor Tipl2, Query Set2 . . . ... ... ... ... 131
Recall-Precision curvesfor Tipl2, Query Set 1, extended . . . . . . . . .. 135
Recall-Precision curvesfor Tipl2, Query Set 2, extended . . . . . . . . .. 136
Extended optimization wall-clock timesfor Tipl2, Query Set1 . . . . . . . 137
Recall-Precision curvesfor Tipl2, Query Set 1, optimized . . . .. .. .. 140
Extended optimization wall-clock timesfor Tipl2, Query Set2 . . . . . .. 141
Recall-Precision curvesfor Tipl2, Query Set 2, optimized . . . .. .. .. 143
Extended optimization wall-clock timesfor Tipl2, Query Set3 . . . . . . . 145
Recall-Precision curvesfor Tipl2, Query Set 3, optimized . . . .. .. .. 147
Recall-Precision curvesfor Tipl2, Query Sets3and4 . . . . .. ... ... 148
Extended optimization wall-clock timesfor Tipl2, Query Set4 . . . . . .. 149
Recall-Precision curvesfor Tipl2, Query Set 4, optimized . . . .. .. .. 150
Extended optimization wall-clock timesfor Tipl2, Query Sets3and4 . . . 151
Recall-Precision curvesfor Tipl2, Query Sets3and 4, optimized . . . . . . 152
Extended optimization wall-clock timesfor Tipl2, Query Set5. . . . . .. 153
Recall-Precision curvesfor Tipl2, Query Set 5, optimized . . . . . .. .. 155

XVi



CHAPTER 1
INTRODUCTION

Documents play a central role in our daily acquisition and distribution of information.
They serve as both amedium and arepository for information, comingin avariety of shapes
and sizes. Newspaper and magazine articles supply us with our daily news. Manuals
instruct us in all sorts of activities. Letters enable us to correspond professionaly and
socially. Reports keep us current in the work and business of others. Over the ages people
have produced an enormous wealth of documents. Today we continue to add to thiswealth
by perpetually generating new documents. With such an abundance of documentsavailable,
finding a particular document of interest can amount to a Herculean task.

To make this task feasible, information retrieval (IR) systems were developed. The
function of an information retrieval system is to satisfy a user’s information need by
identifying the documentsin acollection of documentsthat contain the desired information.
Sincetheinception of IR systemsover thirty yearsago, agreat deal of effort hasbeen spent on
improving the ability of IR systemsto correctly identify interesting and relevant documents.
In the work presented in this dissertation, we now concentrate on system implementation
issues and, in particular, how to improve the execution performance of these systems so
that their operations can be carried out quickly and efficiently.

In the remainder of this chapter, we provide an overview of the problems considered
in this dissertation and the approaches taken to solving them, summarize the research
conducted and the results achieved, describe the contributions of thiswork, and outline the

rest of this dissertation.



1.1 Overview

A document is any written work that conveys information. Examples include books,
reports, articles, and letters. The fundamental element of any document is text, the written
form of human language. Text is a powerful mechanism for storing information, allowing
us to record anything that can be expressed verbally. This power comes from the endless
variety and flexibility of human language. When creating text, we have a huge vocabulary
of termsat our disposal and infinitely many ways of combining those termsto express what
we wish to communicate.

While this flexibility makes for rich and interesting documents, it has the potential
to impede human understanding of the information stored in a document. Documents
can be long and detailed, requiring careful study before their true information content is
discovered. Thissituation isacceptable when the set of documentsthat we must examineis
restricted to those that contain theinformationwe seek. But what if we have alarge number
of documents and do not know which ones contain the desired information? Individual
inspection of each document is impractical. Without a method for identifying relevant
documents, alarge collection of information-rich documentsis useless.

One of the first solutions to this problem appeared nearly four thousand years ago
when catalogues of documents in libraries were created to aid in keeping track of those
documents [44]. A catalogue provides a compact listing of the documents available in
the library. Each document entry in the catalogue includes some number of attributes
for the respective document, such as author, title, or subject. The attributes can be used to
identify potentially interesting documentswithout actually having to examinethe documents
themselves.

More recently, in the 16th century, primitive indexes for documents were created. An
index is alist of certain keywords or topics. Each entry in the list contains pointers into
the documents where descriptions and discussions of the respective keyword or topic may

be found. Unfortunately, deciding what keywords and topics should go into an index and



which discussions are worthy of an index pointer is a tedious and subjective human task
prone to omissions. Ultimately, both indexes and catalogues suffer from the restriction
that an information search must be based on a set of limited, predetermined document
characteristics, i.e., the keywords of an index or the attributes of a catalogue.

A different kind of index that avoids this shortcoming is the concordance. A concor-
danceisan aphabetical list of all of the termsthat appear in acollection. For each term, the
list gives apointer to every occurrence of the term in the collection, along with aportion of
the text surrounding the term to suggest the context of the occurrence. The full-text index
provided by a concordanceisfree from the restrictions of predetermined keywords and can
be used to locate al of the passages that contain the terms of interest. A concordance for
alarge document such as the Bible, however, might require a good portion of alifetimeto
construct by hand, and such an effort can take asignificant toll on the concordance compiler.
Inthe case of Alexander Cruden, author of one of the better known Bible concordances[24]
(first published in 1737), the effort involved in compiling the concordance is believed to
have led to hisinsanity [48].

With the advent of the computer age in the latter half of the 20th century, concordance
construction could be automated, greatly smplifying the task. What used to take years
could now be accomplished in minutes. In spite of being relatively complete and ssimple
to construct, a concordance still provided a rather unsophisticated solution to our original
problem. Trying to locate information in alarge collection of documents using a concor-
dance can bean exerciseinfrustration, leading to theretrieval of many unrelated documents
that just happen to contain terms that we believe are indicative of the information we seek.
A more intelligent solution to the problem at hand was still needed.

Over thirty years ago, work towards this intelligent solution began with the birth of
information retrieval systems. Information retrieval is the process of identifying and
retrieving rel evant documents based on some expressed interest in documents of aparticular

nature. The distinguishing characteristic of information retrieva is that the search for



interesting documents is based on the information content of the documents, rather than
just the terms, keywords, or attributes associated with the document. To support document
searching based on information content, an information retrieval system consists of three
basic elements. a document representation, a query representation, and a measure of
similarity between queries and documents. The document representation providesaformal
description of theinformation contained inthe documents, the query representation provides
aformal description of the information need, and the similarity measure defines the rules
and proceduresfor matching the information need with the documentsthat satisfy that need.

These three elements collectively define a retrieval model. Research in information
retrieval has produced a number of retrieval models, of which the three most prominent
are the Boolean, vector-space, and probabilistic retrieval models. In al of these models,
a document is represented by a set of indexing features that have been assigned to the
document. Indexing featuresare commonly thetermsthat occur in the document collection,
although they may also be more semantically meaningful concepts extracted from the text
by sophisticated indexing methods (e.g., citations, phrases). Unless further ditinction is
necessary, we will use the word “term” to mean any indexing feature.

In Boolean retrieval, adocument isrepresented as aset of termsd; = {t, ..., &}, where
eacht; isaterm that appearsin document d;. A query isrepresented as aBoolean expression
of terms using the standard Boolean operators and, or, and not. A document matches the
query if the set of terms associated with the document sati sfies the Boolean expression that
represents the query. The result of the query isthe set of matching documents.

The vector-space model [73] enhances the document representation of the Boolean
model by assigning aweight to each term that appearsin adocument. A document can then
be represented as a vector of term weights. The number of dimensionsin the vector-space
is equal to the number terms used in the overall document collection, or | T |, where T is

the set of terms used in the collection, commonly referred to as the vocabulary or lexicon.



The weight of a term in a document is calculated using a function of the form tf - idf,
where tf (term frequency weight) is a function of the number of occurrences of the term
within the document, and idf (inverse document frequency weight) isan inverse function of
the total number of documents that contain the term. The first component incorporates the
notion that the ability of aterm to describe a document’s content is directly related to the
number of timesthe term occurswithin that document. The second component incorporates
the notion that aterm’ sdiscriminatory power weakens as the term appearsin more and more
documents.

A query inthevector-space model istreated asif it werejust another document, allowing
the same vector representation to be used for queriesasfor documents. This naturally leads
to the use of the vector inner product as the measure of similarity between the query and
a document. This measure is typicaly normalized for vector length, such that the actual
similarity measure is the cosine of the angle between the two vectors. After all of the
documentsin the collection have been compared to the query, the documents are sorted by
decreasing similarity measure and aranked listing of documentsis returned as the result of
the query.

The probabilistic retrieval model is based on the Probability Ranking Principle, which
statesthat aninformationretrieval system ismost effectivewhenit respondsto an expressed
information need with a list of documents ranked in decreasing order of probability of
relevance, and the probabilities are estimated as accurately as possible given all of the
availableinformation [70]. In this model, the answer to a query is generated by estimating
P(relevant | d) (the probability of the information need being satisfied given document d)
for every document, and ranking the documents according to these estimates. Using Bayes
theorem, P(relevant | d) can be expressed as a function of the probabilities of the termsin
d appearing in relevant and non-relevant documents. The query gives an estimate for the
probability of a given term appearing in relevant documents, and the document collection

gives an estimate for the probability of a given term appearing in non-relevant documents.



Thisresultsin atf - idf styletermweighting function, smilar to that used in the vector-space
model. The probabilistic version, however, is more formally motivated.

Although these models differ in many of their details, they each incorporate the belief
that a query and its relevant documents will have termsin common. An important query
evauation step for al of these models is matching query terms with the documents that
contain those terms. Scanning the document collection for occurrences of the query terms
IS an unsatisfactory implementation of this step, especially when the document collection
isquitelarge. Instead, an inverted fileindex [73, 29, 42] is used to support thisprocess. An
inverted filecontainsaninverted list for every term that appearsin the document collection.
A term’sinverted list identifies all of the documents that contain the corresponding term.
Each document entry in an inverted list may additionally contain a term weight for the
document (often just the number of occurrences of the term within the document) and the
locations of each occurrence of the term within the document.

Using an inverted file, we match query terms to documents by obtaining the inverted
lists for the query terms and processing the document entries in those lists. The particular
retrieval model will dictate exactly what informationis stored in the inverted lists and how
that information isused in the query evaluation process. Regardless of how theinverted list
contents are used, the fundamental advantage of an inverted fileisthat the set of documents
that must be considered during the query evaluation process is constrained to those that
contain at least one of the query terms. Moreover, the documents in this constrained set
do not even need to be accessed during query evaluation. All of the information required
to evaluate a query can be stored in the inverted lists, such that a document need only be
accessed when the user selects it from the query result list for viewing.

Theissues of what informationto storein aninverted list and how to usethat information
to generate a query result are at the heart of the question that most of the IR research to
date has focused on: how to define the elements of a retrieval model for best retrieval

effectiveness. Retrieval effectiveness is a measure of an IR system’s ability to correctly



large
collections

information

general

system

incremental
>

solutions

inverted
file

retrieval
effectiveness

dynamic _ _qu_ery_ .
collections - optimization
retrieval
speed
conflict: <——@— solution; —————

identify the documents that are relevant to a given query. While improving retrieval
effectiveness remains an important area of research, a number of new challenges have
appeared that are rapidly becoming much more pressing. First, IR systems are being asked
to managelarger and larger document collections. Second, thetraditional view of document
collections as static and archival is being replaced by the desire for dynamic collections
that can be updated efficiently or built incrementally. Third, information retrieval isbeing
integrated into more comprehensive information management systems. For thisto happen,

IR systems must provide reliable, efficient, multi-user access—features common to more

Figure 1.1 Inverted file issues

traditional data management systems.

sophisticated
retrieval

requ"'ements .................. .



The godl of this dissertation is to provide solutions to the challenges created by large,
dynamic document collections, and to lay the foundation for a solution to the challenges
imposed by a comprehensive information management system. Our approach to solving
these problems is based on the following observation: the speed and functionality of an
information retrieval system are determined to alarge extent by the inverted file implemen-
tation. This notion is depicted in Figure 1.1. The figure shows a number of information
retrieval system goalsin white boxes. Conflicting goals are connected by solid lines ema-
nating from ablack dot. Solutionsto these conflicts are shown in shaded boxes, which are
connected to the corresponding conflict by a dashed line. Finally, both solutions and goals
place requirements on the inverted file implementation, shown as dotted lines directed at
the circlein the center of thefigure.

Consider first the goa of retrieval effectiveness in the upper right hand corner. For
small document collections, a smple Boolean model might suffice. On large document
collections (shown in the upper left hand corner), however, smple boolean retrieval will
perform poorly [72, 1, 85]. To resolve the conflict between these two goals and provide
better retrieval effectiveness on large document collections, we turn to more sophisticated
retrieval models. Sophisticated retrieval models place additional requirements on the
inverted file implementation, such as storage of term weights and occurrence locations.

Both large document collections and sophisticated retrieval conflict with the goal of fast
document retrieval, shown at the bottom of Figure 1.1. Thesetwo conflictslead to the use of
guery optimization techniques to improve retrieval speed. Query optimization techniques
can require aternative inverted file access methods and storage of additional information
in the inverted lists, placing further requirements on the inverted file implementation.

The goal of supporting a dynamic document collection (shown in the lower left hand
corner) conflicts with the goal of supporting a large document collection. If a document
collection is small enough, modifications to the collection can be incorporated into the

inverted file smply by re-indexing the entire document collection from scratch. With



larger document collections, this solution isimpractical. Instead, incremental solutions are
required that allow in-place modifications of the existing inverted file. The functionality
requirements imposed by a dynamic inverted file introduce a whole new set of issues that
must be considered in the inverted file implementation.

The last goal depicted in Figure 1.1 is the incorporation of information retrieval into
a genera information management system, shown in the top middle of the figure. For
example, a traditional database management system (DBMYS) provides excellent support
for structured, record based data. However, aDBMS provides only limited support for text
datatypes and generally lacks the sophisticated full-text search capabilities provided by an
IR system. Combining these two technologies into a single, comprehensive system will
result in a more powerful and useful information management system.

Before this integration can take place, an IR system must meet the data management
standards set by the DBMS. A large part of thefunctionality provided by aDBMSis support
for consistent, reliable multi-user access and update of the database. This is accomplished
through the use of transactions, concurrency control, and recovery—features typically
absent from an IR system. The incorporation of these mechanismsinto an IR system will
have a significant impact on the inverted file implementation, imposing a variety of new
functionality requirements for controlled access and manipulation of the inverted lists.

The above observations lead to a problem solving approach centered on the inverted
file implementation. This dissertation presents a comprehensive solution to managing an
invertedfilethat either directly satisfies the requirements stated above, or enables other new
strategiesto be appliedinthe problem solving effort. Sinceweare concerned with execution
performance issues, the solution is fully implemented and evaluated empirically. The
experimental test-bed is provided by INQUERY [12], a full-text probabilistic information
retrieval system based on aBayesian inference network model [88]. INQUERY was chosen

for the following reasons:



INQUERY uses a general inverted file that includes term occurrence locations, al-
lowing exploration of more complex inverted list data structures. This exploration

would not be possible in a system that stores term weights only initsinverted file.

e The inference network-based retrieval model exemplifies the sophisticated retrieval

solution of Figure1.1.

e Theinference network-based retrieval model providesa general framework in which
avariety of retrieval models can be represented, suggesting that results obtained in

this environment have a better likelihood of generalizing to other retrieval models.

e INQUERY has been shown to provideahigh level of retrieval effectiveness[39, 40],
increasing the impact of the results presented in this dissertation. A fast system is

uselessif it provides poor retrieval effectiveness.

e INQUERY isacommercia quality system and iscurrently used in anumber of instal-

lations[21], again increasing the impact of the results presented in this dissertation.

1.2 Research Summary

The research conducted for this dissertation coverstwo main areas. indexing and query
evauation. Indexing includestheinitial creation, modification, and overall management of

theinverted file. The specific indexing problems addressed are:

1. Efficient inverted file creation for large document collections.
2. Efficient additions of new documents to an existing document collection.

3. Design of an overall architecture that enables solutions to the first two problems and
providesafoundationfor futurework on the comprehens veinformation management

system problem.

10



These problems have a strong systems orientation, focusing on the management of
large amounts of data that must be moved back and forth between disk and main memory.
As such, any approach to solving these problems must be sensitive to basic computer
architecture issues and tradeoffs. In particular, the size and access characteristics of the
data to be managed must be taken into account when deciding how to make use of various
computer resources (e.g., CPU, disk, main memory). With these considerations in mind,

the following hypotheses are put forth:

1. Fast, scalable document indexing can be achieved by localizing sort and insertion op-
erations, building intermediate resultsin main memory, minimizing I/0, and favoring

sequential I/0O over random 1/O.

2. Document additions can be efficiently supported by aninverted list data structurethat

minimizes access to the existing inverted file during the update.

3. A generd, “off-the-shelf” data management system can be used to manage an in-
verted file if the data management system provides the appropriate data model and

extensibility mechanisms.

A general document indexing scheme based on the previous work of Witten et a. [90]
was implemented. The extension to their work is a double buffering scheme for parsing
documents and building inverted listsin main memory without the use of aterm dictionary.
The overall indexing scheme is able to index documents at a rate of over 500 MB an hour
on a current, midrange workstation, and results show that the technique scales well with
document collection size. The issues identified in the first hypothesis were consdered
throughout the implementation, and the results obtained lead to the acceptance of that
hypothesis.

An exploration of possible solutions to the problem of managing an inverted file was
conducted, leading to the conclusion that a persistent object store provides the appropriate

level of performance and functionality for this task. In particular, the Mneme persistent

11



object store [62] was used as the “off-the-shelf” data management system in the inverted
file architecture. The datamodel provided by Mneme allowed the design of an inverted list
data structure that meets the requirements stated in the second hypothesis. Experimental
results show that the new inverted file architecture supports document additions with costs
significantly less dependent on the size of the existing document collection than traditional
techniques, which require redundant indexing of the document collection or scanning of the
entire existing inverted file. Moreover, additionsin the new implementation are performed
in-place, substantially reducing temporary disk space costs. These results confirm the
second hypothesis, although thereis still room for improvement.

Other inverted file management tasks were explored within the context of the Mneme
based architecture. While many of these additional features have been implemented,
including document deletions, concurrency control, recovery, and transactions for multi-
user access, a full evaluation of these features is beyond the scope of this dissertation.
The implementation of these features, however, does lead to the acceptance of the third
hypothesis above.

A single problem was addressed within the context of query evaluation, namely, how
to provide fast evaluation of structured queriesin statistical ranking retrieval systems. Re-
trieval systems of thiskind are characterized by astatistical or probabilistic term weighting
function and a query language that provides a variety of query operators for combining
term weights, proximity information, and the results of nested query operators. A struc-
tured query can be represented as a tree with operators at the internal nodes and terms at
the leaves. During query evaluation, a document’s score is calculated by propagating term
weights for the document from the leaves toward the root, combining the term weights
according to the semantics of the query operators at the internal nodes to produce a final
score for the document at the root of the query tree.

A technique for reducing query evaluation costs can be categorized as either safe or

unsafe. A safetechniquehasnoimpact onretrieval effectiveness, whilean unsafetechnique

12



may trade retrieval effectiveness for execution efficiency. A number of safe optimization
techniques were explored, including their implicationsfor the inverted file implementation
and expected impact on query evaluation time. The main focus here, however, was on
unsafe optimization techniques. Our research was guided by the following observation:
relevance scores are generated for a significant percentage of the documentsin a document
collection when evaluating a query. This observation has been made by others. Moffat and
Zobel [58] found that for queries containing around 40 terms, nearly 75% of the documents
in the collection are scored. Even relatively short queries suffer from this problem. We
have observed that for queries containing around 8 terms, 35% of the documents in the
collection are scored. If the document collection contains 1 million documents, hundreds
of thousands of documents will be scored, far exceeding the number of documents an end

user islikely to be interested in. In light of this, the following hypothesisis put forth:

e Theset of documentsto score, called the candidate document set, can be significantly
constrained with minimal effort, which in turn will produce a significant savings in

guery evaluation execution time.

A new optimization technique was developed based on this hypothesis. The technique
populates the candidate document set in alight-weight preprocessing step using heuristics
to select the documents most likely to be relevant to the query. These documents are then
fully scored to generate the answer to the query. An evauation of the new optimization
technique on large document collections using a variety of query sets showed that the
candidate document set can be reduced by over 90%. Thisin turn trandates into a savings
in wall-clock execution time of over 50%, proving the above hypothesis. Furthermore,
retrieval effectiveness is maintained in the portion of the query result most likely to be
viewed by the end user.

The new optimization technique was a so compared to and combined with a previousy
proposed optimization technique, term-elimination. While the individual techniques per-

form comparably on certain query sets, our new technigque was shown to be more robust in

13



all situations. Moreover, the two techniques are complementary, such that combining them
yields an additional improvement in performance.

Finally, the efficacy of applying the new optimization technique and term-elimination
on short, unstructured queries was evaluated, and the usefulness of high frequency (i.e.,
low idf) query terms was explored. It was found that high frequency query terms can
often be eliminated to yield substantial improvementsin both execution speed and retrieval
effectiveness. Whilethisisgratifying, it isactually indicative of a problemin the retrieval
model, suggesting that high frequency terms are not being handled properly. Appropriate
guery modifications were explored to better incorporate high frequency query term infor-
mation into final document scores. These efforts led to a better understanding of both the
impact of high frequency query terms, and which techniques provide the best combination

of retrieval effectiveness and execution speed.

1.3 Research Contributions

The contributions of thisthesiswork are primarily practical in nature, with implications

for information retrieval system implementation. The contributionsinclude:

¢ Implementation and evaluation of afast, scalable indexing system.

e Design and implementation of an inverted file management architecture using “off-
the-shelf” data management technology, providing opportunities for all aspects of
an information retrieval system to benefit from traditional database management

features, such as buffer management and efficient low-level storage management.

e Development and evaluation of an incremental indexing strategy enabled by the

above architecture.

e Ground work for a comprehensive information management system where informa-

tion retrieval is afull-featured component.

14



¢ Development and evaluation of astructured query optimization that reducesexecution

time by over 50% with no noticeable impact on retrieval effectiveness.

e Aninvestigation of the impact of high frequency query terms in short, unstructured
gueries and how to handle them for best retrieval effectiveness and execution perfor-

mance.

1.4 Outlineof the Dissertation

Inthe remainder of thisdissertation, we begin with asurvey of related work (Chapter 2).
We then consider the problems of indexing adocument collection and managing an inverted
file, describe our solutions, and present results (Chapter 3). Next, we address the problem
of providing fast evaluation of structured queries, describe our solution, and present results
(Chapter 4). Finally, we summarize the conclusions drawn from this research and discuss

futurework (Chapter 5).

15



16



CHAPTER 2
RELATED WORK

In this chapter we survey related work that is not specifically addressed in other parts
of the dissertation. We begin with a discussion of inverted file implementation issues
and alternatives, and then survey work on query optimization techniques for information

retrieval.

2.1 Inverted File Management

Inverted file management has been pursued from a number of perspectives. We begin
with a discussion of efforts to support information retrieval with a traditional database
management system, which range fromtreating IR as just arelational database application,
to loose integration of separate IR and database management systems. We then consider
custom inverted file management solutions, and briefly review alternative indexing schemes

for information retrieval .

211 Traditional Database Support for IR

Thefirst body of work related to the research presented in this dissertation isthe general
techniqueof providinginformationretrieval servicesusing astandard database management
system (DBMS). Documentsare stored by the DBM S and represented in such away that the
guery language of the DBMS can be used to construct information retrieval style queries.
Some of the earliest work was done by Crawford and MacLeod [18, 54, 17, 55], who
describe how to use arelationa database management system (RDBMYS) to store document

dataand construct information retrieval queries. Similar work was presented more recently

17



by Blair [5] and Grossman and Driscoll [38]. Others have chosen to extend the relational
model to allow better support for IR. Lynch and Stonebraker [53] show how a relational
model extended with abstract data types can be used to better support the queries that are
typical of an IR system.

In spite of evidence demonstrating the feasibility of using a standard or extended
RDBMS to support information retrieval, the poor execution performance of such systems
hasled IR system buildersto construct production systemsfrom scratch. Additionally, most
of the work described above deals only with document titles, author lists, and abstracts.
Techniques used to support thisrelatively constrained data collection may not scale to true
full-text retrieval systems. Moreover, sophisticated retrieval models such as the inference
network-based retrieval model are difficult to represent usng an RDBMS. A custom re-
trieval enginewill inevitably provide superior performanceand is certainto better represent
the semantics of the retrieval model.

Other work in this area has attempted to integrate information retrieval with database
management [ 27, 74], and is representative of our comprehensi ve information management
system goal. The services provided by a database management system and an IR system
are distinct but complementary, making an integrated system very attractive. Inthiscase, a
separate, self-contained information retrieval system isloosely coupled with a more tradi-
tiona database management system. There is a single user interface to both systems, and
a preprocessor is used to delegate user queries to the appropriate subsystem. Additionally,
the DBMS is used to support the low level file management requirements of the whole
system.

Whether an RDBMS is used to implement an IR system or provide low-level storage
support for aloosely coupled IR system, the inverted file index required by the IR system
must be managed efficiently. We will see in Chapter 3 that the data management require-
mentsof aninverted fileare not easily satisfied by an RDBMS. Rather than usean RDBMS,

we propose the use of a persistent object store, favoring a data management system that

18



more naturally satisfies the unusual storage requirements of an inverted file. In particular,
the inverted lists in an inverted file will come in a broad range of sizes, with some of the
lists being very large. We will see that the persistent object store offers a straight forward
solution to the problem of managing these large objects.

Generic support for storage of large objects has been pursued el sewhere in the database
community. The EXODUS storage manager [13] supports large objects by storing themin
one or more fixed size pages indexed by a B+tree on byte address. For example, to access
the 12 bytes starting at byte offset 10324 from the beginning of alarge object, the object’s
B+tree would be used to look up 10324 and locate the data page(s) containing the desired
bytes.

The Starburst long field manager [ 50] supportslarge objects using asequence of variable
length segments indexed by a descriptor. As an object grows, a newly allocated segment
will betwice aslarge asthe previoudy allocated segment. This growth pattern continues up
to some maximum segment size, after which only maximum size segments are allocated.
The last segment in the object is trimmed to a page boundary to limit wasted space. This
known pattern of growth allows a segment’s size to be implicitly determined, eliminating
the need to store sizes in the descriptor. A key component of this scheme is the use of a
buddy system to manage extents of disk pages from which segments are alocated. This
schemeisintended to provide efficient sequential accessto large objects, assuming they are
typically read or written in their entirety.

Biliris [3] describes an object store that supports large objects using a combination
of techniques from EXODUS and Starburst. A B+tree is used to index variable length
segments alocated from disk pages managed by abuddy system. This scheme providesthe
update characteristics of EXODUS with the sequential access characteristics of Starburst.

A comparative performance evaluation of the three schemes can be foundin [4].

19



2.1.2 Custom Inverted List Management

Efficient management of full-text database indexes has received a fair amount of at-
tention. Faloutsos [29] gives an early survey of the common indexing techniques. Zobel
et a. [97] investigate the efficient implementation of an inverted file index for a full-text
database system. Their focusis on compression techniques to limit the size of the inverted
fileindex. They also address updatesto theinverted file using large fixed length disk blocks,
where each block has a heap of inverted lists at the end of the block and adirectory into the
heap at the beginning of the block. Asinverted listsgrow they arerearranged in the heap or
copied to other blocks with more space. Techniques for handling inverted lists larger than
adisk block are not discussed, nor isthe disk block technique fully evaluated.

A more sophisticated inverted list implementation was proposed by Faloutsos and
Jagadish [31]. Intheir scheme, small lists are stored as inverted lists, while large lists are
stored as signature files. They haveasimilar goal of reducing the processing costsfor long
inverted lists, but their solution is inappropriate for the inference network model. 1n[32],
Faloutsos and Jagadish examine storage and update costs for a family of long inverted
list implementations, where the genera case is their “HYBRID” scheme. The HYBRID
scheme essentially chains together chunks of the inverted list and provides a number of
parameters to control the size of the chunks and the length of the chains. At one extreme,
limiting the length of a chain to one and allowing chunks to grow results in contiguous
inverted lists, where relocation of the inverted list into alarger chunk is required when the
current chunk isfilled. At the other extreme, fixed size chunks and unlimited chain lengths
give astandard linked list.

Harman and Candela [41] use linked lists for a temporary inverted file created during
indexing. Their linked list nodes are quite small, consisting only of a single document
posting. Accessing the inverted file in this format during query processing is much too
inefficient, so the nodesin alinked list are ultimately conglomerated into asingle inverted

list beforethefileis used for retrieval.

20



Tomasic et a. [84] propose a new inverted file data structure to support incremental
indexing, and present adetailed ssimulation study over avariety of disk allocation schemes.
The study isextended with alarger synthetic document collectionin [76], and acomparison
is made with traditional indexing techniques. Their data structure manages small inverted
lists in buckets (smilar to the disk blocks in [97]) and dynamically selects large inverted
lists to be managed separately. It is notable that they expect the scheme with the best
incremental update performance to have the worst query processing performance due to
fragmentation of the long inverted lists.

Moffat and Zobel [60] describe an inverted list implementation that supports jumping
forward in the list using skip pointers. This is useful for document based access into the
list during conjunctive style processing. The purpose of these skip pointersis to provide
synchronization pointsfor decompression, allowing just the desired portionsof theinverted
list to be decompressed.

Properly modeling the size distribution of inverted file index records and the frequency
of use of terms in queries is addressed by Wolfram in [91, 92]. He suggests that the
informetric characteristics of document databases should be taken into consideration when
designing thefilesused by an IR system. Thisisan underlying theme of the work described

here, where term frequency and access characteristics are carefully considered throughoui.

2.1.3 Inverted File Alternatives

The most popular alternative to an inverted file is the signature file [30]. A signature
file contains document signatures, one for each document in the collection. A document’s
signature is a bit-string created by applying a hash function to each of the terms in the
document (documents may be sub-divided into blocks, with a separate signature for each
block). The hash function identifies one or more bits in the signature that should be set
to “1.” The width of the bit-string and the number of bits set by the hashing function are

parameters that control the likelihood of different terms setting overlapping bits.

21



During query evaluation, a signature is created from the terms in the query in the
same way. The query signature is then compared with all of the document signatures in
the signature file. A document will potentially match the query if the intersection of its
signature and the query signature is equal to the query signature. The match is*potential”
because terms different from those in the query may set the same signature bits as the query
terms, resulting in afalse drop. In this case, a document is flagged as matching the query,
when in fact it does not. Note that the opposite cannot occur. 1f a document does contain
al of the query terms, this strategy will never fail to flag the document as matching. The
possibility of fal sedrops meansthat documentswith matching signatures must be processed
further to determine whether or not they truly match the query.

Signaturesare commonly stored and manipul ated in bit-sices. Then™ bit-sice contains
the n™ bit from all of the signatures, stored as a sequential string. With this organization,
we need to process only the bit-slices identified by the query signature, greatly reducing
the amount of data that must be read from the signature file. The cost of using a bit-
diced organization is more expensive updates. This organization, however, is particularly
amenable to parallel processing, and a number of parallel implementations have been
described in the literature [63, 82].

It haslong been argued that signaturefiles provide performance superior to that obtained
with inverted files. Any performance advantage, however, comes at the cost of a more
restricted retrieval model—signature files typically support Boolean queries only. Croft
and Savino [23] show how signature files can be extended to support document ranking,
but ultimately find that equivalent performance can be obtained by using an inverted file.
Morerecently, Zobel et a. [96] give both analytical and empirical resultsthat show inverted
filesto be superior to signaturefilesin al respects, regardliess of theretrieval model. Given
their greater flexibility in terms of retrieval model and the recent results demonstrating
their superior performance, inverted files appear to be the index of choice for a full-text

information retrieval system.

22



2.2 Query Optimization

The database community has a rich history of query optimization techniques. In[37],
Graefe gives a comprehensive survey of query execution and optimization techniques,
concentrating mainly on the relational model. These techniques are generally based on an
algebraor calculus where query manipulations can be performed to reduce execution time
without modifying the semantics of the query. While some of these execution techniques
are applicableto informationretrieval (e.g., set intersection techniques), the vague nature of
ranked retrieval makesit drastically different from the traditional database query paradigm,
where there is a single correct answer to any given query. In ranked information retrieval,
we can trade answer precision for speed using unsafe optimization techniques.

The unsafe query optimization techniques have their rootsin the upper bound optimiza-
tions used to solve the nearest neighbor problem in information retrieval. In thismodel, a
guery and the documents in the collection are represented as vectors in an n-dimensional
space, where n is the number of termsin the vocabulary. The problem isto find the docu-
ment closest to the query in thisvector space. Distance in the vector space is defined by the
similarity measure used between a document and the query. Thisistypically some form of
dot product between the vectors. The dot product is limited to the terms that appear in the
guery, so only documents that contain at least one of the query terms need be considered
in the nearest neighbor search. Inverted lists are used to identify documents that are the
potential nearest neighbor to the query. When a previously unseen document is encountered
in an inverted list, the document’s representation vector is retrieved to calculate its exact
similarity to the query. If this document is closer to the query than the current nearest
neighbor, it becomes the new nearest neighbor. When theinverted lists for al of the terms
in the query have been processed, the current nearest neighbor is returned as the answer to
the query.

Smeaton and van Rijsbergen [ 78] describe how an upper bound on the similarity of any

unseen document can be calculated based on the unprocessed query terms. If this upper

23



bound is less than the smilarity of the current nearest neighbor, processing may stop. By
processing terms in order of increasing inverted list length, they achieve a 40% reduction
in the number of similarity calculations required to find the nearest neighbor.

An alternative technique for locating the nearest neighbor uses counters to gradually
accumulate a document’s similarity to the query. The accumulated similarity is based
solely on the information stored in the inverted lists, thus eliminating the need to retrieve
the document representation vectors. After all inverted lists have been processed, the
nearest neighbor isidentified by selecting the maximum similarity from the counters. Perry
and Willett [64] show how the upper bound technique can be applied to this processing
strategy to reduce main memory requirements. The upper bound on the similarity of a
previoudy unseen document is calculated in the same way as before. If thisupper bound is
less than the current best similarity for any previousy seen document, the new document
is not alocated a counter since it cannot be the nearest neighbor. The overall number of
countersis reduced, resulting in main memory savings.

This processing strategy can be extended to support full ranking by computing the
complete similarity for every document encountered and sorting the set of counters to
produce the final ranking. This strategy is at the core of most modern ranking retrieval
systems, and can be restated as follows. A query consists of a set of terms, where each
term contributes a term weight for every document in which it appears. To evauate the
guery, the term weights for a given document are combined according to the semantics of
the particular similarity measure to produce afinal score for the document. The documents
are then ranked by their fina scores to produce the answer to the query. In essence, this
procedure involves allocating an array large enough to hold an identifier and final score for
each document, updating this array as each term weight from the terms is processed, and
sorting the final array by score.

In this processing strategy the goal of a query optimization is to avoid processing the

term weights that do not contribute significantly to the fina document ranking. This can

24



be accomplished by identifying some subset of the term weights that will result in afinal
ranking closeto the “exact” ranking achieved when all term weights are processed. Asthis
subset becomes smaller and smaller, we expect the final ranking to differ more and more
from the exact ranking. The question now is how to select this subset. There are a variety
of methods to make this selection, and they all can be classified based on how they decide

the following:

e which term weight to process next

¢ when to stop

Both of these seemingly simple questions have interesting and subtle implications for
performance and implementation. The order in which term weights are processed will
affect the rate at which the array of scores is populated with discriminating information,
and hasimplicationsfor the inverted list organization. The stopping condition isintimately
related to the term weight processing order and will determine how much work will be done
to answer the query and what claims can be made about the quality of the answer returned.

We consider possible answers to these questions below.

221 Term Weight MagnitudeOrdering

The first term weight processing order is to greedily process term weights in order
of decreasing contribution to the fina ranking. For a similarity measure that treats all
term weights equally, thisis equivaent to processing term weights in order of decreasing
magnitude. Thisorderingisvery appealingin that thedocument ranking scoreswill initially
grow very quickly and therelative order of the documents should be established early in the
processing. Term weights processed later in the order will be smaller, having less chance
to change the relative ranking of the documents.

To support this processing order, the term weights must be extracted from the inverted

listsin decreasing sorted order. Practically speaking, thiswould be accomplished by storing

25



the document entries in the inverted lists in decreasing term weight order. The next term
weight to process would be chosen by examining the next term weight in each inverted list
and selecting the largest of these values.

The stopping condition for this processing order can be defined in a number of ways.
First, we might smply stop after processing some arbitrary percentage of the term weights,
assuming that retrieval effectivenessisalogarithmicfunction of the number of termweights
processed and execution timeisalinear function of the number of term weights processed.
Determining what these functions actually look like might be done experimentally or
anaytically. The problem with this scheme is that, short of processing al of the term
weights, it gives us no guarantees on the correctness of the fina ranking obtained. This
scheme was proposed by Wong and Lee [93], who describe two estimation techniques for
determining how many term weights must be processed to achieve agiven level of retrieval
effectiveness.

An aternative to this ad-hoc stopping condition would be a stopping condition that
takes advantage of the organization of the term weights. Each term will contribute at most
one term weight to each document being considered. If we keep track of which terms have
contributed a term weight to a given document so far, we can calculate an upper bound
on the final score for that document using the current term weights from each of the terms
which have not contributed aterm weight for that document (sinceaterm’stermweightsare
processed in decreasing sorted order). Moreover, we can use the current partially computed
score for a document as a lower bound for that document’s final score. At any given
time, if adocument’slower bound exceeds all other document’s upper bounds, then further
consideration of that document can stop and the document can be returned as the current
best document. With this stopping condition, we can guarantee that the top n documents
will be returned in the correct order, making the scheme safe for the top n documents. The

disadvantage of this scheme isthe computational costs of the required bookkeeping, which

26



may exceed any savings in term weight processing. This scheme is described by Pfeifer
and Fuhr [66].

If we are more concerned with obtaining the top n documents and less concerned with
their relative ranking, we can define another stopping condition. At any given time, an
upper bound on the remaining increase in any document’s score is given by the sum of the
current term weights from each of the terms. Assume the documents are ranked by their
current partially computed scores. When the n+1% document’s current score plusthe upper
bound on the remaining document score increase is less than the N document’s score, we
know that the top n documents will not change and processing can stop. We can return the
top n documents, but we cannot guarantee their relative ranking.

Rather than placeahard limit on the size of the set of documentsreturned, thresholdscan
be established that determine how aterm weight is processed. Such a scheme is described
by Persin [65]. If a document is not in the set of documents currently being considered
and has no current score (i.e., no term weights have been processed for that document), an
insertion threshold is used to determine if aterm weight for that document is significant
enough to place the document into the consideration set. If the document is already in the
consideration set, an addition threshold is used to determine if aterm weight is significant
enough to modify a document’s current score. The addition threshold allows us to stop
processing an inverted list as soon as its term weights fall below the addition threshold.
The insertion threshold ensures that we consider only documents which have a significant
term weight contribution from the terms. With this scheme, we can make no claims about

the quality of the final ranking.

2.2.2 Document Based Ordering

None of the previous schemes can guarantee that acompl ete scorefor agiven document
has been computed. All that might be guaranteed is that the top n documents have been

returned, and in one case, that they are correctly ranked. If we require that complete final

27



scores be calculated for all documents ranked, then the term weight processing order may
be document driven using a document-at-a-timequery processing strategy. Inthisscenario,
once the current document to process has been identified, the term weights for all of the
guery termsthat appear in that document must be processed. This requires document based
access into the inverted lists and is most easily supported by storing the document entries
intheinverted listsin document identifier order. Now we must decide the order in which to
process the term weightsfor the current document. The order of decreasing contribution to
the document’sfinal scoreismost useful. Assuming atf -idf style term weighting function,
this can be accomplished by processing the term weights in decreasing order of idf.

This per document term weight processing order allows usto use the following stopping
condition. Assume we wish to return the top n documents. We begin by initializing the
set of top n documents with complete scores for the first n documents. We then identify
the minimum score S from these top n documents. For each of the remaining documents,
an upper bound on the current document’s final score can be calculated from its currently
accumulated score and theidf of thetermsnot yet processed for the document. If this upper
bound becomes less than S, processing of the current document can stop because it cannot
appear in the top n documents. If acomplete score for the document is computed which is
greater than S the document is placed in the set of top n documents and Sis recal cul ated.
This scheme guarantees that the top n documents are returned, correctly ranked and with
complete final scores. Processing savings will accrue whenever a document’s upper bound
descends below S and the document is eliminated from consideration before its complete
scoreiscalculated. I/0 savingsmay accrueif we havetheability to skip portionsof inverted
lists. Frequent terms will occur late in the processing order and will have long inverted
lists. Many documents will be eliminated from consideration before these frequent terms
are processed, such that much of theinverted list information for these terms can be skipped.

This scheme is called max-score by Turtle and Flood [89].

28



The document processing order used above will attempt to calculate a score for every
document that appears in the inverted lists of the query terms. In fact, we can identify
another stopping condition at which point all document processing can stop. Asprocessing
proceeds, all of the term weights from short inverted lists will eventually be processed,
such that those terms no longer need to be considered. If the upper bound contribution of
the remaining terms which still have term weights to process descends below S then all
processing can stop. We may be able to achieve this condition more quickly by altering the
document processing order to process first those documents which appear in the shortest

inverted lists, encouraging the early exhaustion of these lists.

223 Term Based Ordering

The last term weight processing order isterm based, where all of theterm weightsfor a
giventerm are processed at once. This correspondsto term-at-a-time query processing (see
[89] for a comparison of term-at-a-time and document-at-a-time processing). As with the
per document term weight processing order above, terms are processed in decreasing order
of document score contribution, approximated by the term’s idf score. This strategy will
cause the termsto be processed in order of inverted list length, from shortest to longest.

The first stopping condition we will consider was originally described by Buckley and
Lewit [10] and later discussed by Lucarella[52]. It isintended to eliminate processing of
entireinverted lists, and issimilar to the third stopping condition described in Section 2.2.1.
Assume that we are to return the top n documents to the user. After processing a given
term, the documents can be ranked by their currently accumulated scores, establishing the
current set of top n documents. An upper bound on the increase of any document’s score
can be calculated from the unprocessed termsin the query, assuming the maximum possible
term weight contribution from each of thoseterms. If the n+ 1% document’s score plus the
upper bound increase is less than the " document’s score, then we know that the set of

top n documents has been found. At this point we can stop processing and guarantee that

29



the top n documents will be returned. We cannot, however, guarantee either the relative
ranking of the documents within the set or that complete scores have been calculated for
those documents.

This scheme elegantly addresses the irony where the most expensive terms to process
contribute the least to the final score. Since the terms are processed in order of decreasing
score contribution, the upper bound score increase will diminish as quickly as possible, and
the most expensivetermsto process will be eliminated by the stopping condition. Note aso
that since the processing order and stopping condition are completely term based, there are
no constraints on the organization of the document term weights within an inverted list.

There are three variations on this stopping condition, al of which are similar to the last
stopping condition described in Section 2.2.1. Thefirst variation was proposed by Harman
and Candela [41], called pruning. Rather than place a limit on the number of documents
returned to the user, we can establish an insertion threshold for placing new documents
in the candidate set. In this case, the insertion threshold is term based, such that aterm’s
potential score contribution must exceed some threshold in order for the term to contribute
new documents to the candidate set. Processing will then have two distinct phases. First,
during a digunctive phase, documents will be added to the candidate set and partia scores
updated as usual. Then, after the insertion threshold is reached, a conjunctive phase will
occur wheretermsare not allowed to add new documents, only update the scores of existing
documents. This scheme can make no guarantees about the membership of the set. It does,
however, calculate complete scores for the documents in the candidate set, guaranteeing a
correct relative ranking.

The second variation was proposed by Moffat and Zobel [60, 58, 59]. Rather than
use an insertion threshold related to aterm’s potentia score contribution, a hard limit is
placed on the size of the candidate document set. The digunctive phase proceeds until the
candidate set isfull. Then, the conjunctive phase proceeds until all of the query terms have

been processed. This variation makes the same guarantees as the previous one.

30



The third variation is a term-at-a-time version of max-score described by Turtle and
Flood [89]. New documents are added to the candidate set until the upper bound score of an
unseen document (determined from the maximum possi ble term weight contributions of the
unprocessed terms) falls below the current partial score of the n'" document. At this point,
we know that no unseen document can appear in the top n documents. Processing then
continues in a conjunctive fashion, updating the scores for just those documents currently
in the candidate set. When a given document’s score is updated, its maximum possible
scoreis computed assuming it containsall of the unprocessed terms. If this maximum score
islessthan the n score, this document is eliminated from the candidate set. Thisvariation
will guarantee that the top n documents are returned in the correct order.

During the conjunctive processing phase of the last three variations, access into the
inverted lists will be document based. This suggests that, for the most efficient process-
ing, document entries within the inverted lists should be sorted by document identifier.
Moreover, as in Section 2.2.2, the ability to skip portions of inverted lists should provide
significant 1/0 savings during this processing phase.

There are two other optimization techniques that do not easily fit into the the taxonomy
used above. First isthe two stage query evaluation strategy of the SPIDER information
retrieval system [75, 47]. In SPIDER, a signature file is used to identify documents that
potentially match the query, and an upper bound is cal culated for each document’ssimilarity
to the query. Non-inverted document descriptions are then retrieved for these documents
in order of best upper bound similarity and used to compute an exact similarity measure.
As soon as a document’s exact Smilarity measure exceeds all other documents upper
bound (or exact) similarity measures, this document can be returned as the best matching
document. Correct document scores and rankings are guaranteed.

The second optimization technique, list pruning, was proposed by Smith [79] for the
p-norm retrieval model (an extended Boolean retrieval model). During term-at-a-time

evauation, intermediate result lists are pruned by removing all document entries whose

31



current score is less than some score threshold. This threshold may be constant, or it
may be determined dynamically based on the contents of the intermediate result. Pruned
intermediate result lists require less computation as query evaluation proceeds, resultingin
potential executiontimesavings. A document eliminated from one part of the query may be
re-introduced in another part, however, allowing documentsto haveinaccurate final scores.

The accuracy of the final document ranking, therefore, cannot be guaranteed.

32



CHAPTER 3
INDEXING

In this chapter we consider two problems: efficiently building an inverted file index
for a document collection, and updating that index to reflect modifications to the document
collection. Indexing is an important procedure in any information retrieval system—a
document collection cannot be searched efficiently (if at al) unlessit has been indexed. A
variety of indexing procedures have been proposed in the literature [41, 35, 42], although
only recently have proceduresbeen described that claim toindex large document collections
efficiently [57, 90]. While we are certainly concerned with finding an efficient indexing
techniquefor large document collections, we areequal ly concerned with supporting dynamic
document collections. A document collectionisdynamicif new documents can be added to
an existing collection, old documents can be del eted from an existing collection, or existing
documents can be modified. We will, therefore, pursue a more comprehensive solution to
the problem of building and managing a document collection index.

The ability to modify an existing document collection is a natural requirement for
any information retrieval system. New documents will forever be created, discovered,
delivered, or requested. If the information contained in these new documents is to be
integrated into and accessible from the current information base, then the new documents
must be added to the existing document collection. Some applications have very explicit
requirements for supporting document collection modification. For example, an on-line
news wire service with a current events document collection must grow the collection
frequently and efficiently. There will be a continuous stream of new articles comingin on

the newswire. In order to answer queries about recent newsworthy events, the new articles

33



must be added to the current events document collection shortly after they are received.
Additionally, old news articles will eventually expire and must be deleted from the current
eventsdocument collection. Articlesmay expireeither becausetheir contentisrelevant only
for acertain period of time, or because the size of the current events collection must be held
below some threshold due to performance requirements or capacity limitations. Expired
articles will either be discarded or archived in a larger secondary document collection,
leading to further document addition operations.

Evenif al of the documentsthat areto be added to the document collection areavailable
simultaneoudly, the ability to add new documents to an existing document collection can
be useful. As we will see in Section 3.1 when we consider the mechanics of document
indexinginmoredetail, if theinverted file does not support growth, theindexing processcan
require substantial temporary disk space resources, especially if the document collection to
be indexed is large. If instead the inverted file does support growth, then temporary disk
space requirementscan be significantly reduced usingincremental indexing. Anincrementa
indexing strategy indexesthedocumentsin batches, whereeach batch indexing step requires
little or no temporary disk space and yields a complete index for the documents processed
sofar. Thekey tothisstrategy istheability to build onthe output of previousbatch indexing
steps by growing the inverted file that was built during those steps. Underlying al of this
isthe ability to add new documents to an existing collection.

Modifications to documents in an information retrieval system may come about for a
number of reasons. Consider, for example, a collaborative authoring system. In this ap-
plication, multiple authors will be simultaneously modifying documents in the collection.
The information retrieval system must be able to incorporate these modifications in order
to faithfully track the information content of the document collection. Of course, document
modifications are not restricted to applications specifically intended to support document
creation. An information retrieval system that stores manuals or documentation will in-

evitably be asked to modify those documents as they are revised and updated. Although



document modifications arise in a variety of situations, most of these situations can be ac-
commodated using a versioning scheme. A modified document is ssmply a new version of
the original document, and is added to the document collection as anew document, distinct
from the original. The origina document can then be deleted, or a higher level mechanism
can be used to track multiple versions of the same document in the document collection.
Either way, as long as document additions and deletions are supported by the information
retrieval system, no extrafunctionality is required to support document modifications.

The level of functionality provided by the inverted file implementation will determine
how well theoverall system can satisfy the requirements of adynamic document collection.
During query evaluation, rather than operate on the documents themselves, the retrieval
engine processes the contentsof theinverted file. Asfar astheretrieval engineisconcerned,
the membership of the document collection is defined by theinverted file. A document has
not been truly added to the document collection until the inverted file has been updated to
reflect that addition. The same holds true for document deletions. The question of how
to support a dynamic document collection is in large part a question of how to support a
dynamic inverted file.

In the rest of this chapter we will pursue this question in detail. We begin with a
discussion of the general indexing process—how to build the inverted file in thefirst place.
For large document collections, building an inverted file efficiently is a difficult problem.
We have extended a previoudy described indexing technique to produce a fast, scalable
indexing system. The output of thissystem iscompleteinverted listsfor the input document
collection. These lists are handed to the Inverted File Manager, which is responsible for
the low-level storage and retrieval of the inverted file. The Inverted File Manager is the
core system component that determines the overall functionality available for inverted file
manipulation. We will describe the issues pertinent to building an Inverted File Manager,
the particular solution we have chosen, and our implementation of that solution. This

discussion is followed by an experimental evaluation of our solution. The measurements

35



will focuson indexing whole document coll ectionsfrom scratch and adding new documents
to an existing document collection. These two activities represent the most common and
crucial indexing activities that must be performed by an information retrieval system. This
emphasis stems from the traditiona role of IR systems in managing archival document
collections, which are either static or growing. The experimental results are followed by

conclusions.

3.1 Document Inversion

The process of indexing a document collection and building its inverted file is called
inversion. Initialy, we can easily identify the termsthat appear in agiven document simply
by inspecting the document—the terms are what make up the document. Ultimately, what
we want is the inverse of this, such that given a term, we can identify the documents
that contain that term. Suppose we create atuple (d, t,) to represent each document/term
occurrence pair, where d is adocument identifier, t isaterm identifier, and | isthe location
of the occurrence of term t in document d. An example is given in Figure 3.1. Thereis
atuple for every term occurrence in the document collection. When we scan a document
collection from start to finish, the tuples for the collection will come out in an order sorted
first on d and second on . For aninverted document collection, we want these tuples sorted
first ont, second on d, and third on |I. As such, the inversion process can be viewed as a
large tuple sorting problem, going from the collection sort order to the inverted sort order.

A closer look at the problem, however, shows that a full sort of the collection tuplesis
not actually necessary. A comparison of the collection sort order and the desired inverted
sort order revealsthat the collection sort order is partially in the desired inverted sort order.
In the collection sort order, the tuples are fully sorted on d. In the inverted sort order, all
of the tuples for agiven t are sorted by d. Furthermore, in both the collection sort order
and the inverted sort order, all of the tuples for a given (d,t) pair are sorted by |. This

suggests the following inversion strategy. First, maintain a separate list of tuples for each

36



Tuples

- Inverted
Documents Terms C%I%céuron Order
1. The cat ate the snake 1. the <1,1,1> <1,1,1>
2. The dog chased the cat % g?é :% % gi :% % i‘;
3. The snake chased the dog 4. snake <1,1, 4> <2,1, 4>
5. dog <1, 4, 5> <3, 1, 1>
6. chased <2,1,1> <3,1, 4>
<2,5,2> <1, 2,2>
<2, 6, 3> <2, 2,5>
<2,1, 4> <1, 3, 3>
<2,2,5> <1, 4,5>
<3,1, 1> <3, 4, 2>
<3, 4, 2> <2,5, 2>
<3, 6, 3> <3,5, 5>
<3,1, 4> <2, 6, 3>
<3, 5, 5> <3, 6, 3>

Figure 3.1 Document collection tuples

term in the collection. Then, scan the document collection and process the tuples in their
collection order. As each tuple is processed, append it to the tuple list for the term that
appears in the tuple. The document id order and term occurrence location order will be
preserved automatically in the new term based tuple lists, and the inverted tuple order will
be obtained.

We must consider a number of issues before implementing this inversion strategy.
First, large document collections contain a large number of distinct terms. The 1 GB
TIPSTER [39] document collection used in the experiments below (Tip1) contains 639,914
terms. During the inversion process we need appropriate data structures to keep track of
639,914 distinct term lists. Second, large document collections contain a large number of
term occurrences. The 1 GB TIPSTER document collection contains 112,812,693 term
occurrences, trandating into 112,812,693 tuples. If a four byte integer is used for each
element of atuple, each tuple will occupy 12 bytes and the total memory requirement for

al of the tuples will be 1.3 GB. If the inversion process is run on a workstation equipped

37



with 64 MB of main memory (a likely scenario these days), all of the tuples clearly will
not fit in main memory. It istherefore inevitablethat inverting a large document collection
requires some amount of disk 1/0O. Careful management of this disk 1/O is essential for
efficient inversion of large document collections.

There aretwo basic guidelines regarding disk 1/0 that will govern our implementation.
First, perform as little I/O as possible. Second, when I/O must be performed, favor
sequential 1/0O over random 1/O in an effort to avoid disk head positioning. The first
guideline is somewhat obvious. The second guideline is based on the costs associated
with the different components of a disk access [14]. Thetimeto perform a disk access is
made up of head positioning time, which includes seeking and rotational latency, and data
transfer time. Average head positioning times are currently around 15 milliseconds, and
datatransfer rates are around 5 MB per second. Given therelatively fast datatransfer rates
and dow head positioning times, it is advantageous to amortize the head positioning cost
over larger datatransfers. Sequentia /0O provides this desirable behavior, while random
1/O does not.

With these guidelinesin mind, the following document indexing procedure was imple-
mented for INQUERY. The overall process is a unique combination of the main memory
linked list and multiway merge schemes with compressed temporary files described by Wit-
ten et a. [90], and consists of two main operations. parsing and merging. The subsystem
responsible for parsing is called the Parser. It creates partial inverted lists by scanning,
lexically analyzing, and inverting documents. A partial inverted list contains document en-
triesfor asubset of the documentsin the collection. It must be combined with other partia
inverted lists for the same term to create a final inverted list for the document collection.
The Parser bufferspartial inverted listsin main memory and flushes them to temporary files
when the buffer is full. The subsystem responsible for merging is called the Merger. After
al of the documents have been parsed, the Merger combines the temporary filesto produce

the final inverted lists for the collection.

38



document

token node ™——| location
node
document token node location node
struct doc_token struct |ocation
struct doc_token *left; int position;
struct doc_token *right; struct |ocation *next;
struct location *loc_list; }
int tf;
char tern{];
}

Figure 3.2 Document buffer binary tree

3.11 Parsing

Document indexing begins with parsing. The Parser scans and lexically analyzes each
document, producing a stream of tokens from the documents. The Parser checks each
scanned token against a stop words list (a list of terms too frequent to be worth index-
ing) [33, 34] and discards any tokens that it finds in the list. Tokens that survive the
stop words list are run through a stemmer [36]. Stemming reduces a term to its root
form, mapping different morphologica variants to a common stem. This process con-
flates different representations of the same concept into a single representation, improving
retrieval effectiveness by eliminating mismatches between morphological variants of the
same term. It also compresses the index by reducing the total number of terms that are
indexed. Our indexing implementation uses document scanning, stopping, and stemming
utilities developed by others at the University of Massachusetts [12]. Our contribution to

the implementation is the portion of the system the handles the tokens from this point on.

39



The next step in the parsing process is assembly of the stemmed tokens and their
locations into partia inverted lists for the current document. This occurs gradualy as the
Parser stores the |ocation of each token occurrence in the document buffer. The document
buffer is organized as a binary search tree of token nodes sorted on term strings, depicted
in Figure 3.2. Each token node in the tree contains a count of the number of times the
associated term occurs in the current document and a pointer to a linked list of location
nodes containing the locations of each occurrence of the term. The Parser searches the
binary treefor each scanned token and either finds a token node for the current token in the
tree, or creates and inserts a new token node for the current token. The Parser then creates
alocation node for the current token and adds the location node to the head of the linked
list of locations for the token.

The primary motivation for building partial inverted lists on a per document basisisto
reduce the time spent searching for each token’s partia inverted list asthe tokens are parsed
out of the document. Since the document buffer contains inverted list entries just for the
current document, the number of token nodes in the binary tree will grow only to the size
of the vocabulary used within the current document. Documentsin the 3.2 GB TIPSTER
collection [39] contain an average of 132 unique terms, while the entire collection contains
1,062,677 unique terms. Searching for each parsed token in the binary search tree requires
O(lg(n)) time, where n is the number of nodes in the binary search tree. For the average
document, we will traverse O(lg(132) = 7) binary tree nodes for each parsed token using a
per-document binary search tree. In comparison, if the binary search tree contained a node
for every term in the collection, we would traverse O(Ig(1062677) = 20) binary tree nodes
for each parsed token.

When dl of the tokens have been parsed out of the current document, the document
buffer isflushed to the batch buffer. The batch buffer holds partial inverted listsfor abatch
of documents, where a batch consists of as many documents as can be parsed before the

batch buffer is full. The batch buffer is organized as a hash table of token nodes keyed on

40



batch token
node

— = =
hash "] Y Y Y

table -~

document

+ + \ entry

e
e il

batch token node document entry
struct batch_t oken struct doc_entry
{
struct batch_token *next; int doc_id,
struct doc_entry *doc_ents; int tf;
int coll _freq; int max_tf;
int doc_cnt; int locations[];
i nt data_bytes; }
int first_doc_id;
int last_doc_id;
char terni];
}

Figure 3.3 Batch buffer hash table

term strings, depicted in Figure 3.3. The batch buffer could actually be organized using any
dynamic datastructurethat supports search and insert operations (e.g., abinary search tree).
The choice of a hash table is motivated by incremental indexing requirements, which are
discussed below in Section 3.2.3.3. The hash table sizeisfixed at 8191 slots and collisions
are resolved by chaining together tokens that hash to the same dot. A batch token node
storesadocument count, collection frequency, and byte count for the current partial inverted
list. Italso pointsto alinked list of document entries—the “ data’ of the partial inverted list.
The document count is equal to the number of document entriesin the partia inverted list,

the collection frequency is equal to the total number of term locations stored in the partia

41



inverted list, and the byte count is the total number bytes occupied by al of the document
entriesin the linked list.

The Parser flushes the document buffer to the batch buffer by traversing the document
buffer in a preorder tree walk. At each document token node, the Parser either finds the
corresponding nodein the batch hash table, or creates anew batch token node and insertsit
into the hash table. The Parser then builds a document entry, which contains the document
identifier, term frequency, maximum term frequency for the document, and token locations
list (see Figure 3.3). Document identifiers are assigned from a global document counter,
which is incremented as each document is processed. The term frequency, tf, is obtained
from the document token node. A document’s maximum term frequency, max_tf, is the
maximum of {tfy, tf, tf3, ...}, wheretf; isthe frequency of termi in the document. max_tf
iscalculated on the fly as each tf; is updated during document parsing. The locationslistis
obtained by walking the linked list of location nodes.

The Parser compresses al of the numbers in a document entry using a variable length
byteencoding scheme[73]. Theencoding schemerepresentseach integer inbase 2 usingthe
minimum number of bytes. The 8" bit in each byte serves as atermination flag, indicating
whether or not the last byte for the current integer has been processed. This leaves seven
bits per byte to store the integer, such that the largest integer representable by a sequence
of n bytesis 2™7. In this compression scheme, smaller integers consume less space. We
will achieve better compression, therefore, if we can reduce the magnitude of the integers
to be compressed. A common technique for reducing the magnitude of integers that form
a sequence of nondecreasing numbersis delta encoding [25] (the deltas are called gaps by
Bell et a. [2]). To delta encode a sequence of numbers, the first number is stored as an
absolute value and each subsequent number is stored as the difference between itself and
the previous number.

An inverted list provides two opportunities for delta encoding. The first opportunity

is found in the token locations list within each document entry. The locations list is delta

42



encoded when the linked list of location nodesis traversed to create a document entry. The
second opportunity is found in the sequence of document identifiers across the document
entriesin an inverted list. To delta encode the document identifier in a document entry, we
must keep track of the document identifier in the last document entry that was chained onto
the batch token node’s linked list of document entriesin the batch buffer. Thisinformation
iskept in the batch token node and updated as each document entry is added.

After adocument entry’slocationslist and document identifier have been delta encoded,
the entry is compressed as described above. The compressed document entry is placed in
the batch buffer and chained onto the batch term’slinked list of document entries. The batch
term’s document count, collection frequency, and byte count are then updated to account
for the new document entry. When all of the token nodes in the document buffer have been
processed and added to the batch buffer, the next document in the collection is parsed.

When the batch buffer is full, it is flushed to a temporary file block. To facilitate the
eventual merging of temporary files, the partia inverted lists in each temporary file block
must be written in the same order. The token strings provide a natural key on which to sort
the partial inverted lists and ensure a consistent ordering across temporary files. Since the
batch buffer is organized as a hash table, the batch token nodes are not directly available
in token string order; they must first be sorted by token string. Thisis accomplished using
an array of pointers to the batch token nodes. The pointers are sorted based on the strings
in the token nodes that they reference, and an iteration through the array yields the token
nodes in sorted order.

A batch token node is written to the temporary file block in three steps. First, the token
string is written with a terminating null character. Second, the statistics for the partial
inverted list are compressed and written. The statistics consist of the collection frequency,
document count, byte count, and document identifiersin the first and last document entries
for thepartial invertedlist. Third, the compressed document entriesare writtenin document

identifier order.

43



Thisparsing scheme generatesalarge number of small main memory datastructures(i.e.,
token nodes, location nodes, and document entries). Main memory allocation, therefore,
must be fast. The Parser preallocates main memory for the document and batch buffers
and manages each buffer as a heap. To allocate memory from one of the heaps, the Parser
need only advance a current pointer and perform a limit check to ensure that the heap
has enough room to satisfy the current request. This heap based buffer implementation
provides fast memory allocation and ssimple reclamation of an entire buffer—we merely
reset the current pointer to the beginning of the heap. 1f the document buffer heap cannot
satisfy the current memory request during document parsing, additional main memory is
temporarily allocated to the document buffer, allowing the system to finish parsing the
current document. Similarly, if the batch buffer cannot satisfy the current memory request
during document buffer flushing, additional main memory is temporarily allocated to the
batch buffer so that the system can finish flushing the document buffer, after which the
batch buffer is flushed.

3.1.2 Merging

A temporary file produced by the Parser will contain one or more blocks of partial
inverted lists, where each block corresponds to a batch of documents. The partial inverted
lists within a block are complete inverted lists for the documents indexed during the corre-
sponding batch. To build final inverted lists for the entire document collection, the partia
inverted listsfrom al of the blocks must be merged.

The merge is performed in main memory by allocating an M byte merge buffer and
dividing it evenly among all of the temporary file blocks. If there are N temporary file
blocks, the merge buffer can be filled using N disk reads. Idedly, each disk read will
consist of asingle disk seek followed by a single datatransfer of M/N bytes. This behavior
isencouraged by the Parser, which sequentially writes batchesto their temporary fileblocks.

If the aggregate space occupied by the temporary file blocks is T bytes, the total number



of disk seeks required will be % For example, using a 20 MB merge buffer, 2500 disk
reads are required to merge 50 temporary file blocks that occupy a total of 1 GB on disk.
Assuming ideal conditions—each disk read requires one disk seek and one data transfer—
the 15 millisecond average head positioning time and 5 MB per second data transfer rate
cited above yield 37.5 seconds for disk seeks and 200 seconds for data transfer. Even
though reading the temporary file blocks in this fashion might appear to require significant
random disk 1/0, this example shows that disk seek time can be limited to less than 16% of
thetotal 1/O time.

The merge buffer provides an interface to the temporary file blocks for the Merger. In
therest of thisdiscussion, we will describethe Merger asif it wereinteracting directly with
the temporary file blocks. Bear in mind, however, that the Merger is actually manipulating
the portions of the temporary file blocks that are currently buffered in the main memory
merge buffer.

Oncethe merge buffer has been primed from the temporary file blocks, the actual merge
process can begin. Recall that the Parser sorts a batch of partial inverted lists by token
string before flushing the batch to its temporary file block. This ensures that all of the
blockswill present their partial inverted listsin the same order when the blocks are read by
the Merger. On each iteration of the merge process, the Merger considers all of the partia
inverted lists currently presented for processing by the temporary file blocks and identifies
the partial inverted list with the lexicographically smallest term string. This becomes the
current token. The partia inverted lists presented by all of the other blockswill either have
the same token string as the current token or a larger token string, alowing the Merger to
find al of the partial inverted lists that match the current token ssimply by inspecting the
current partial inverted list in each block.

When all of the matching partial inverted lists have been found, the Merger must
concatenate them such that all of the merged document entries are sorted by document

identifier. The document entries in a given block pertain to the documents parsed during

45



the corresponding batch and are already sorted within each partial inverted list by document
identifier. For any two blocks, all of the document identifiersin the first block will be less
than al of the document identifiersin the second block if the first block was created before
the second block. Therefore, the document identifiers across blocks will be sorted if they
are concatenated in order of block creation time.

Witten et a. [90] point out that the problem of selecting the smallest token from the
set of partia inverted lists currently presented for processing is similar to the problem of
managing a priority queue. A convenient data structure for managing a priority queue
is the binary min-heap [16], which allows quick extraction of the minimum element in a
set. A binary min-heap consists of an array A of n elements numbered 1 through n. Each
element i > 1 in the array satisfies the min-heap property: Alparent(i)] < Ali], where
parent(i) = [i/2]. The min-heap property guarantees that A[1] is the minimum element in
the array, and O(Ign) timeisrequired to arrange A so that it satisfies this property.

The Merger was implemented using a binary min-heap. There is one element in the
min-heap for each temporary file block being merged. Each element correspondsto the next
partial inverted list to be processed from the associated block. The comparison function
used for the min-heap property has two components. The primary component is a string
comparison of the partial inverted list tokens for the two elements being compared. The
secondary component isacomparison of the creation datesfor the associated temporary file
blocks. The current token is readily available from the top element in the min-heap, and
matching tokens from the remaining blocks are found by extracting elements from the heap
until anon-matching token appears at the top of the heap. The secondary component of the
min-heap comparison function causes matching tokens to be extracted from the min-heap
in temporary file block creation order, which is also the concatenation order for the partial
inverted lists.

The Merger builds the final inverted list for the current token by concatenating the

matching partial inverted lists as they are extracted from the min-heap. When al of the

46



matching partia inverted lists have been processed, the final inverted list for the current
token is output. Each block that contributed a partial inverted list for the current token
is advanced to its next partial inverted list and the new elements are inserted into the
min-heap. A new current token is then selected from the min-heap and the merge process
repeats, iterating until all of the partial inverted listsin the temporary file blocks have been
consumed.

As the final inverted lists are produced, they may be written to disk in a sequentia
fashion, adhering to our rule of favoring sequential I/0O over random I/O. Storing the find
inverted lists on disk and making them available for future access is the responsibility of
the Inverted File Manager. The Inverted File Manager has a significant impact on the
functionality and performance of the overal system, and its design and implementation
require careful consideration of a number of important issues. In the next section, these
issues are considered and the Inverted File Manager that was designed and implemented is

described.

3.2 Thelnverted File Manager

The Inverted File Manager is responsible for storing the inverted lists created by the
document inverter and making their contents available during query evaluation. Access to
the inverted lists is provided through a high-level interface that includes operations such
as store a new list, modify an existing list, open a specified list for access, sequentialy
output the document entries from an open list, and close alist. This interface serves to
shield the rest of the system from the low-level inverted file implementation details, and
confines consideration of a number of important issues to just the Inverted File Manager.
In particular, the problem of how to support a dynamic document collection can in large
part be solved within the Inverted File Manager.

To see this more clearly, consider the process of adding new documents to an existing

document collection. The documents being added will contain a combination of old and

a7



new terms. New terms do not appear in the existing document collection and require new
inverted liststo be built and added to the inverted file. Old termsalready haveinverted lists
in the inverted file; these lists must be updated with entries for the new documents. Since
document entrieswithin an inverted list are sorted by document identifier, if new documents
areawaysassignedincreasing document identifiers, the new document’sinverted list entries
can simply be appended to the existing inverted lists. The functionality required to support
an append operation is the ability to grow existing inverted lists. In order to add new
documents, therefore, we must be able to add new inverted liststo an existing inverted file
and grow existing inverted listsalready intheinverted file. Both of these operationsrequire
low-level support from the Inverted File Manager.

The tasks that must be performed by the Inverted File Manager are suggestive of a
traditional data management problem that can be solved using a general data management
facility. In fact, inverted file modification combined with multi-user access to the overall
information retrieval system introduces a host of data management issues that naturally
fall within the purview of a database management system [28]. Besides the issues of
data storage, modification, and access, a multi-user system must contend with issues of
concurrency control, recovery, and transactions that ensure consistent and compl ete actions
against the database.

A logical solution to satisfying this long list of data management requirements is to
implement the Inverted File Manager using a relationa database management system
(RDBMS). An RDBMS provides a number of tools for sophisticated management of
structured data, including a data definition language for describing the schema of the
database, a declarative query language for populating, manipulating, and accessing the
database, a powerful transaction facility for consistent multi-user access to the database,
and a backup and recovery mechanism to protect the database in the event of failures. An
RDBMS can easily satisfy all of the functionality requirements imposed by the Inverted

File Manager, and others have shown how such asystem can actually be built [67, 26].

48



The problem with this approach is that an RDBMS is designed to support record based
data with rich structure and interesting relationships. The relational data types are tailored
to this record orientation and the data access methods are optimized for selecting subsets
of records and attributes and joining multiplerecords based on their relationships. Inverted
lists, on the other hand, have no pre-determined relationships with other inverted lists
and are usually accessed in a sequential fashion. This access characteristic suggests that
inverted lists should be represented as strings of bytes. Although an inverted list can be
decomposed into recordsand attributes, storing it thisway in arelationa database forcesthe
use of expensive join operationsin order to effect sequentia processing of the overall list.
Basically, an RDBMS provides too much—the general data structures and access methods
are wasted when managing an inverted file. Rather than ssmplifying manipulation of the
inverted lists, an RDBMS complicates inverted list operations and imposes unnecessary
overheads.

The limited way in which inverted lists are accessed |eads to consideration of a custom
software implementation for the Inverted File Manager. Thisisthe route most information
retrieval system developers have chosen. Assuming we are willing to build and main-
tain the system, the specific functionality and performance requirements of inverted list
management can be satisfied exactly. Thisis abig assumption. While minimum function-
ality requirements can be met without too much work, satisfying the demands of alarge,
dynamic, multi-user system requires significant effort. Concurrency control and recov-
ery mechanisms must be built. Some form of transaction model must be implemented.
Low-level storage and retrieval mechanisms must be implemented. We essentially end
up duplicating much of the effort that has already gone into building a generic database
system. The custom software solution suffers from high development and maintenance
costs to provide functionality that is preferably obtained el sewhere.

There are other “off-the-shelf” database management systems (besides an RDBMYS)

that are worth considering. To decide what kind of system is most likely to satisfy our

49



100

70
60
50

Cumulative %

K
7
A

20

7o of lists in file
10 |+ % of file size —— .
=" Y%oflistsin query -
0 B sl MNPy I I I
1 10 100 1K 10K 100K 1M

Inverted List Size (bytes)

Figure 3.4 Inverted list size distributions

requirements, we need to consider further the size and access characteristics of the datawe

need to manage.

3.21 Inverted List Characteristics

The size of an inverted list depends on the number of occurrences of the corresponding
term in the document collection. Zipf [94] observed that if the terms in a document
collection are ranked by decreasing number of occurrences (i.e., starting with the term that
occurs most frequently), there is a constant for the collection that is approximately equal to
the product of any given term’s frequency and rank order number. The implication of this
is that most of the terms will occur arelatively small number of times, while afew terms

will occur very many times.

50



Figure 3.4 shows the distribution of inverted list sizes for 2 GB of the TIPSTER
document collection (CD-ROM disks 1 and 2) [39]. The inverted file contains 846,331
compressed inverted lists occupying atotal of 720 MB. For agiven inverted list size, the
figure shows how many records in the inverted file are less than or equal to that size, and
how much those records contribute to the total file size. Aswe might expect, the mgjority
of theinverted lists arerelatively small—approximately 95% of thelistsarelessthan 1 KB.
In fact, better than 50% of the lists are less than 16 bytes. It isalso clear that these small
lists contribute avery small amount to the total file size. Less than 5% of the total file size
isaccounted for by inverted lists smaller than 1 KB. In other words, better than 95% of the
total file size is accounted for by less than 5% of the inverted listsin the file. Thelistsin
this 5% can be quite large, with the largest list in the fileweighing in at 2.5 MB.

If we could assume that inverted list access during query processing was uniformly
distributed over the inverted lists, then supporting this activity (from a data management
perspective) would be smplified, since the majority of the file accesses would be restricted
to a relatively small percentage of the overal file. Unfortunately, this is not the case.
Figure 3.4 aso shows the distribution of sizes for the inverted lists accessed by atypical
query set (produced from TIPSTER Topics 51-100). The mgority of the records accessed
are between 10 KB and 1 MB. This size range represents a small percentage of the total
number of records in the file, but a large percentage of the total file size. Therefore, we
must be prepared to provide efficient access to the mgjority of the raw datain thefile.

We can, however, anticipate one access characteristic during query processing that
works in our favor. It is likely that there will be non-trivial repetition of the terms used
from query to query. This can be expected for two reasons. First, auser of an IR system
may iteratively refine a query to obtain the desired set of documents. As the query is
refined to more precisely represent the user’s information need, terms from earlier queries
will reappear in later queries. Second, IR systems are often used on specialized collections

where every document is related to a particular subject. In this case, there will be terms

51



that are common to alarge number of queries, even across multiple users. The implication
of thisisthat caching inverted lists in main memory should prove beneficial.

In summary, an inverted file will display the following characteristics. Using the
compression techniques described earlier, theinverted file's size will be 30-40% of the size
of the raw document collection. The inverted lists contained within the inverted file will
vary in size from less than 16 bytes to one or more megabytes, although the vast majority
of the inverted lists will be quite small. During query processing, the longer lists will be
favored and inverted list access will benefit from main memory buffering. During document
additions, new inverted listswill be added to theinverted file and existing inverted listswill
grow, with the longer inverted lists experiencing vigorous growth. Inverted list access must
be efficient during query processing and collection modification, and mechanisms must
exist to ensure that multiple users can simultaneously operate on theinverted filein a safe,
consistent manner. Finally, even though inverted lists are actualy built up from smaller
components, at the storage management level they are best viewed as byte strings whose
main operation is sequential scanning.

These requirements point to a data management system that combines a traditional
database transaction facility and low-level storage management subsystem with a ssmple
data model and low overhead. All of these features are found in a persistent object store
(POS). A POS provides low-level storage and retrieval of objects, where an object is an
identifiable unit of data. The services typically found in a POS include object creation,
storage, and retrieval, disk management, buffering, transaction control, and recovery. The
level of understanding possessed by the system about the contents of an object (i.e., an ob-
ject’s semantics) varies across different POS implementations. Usually, this understanding
is limited to viewing objects as containers of bytes and references to other objects. This
view eliminates the overhead associated with a more complex data model and allows the
application to define the appropriate level of object semantics. The flip side of thisis that

the application must provide more functionality. This tradeoff, however, is appropriate

52



for a number of applications. For example, we can construct an object-oriented database
management system using a POS as a foundation and building additional layers on top that
provide a data model, data definition language, declarative query language, and other user
interface applications.

The functionality and performance provided by a POS are ideally matched to the
requirementsof anInverted FileManager. Assuch, wehaveused aPOSto build our Inverted
File Manager. In particular, we have used the Mneme persistent object store [62, 9, §]
developed under the direction of Eliot Moss at the University of Massachusetts. 1n the next

section we consider Mneme in more detail.

3.2.2 TheMneme Persistent Object Store

The Mneme persistent object store was designed to be efficient and extensible. The
basic services provided by Mneme are storage and retrieval of objects, where an object
is a chunk of contiguous bytes that has been assigned a unique identifier. Mneme has no
notion of type or class for objects. The only structure Mneme is aware of is that objects
may contain the identifiers of other objects, resulting in inter-object references.

Objects are grouped into files supported by the operating system. An object’sidentifier
isunique only within the object’sfile. Multiple filesmay be open simultaneously, however,
so object identifiersare mapped to globally uniqueidentifierswhen the objects are accessed.
Thisalows a potentially unlimited number of objectsto be created by allocating a new file
when the previousfile's object identifiers have been exhausted. The number of objects that
may be accessed smultaneoudly is bounded by the number of globally unique identifiers
(currently 228).

Objectsare physicaly grouped into physical segmentswithinafile. A physical segment
is the unit of transfer between disk and main memory and is of arbitrary size. Objects are
also logically grouped into pools, where a pool defines a number of management policies

for the objects contained in the pool, such as how large the physical segments are, how the

53



objects are laid out in a physical segment, how objects are located within a file, and how
objects are created. Note that physical segments are not shared between pools. Pools are
also required to locate for Mneme any identifiers stored in the objects managed by the pool.
This would be necessary, for instance, during garbage collection of the persistent store.
Since the pool provides the interface between Mneme and the contents of an object, object
format is determined by the pool, alowing objectsto be stored in the format required by the
application that uses the objects (modulo any trandlation that may be required for persistent
storage, such as conversion of main memory pointersto object identifiers). Pools provide
the primary extensibility mechanism in Mneme. By implementing new pool routines, the
system can be significantly customized.

The base system provides a number of fundamental mechanisms and tools for build-
ing pool routines, including a suite of standard pool routines for file and auxiliary table
management. Object lookup is facilitated by logical segments, which contain 255 objects
logically grouped together to assist in identification, indexing, and location. A hash tableis
provided that takes an object identifier and efficiently determinesif the object isresident in
main memory. Support for sophisticated buffer management is provided by an extensible
buffering mechanism. Buffers may be defined by supplying a number of standard buffer
operations (e.g., allocate and free) in a system defined format. How these operations are
implemented determinesthe policies used to manage the buffer. A pool attachesto abuffer
in order to make use of the buffer. Mneme then maps the standard buffer operation calls
made by the pool to the specific routines supplied by the attached buffer. Additionally, the
pool is required to provide a number of “call-back” routines, such as a modified segment
save routine, which may be called by a buffer routine.

Mnemeis particularly appropriatefor the task of managing an inverted filefor anumber
of reasons. First, an object storeprovidestheidea level of functionality and semantics. The
datathat must be managed can be naturally decomposed into objects, where each inverted

list isasingle object. More sophisticated mappings of inverted lists to objects can aso be



easly supported with inter-object references, which allow more complex data structures
to be built up. The primary function required is object retrieval, or providing access
to the contents of a given object for higher level processing. Object access includes the
traditional datamanagement tasks of buffering and saving modifications. The processing of
objects, however, is highly stylized and unlikely to be adequately supported within the data
management system. Therefore, semantic knowledge about the contents of an object within
the data management system is not only useless, but actually cumbersome. An object store
that treats objects as containers of uninterpreted bytes and inter-object references provides
just theright level of semantics.

Second, because Mneme is extensible, certain functions can be customized to better
meet the management requirements of an inverted file. As we have seen, the objects in
an inverted file come in a variety of sizes and exhibit unusua access patterns, such that a
single physical storage scheme specifying clustering and physical segment layout will be
inadequate. A better approach will be to identify groups of objects that can benefit from
storage schemes tailored to the physical characteristics and access patterns of each group.
In particular, buffer management policies should be customized for each group.

Finaly, Mnemeistuned for performance and imposes aparticularly low overhead along
the critical path of object access. Memory resident objects are quickly located using the
resident object table, and non-resident objectsarefaulted in withlittle additional processing.
This can be contrasted with page mapping architecturesof other object stores[49, 77] which
have afairly high penalty for accessing anon-resident object. These systems are optimized
for localized processing of alarge number of small objects, where the cost of faulting a
page of objects can be amortized over many access to the objects in the page. This pattern
of access differsfrom that expected in an inverted file, where large objects are accessed for

sequential processing with little temporal locality.

55



3.2.3 TheMneme Solution

Tobuild an Inverted File Manager using M neme, we designed and i mplemented software
for two layers of the system: the application interface layer and the Mneme extensibility
layer. The application interface layer supplies the Inverted File Manager interface to the
rest of the IR system, defines the semantics of the objects that are stored in Mneme,
and trandates the interface requests into Mneme operations. The Mneme extensibility
layer provides hooks for extending and tailoring a number of the Mneme operations to
better satisfy the specific requirements of inverted list management. Rather than address
these layers individually, we will describe our implementation of the core inverted file
management tasks and comment as appropriate on each task’s implicationsfor the different
softwarelayers. The coretasksincludeinverted list storage, inverted list lookup, document

additions, and document del etions.

3.2.3.1 InvertedList Storage

The first step in the implementation process was deciding on how to map inverted lists
to Mneme objects. To make this decision, we considered the basic operation that must be
performed to retrieve an object from disk, namely, adisk read. A read in atypical Unix
file system causes 8 KB to be read from disk. We chose to partition inverted lists into two
groups: those less than or equal to 8 KB, called short lists, and those greater than 8 KB,
called long lists. A short list is less than or equal to the size of an elemental file system
read; it can be obtained in a single file system access. To guarantee that short lists are
in fact retrieved in a single access, the low-level storage organization must align them so
that they do not span file system page boundaries. Moreover, if the desired short list is
less than 8 KB, the file system access will return more than just the desired inverted list.
The implementation should ensure that the extradata retrieved contains useful information,

such as other entire short lists.

56



The size distribution of inverted lists discussed in Section 3.2.1 shows that nearly 99%
of theinverted listsarelessthan or equal to 8 KB and will be short. Theremaining 1% of the
inverted listsarelarger than 8 KB and will belong. Thelong listsaccount for nearly 90% of
thetotal inverted file size. Long lists, therefore, can be quite large and will require storage
and access strategies substantially different from the short lists. In particular, long lists will
be the most expensive lists to process during query evaluation and collection modification.

Consideration of these issues led to the following organization. Short inverted lists are
stored in fixed length objects, ranging in size from 16 bytes to 8 KB by powers of 2 (i.e,,
16, 32, 64, ..., 8K). When a new short list is created, an object of the smallest size large
enough to contain thelistisallocated. A long inverted list isstored asalinked list of 8 KB
objects, requiring [BIQIT(—I objects, where | is the size of the long list in bytes and k is the
size of the header and next pointer in the Mneme object.

The set of distinct object “types’ used in this implementation is rather constrained,
providing an opportunity for performance improvement via custom management of the
objects. To take advantage of this opportunity, we designed and implemented three new
object pools in Mneme. The new object pools constitute the modifications made at the
Mneme extensibility layer. Thefirst object pool, called the small-object pool, stores 16 byte
objectsusing 4 KB physical segments. Each physical segment containsonelogica segment,
or 255 objects. The fixed object size and one-to-one mapping of physical and logical
segments smplifies many of the pool operations, including object creation, object lookup
in the file, and updates to the resident object table when transferring physical segments
to and from the main memory buffer. Simplifying these tasks generally leads to smaller
auxiliary tables and faster operations. The small-object pool will store approximately 50%
of theinverted listsin an inverted file.

The second new object pool, caled the fixed-object pool, stores fixed length objects
ranging in size from 32 bytes to 4 KB by powers of 2. Objects are stored in 8 KB

physical segments, where all of the objectsin a given physical segment are the same size.

57



The number of objects per physical segment varies depending on the size of the objects
resding in the physical segment. For example, a physical segment of 64 byte objects
will contain 128 objects, while a physical segment of 512 byte objects will contain 16
objects. The fixed-object pool affords the same advantages as the small-object pool in
terms of simplifying anumber of the pool operations and improving storage and processing
efficiency. Approximately 49% of the inverted listswill reside in the fixed-object pool.

The third object pool that we built for this application is the page-object pool. This
pool manages page sized objects where al objects in the pool are the same size and each
object is alocated in its own physical segment. The object size is specified when the
page-object pool isinstantiated. Although this size may be arbitrary, typically it will be
some large power of 2. In this case, the object size is specified to be 8 KB. Again, the
fixed object size and one-to-one mapping of objects to physical segments enables a more
efficient implementation of certain pool operations, such as object creation, object lookup,
and physical segment transfer to and from main memory.

The long inverted lists are stored using two separate page-object pools, with one pool
storing the linked list head objects, and the other storing the remaining linked list data
objects. This separation facilitates the delete operation, discussed below. Roughly 1% of
theinverted listsin the inverted file will be stored thisway. However, since al of the lists
stored thisway are long, these two object pools will account for the majority of the space
intheinvertedfile.

This scheme efficiently alocates the large number of short inverted lists in the small
and medium object pools, and provides a scalable storage structure for the long inverted
lists. Physical segment sizes are senditive to the file system transfer size, and multiple
objects are efficiently packed in the physical segments that contain more than one object.
Each object pool can also be attached to its own buffer manager, alowing the buffer size
and management policies to be individually tuned to the requirements of each object pool.

Furthermore, these policies can be adjusted depending on the current task at hand. For

58



example, the amount of buffer space required by the page-object pool during document

indexing is substantialy less than during query evaluation.

3.2.3.2 Inverted List Lookup

Once we have assigned the inverted lists to Mneme objects, we must provide some
mechanism for identifying the object (or, inthe case of along list, thelinked list head object)
that contains the inverted list for a given term. An indexing structure commonly used for
this purpose in database systems is the B+tree [15] (see [45] for additional references, and
deletion pseudo-codel). A B+tree is a balanced search tree with an upper bound search
time of O(log, n) for an n node tree with branching factor b. In adisk based application, the
tree nodes are typically the size of adisk page and the branching factor isrelatively large,
resulting in very short trees. For example, if we have one millionterms and each term entry
in the B+tree requires on average 20 bytes, the height of a B+tree with 8 KB nodes is 3
(counting the leaves as 1). All of the values associated with the keys are stored in the |eaf
nodes, simplifying scanning operations, but forcing all searches to traverse to aleaf node.
With careful buffer management, however, we can keep most of the internal nodes resident
in main memory and limit the number of disk readsto at most one per lookup (to obtain a
leaf node).

The problem with a B+tree is that clustering of key/value pairs within a node is based
on the key sort order. When a leaf node is made resident due to a search on one of its
keys, the chance that we will search for another key in that same node before the node
is flushed from the main memory buffer is no better than random. If instead we cluster
together the key/value pairs most likely to be accessed during query evauation, we will
reducethe number of disk readsrequired during query eval uation and achieve aperformance
improvement. To accomplish this we need a method for identifying the keys most likely to
be accessed and an indexing data structure that will support the clustering. The discussion

in Section 3.2.1 shows that the more frequent terms are favored during query evaluation,

59



hash bucket chains

table
r—=——/=—/=—/= | | e |
| I | I
1 :: | :: > |
g Ex
I | l_ _______________ ——
I I [ ———— — ____1
z N N
| ! =
| =l
' I clustering
° : I
. | i /
//_\’/ : : i— —————————————————— |
| |
| |
8191 ™ —1> - |
| o j_—:
I_ _____ - l_ ________________ ——

Figure 3.5 Inverted file hash table

suggesting that term frequency could be used to guide key clustering. Another, more
pragmatic, approach would be to keep track of query term usage statistics over aperiod of
time and use them to guide the clustering.

Since a B+tree cannot support arbitrary key clustering, if we want to take advantage
of our clustering heuristic, we must find an alternative indexing structure. An indexing
structure commonly used to store terms in an information retrieval system is a hash table.
A hash table can incorporate an external clustering heuristic, making it the data structure of
choice for this application.

We have implemented a Mneme-based hash table for our Inverted File Manager using
the overal structure shown in Figure 3.5. The length of the hash table is fixed at 8191
dots. Each dot occupies 4 bytes, for a total hash table size of just under 32 KB. Rather
than use asingle 32 KB object to store the hash table, four 8 KB page objects areused. The
motivation here is to increase concurrent access to the hash table in the event of updates.

Each dot pointsto alinked list of buckets, which contain the key/value pairs for the keys

60



Value Key
Array Heap

unused

bucket header
I
|
|
A
|
]

Figure 3.6 Hash table bucket

that hash to that dot. Each bucket is allocated in a 256 byte object using the fixed-object
pool described above. A bucket has an array of values (object identifiers) at one end, a
heap of keys (null terminated term strings) at the other, and a header containing a pointer
to the next bucket in the chain, the number of entries in the bucket (N), and the offset of
the key heap (see Figure 3.6). The value array and key heap grow towards each other, such
that the maximum number of entriesin abucket isvariable. The array and heap entries are
paired-up from the inside out, eliminating the need for string heap offsetsin the value array
entries and minimizing the amount of space required by the key/value pairs (compression
techniques excluded). The tradeoff is a more complex bucket search algorithm. To find a
key/value pair in a bucket, we must scan the bucket’s key heap from left to right, count the
number of strings scanned before the key is found, and index into the value array with N
minus count to obtain the corresponding value.

To locate the value for a given key, the hash function is applied to the key to obtain
a dot index into the hash table. The appropriate hash table page object is retrieved and a
chain pointer is obtained from the indexed dot. The chain pointer pointsto the first bucket

objectinthechain, whichisretrieved and searched. If thekey isfound, itsvalueisreturned.

61



Otherwise, the next bucket is obtained and searched. This processis repeated until the key
isfound or there are no more buckets, in which case the key is not in the hash table.

The clustering heuristic is incorporated into the hash table by sorting the keys in each
chainindecreasing order of term frequency. Thiscauseswithinbucket clustering by placing
the most frequent termsin each chain in the head bucket of that chain. We can additionally
cluster acrossbuckets by alocating al of the bucket chain headsin their own set of physical
segments. Furthermore, to ensure that only a single disk read is required in the event that
the desired key is not found in the head bucket, the rest of the bucketsin a given chain are
allocated in the same physical segment.

When the hash tableis opened, the four 8 KB hash table page objects are read into their
own private buffers, ensuring that they will never be swapped out by Mneme. The amount
of buffer space allocated to the bucket objects is controlled by the application and should
vary depending on the task at hand. When creating a new hash table from scratch, we
allocate a small buffer (at least 16 KB, or enough for two physical segments) to the bucket
objects. In this situation, we are sequentially allocating and filling bucket objects, and the
new physica segments that contain these objectsare written to disk as soon asthey arefull.
During query processing, if our clustering heuristic is effective, we allocate a relatively
modest amount of buffer space to the bucket objects. This can be tuned to a particular
guery environment based on observed object reference hit rates. When we are updating an
existing hash table, we alocate as much buffer space as possible (up to the aggregate size
of al of the buckets) to the bucket objects since every new term causes a bucket chain to

be fully traversed during theinitial search for the term.

3.2.3.3 Document Additions

New documents are added to an existing document collection in two steps. During the
first step, completeinverted listsare created for the new document batch. Inthe second step,

the new inverted lists are merged with the existing inverted file. The first step is executed

62



by the document inverter, and can proceed as described in Section 3.1 with no changes. The
second step is carried out entirely within the Inverted File Manager. Asthe Merger outputs
each final inverted list for the new document batch, the Inverted File Manager searches
the existing inverted file for the term associated with the new inverted list. If theterm is
found, an inverted list adready exists for the term and the new inverted list is appended to
the existing inverted list. Otherwise, the term is new to the original document collection
and the new inverted list is ssimply added to the existing inverted file.

The critical functionality here is the ability to grow an existing inverted list during an
append operation. The inverted list storage scheme described above easily supports this
operation. A short inverted list may have unused space at the end of its object and can
grow to fill this space. When the list exceeds the object, a new object of the next larger
size is dlocated, the contents of the old object are copied into the new object, and the old
object isfreed. When a short list exceeds the largest object size (8 KB), it becomesalong
inverted list and is stored asalinked list of 8 KB objects. Long inverted lists are grown by
appending to thetail object inthe linked list and adding a new object to the linked list when
thetail isfull.

The main advantage of this scheme is that the majority of the existing inverted file is
untouched during an update, keeping the update costs more proportional to the size of the
new document batch, rather than the size of the existing document collection. Thisbehavior
is provided by the long inverted list implementation. When along inverted list is updated,
only the head and tail objectsinthelinked list are accessed, |eaving the majority of the data
in the long lists untouched. Since nearly 90% of the dataiin an inverted file is stored in the
long inverted lists, the majority of the inverted file should be untouched during an update.
Note that the head object of along list must be accessed to update the collection frequency
and document count for the term and obtain the object identifier of the linked list tail. If
instead thisinformation is stored in the term hash table, accesses to the head objects can be

eliminated at the expense of alarger term hash table. Increasing the size of the term hash

63



table, however, will cause it to demand more main memory during query evaluation. How
to resol vethistradeoff depends on the frequency of updates versusthefrequency of queries.
The implementation described here is tuned for an environment where query evaluation is
more frequent than document additions, hence a smaller term hash table is favored.

A potentially serious problem crops up during update operations on short inverted
lists. Short inverted lists are stored in objects that share their physical segment with other
objects. A physical segment, therefore, will contain multiple short inverted lists. When a
short inverted list isretrieved for an update, al of the other short inverted lists in the same
physical segment are simultaneously retrieved. It is possible that more than one inverted
list in this physical segment must be updated during the batch update. It is aso possible,
however, that the physical segment will be swapped out of main memory before the other
inverted listshave been updated, causing the same physical segment to beretrieved multiple
times during the same batch update. 1f thisthrashing behavior is extreme, performancewill
suffer.

One way to combat this effect is to allocate a larger main memory buffer so that more
physical segments may be resident smultaneoudly. Thisisabad solution for three reasons.
First, for large inverted files the amount of space occupied by al of the short inverted lists
will still be quite substantial, such that it is impossible to allocate a large enough buffer.
Second, during an update, main memory is also required by the Merger (for its merge
buffer) and the term hash table, making main memory a scarce resource. Third, caching
modified physical segments for extended periods of time will interfere with the amount of
concurrency available in the system.

A better solution to this problem is to apply the short inverted list updates in a more
advantageous order. In particular, al of the short inverted lists that coexist in a physical
segment should be updated ssimultaneously. As currently described, inverted lists are
updated in sorted term string order. This order is determined by the Parser, which writes

partial inverted listsin term string order. Term string order is unrelated to the assignment



of inverted lists to physical segments. Mneme object identifier order, however, is related
to the assignment of objects to physical segments. We have implemented the small-object
and fixed-object poolsin such away that aphysical segment contains objects identified by
a continuous range of the object identifier space. In other words, when the identifiers for
the objects in a physical segment are listed out in the order in which the objects appear
in the physical segment, the identifiers form the sequence {n;, Nz, N, ... | Ny = N + 1}.
Moreover, the physical segments tend to be allocated in the file in such a way that the
identifiers for the objects in a physical segment earlier in the file will be less than the
identifiersfor the objectsin a physical segment later in thefile.

To take advantage of object identifier order during updates, we extended the Parser to
sort partia inverted lists based on existing inverted list object identifiers. Recall that the
partial inverted lists are sorted just before the batch buffer is flushed to a temporary file
block. Rather than sort on term string at this point, the Parser probes the existing inverted
file's term hash table for each of the partial inverted lists in the batch buffer and obtains
object identifiersfor the existing inverted lists. A partial inverted list associated with anew
term (i.e., for which thereis no existing inverted list) is assigned object identifier 0. Note
that the Parser’ s batch buffer has the same organization asthe inverted file' s term hash table
(Figures 3.3 and 3.5). Thisis by design, and is intended to improve locality of the term
hash table probes as we iterate through the batch buffer.

Now the Parser can sort the partial inverted lists by object identifier. So that new
partial inverted lists are added to the inverted file after any existing inverted lists have
been updated, object identifier O is considered to be greater than all other object identifiers
during the sort. Furthermore, to distinguish amongst the new terms, partial inverted lists
that have been assigned object identifier O are sorted secondarily on term string. After the
sort, the partial inverted lists are written to the temporary file block in existing inverted list
object identifier order. When the temporary file blocks are merged, the final inverted lists

produced are presented to the Inverted File Manager in the desired object identifier order.

65



Updates to existing inverted lists are performed with no physical segment thrashing, and
the physical segments are retrieved in a series of scans over the inverted file. Moreover,
we only need to allocate enough buffer space to hold the physical segment currently being
updated. Once the last object in the segment has been updated, that segment will not be

accessed again during the current batch.

3.2.3.4 Document Deletions

Document deletion is dightly more complicated. Deleting a document involves the
deletion of al of the entries for that document in the inverted lists for the terms that appear
in that document. There are three general approaches for accomplishing this. In the first
approach, the deleted document is re-parsed (lexically analyzed, stopped, and stemmed)
to identify the terms contained within the document and allow the affected inverted lists
to be accessed and updated directly. This approach suffers from two problems. First, the
document source must be available. This may not always be the case, especidly if the
inverted file is being updated to reflect the loss or unavailability of the document. Second,
the parse that is performed for deletion must produce the exact same tokens as the parse
that was performed when the document was originally indexed. The parser may have been
upgraded or modified since the document was originally parsed, making an exact match
impossible.

The second approach involves the use of an auxiliary index. For each document, the
index storesalist of the termsthat occur in the document. When a document is deleted, its
list of termsis obtained and used to identify the inverted lists that must be updated. This
eliminates the problems inherent in the first approach, but introduces an additional index
that must be maintained and stored. If each term identifier in the auxiliary index requires 4
bytes of storage, then such an index for the 3.2 GB TIPSTER document coll ection described

below would occupy 541 MB, or 17% of the space occupied by the document collection.

66



This estimate is based on 141,929,665 document entries in the corresponding inverted file.
Of course, compression techniques could substantially reduce this overhead.

In the third approach, all of theinverted listsin the inverted file are scanned and entries
for the deleted document are removed from the inverted lists as they are found. This
solution is more robust than the first approach, imposes no storage overhead, and is more
straightforward than the second approach; for these reasons it is the one that we have
implemented. The scan of the inverted file is driven at the object level and is supported
by Mneme's object scanning facility. This facility allows an object pool to iterate through
its objects in order of object identifier. As we saw earlier, processing objects in object
identifier order resultsin sequentia processing of the inverted file.

Due to the high cost of scanning the inverted lists, individual document deletions are
not immediately applied to the inverted file. Instead, they are buffered up in a document
delete list and eventually applied to the inverted file in a large batch purge. 1n the mean
time, the document delete list is used to filter query processing results. Before the find
document ranking for aquery isreturned to the user, documentsthat appear inthe deletelist
are removed from the answer. Note that management of the document delete list isexternd
to the Inverted File Manager and falls outside the boundaries of our implementation (i.e., it
was implemented by others).

The batch purge begins by scanning the small-object and fixed-object pools, which con-
tain the short inverted lists. To process ashort inverted list, we decompress the existing list
and search for entries that match the documentsin the document delete list. Any matching
entries are deleted from the inverted list and the remaining inverted list is recompressed
into the same object. The newly freed space in the list will appear at the end of the object
and be available for future alocation. If no matching document entries were found, the
decompressed inverted list is discarded and the object is left unmodified. Should all of
the document entries be deleted from an inverted list, the list’s object can be freed and the

corresponding term can be deleted from the term hash table.

67



head object data objects

N

I

Destination Source
Cursor Cursor

Key:

already processed
currently being processed |:|

not yet processed |:|

Figure 3.7 Deletion in along inverted list

Thelonginverted lists are processed next. The page-object pool that containsthelinked
list head objects is scanned, giving us the first object for each long inverted list. A long
inverted list is processed in chunks using two cursors. a source cursor and a destination
cursor, shown in Figure 3.7. A portion of the inverted list (about 8 KB) is read from
the source cursor and decompressed into a work buffer. We scan the work buffer and
remove any entries found for documents listed in the document delete list. When the work
buffer has been processed, it is re-compressed and written to the destination cursor. The
destination cursor followsthe source cursor and will gradually lag farther and farther behind
the source cursor as more document entries are deleted. When the entire inverted list has
been processed, the hole for the deleted document entries will have percolated to the end
of thelist. Any unused objects at the tail of the linked list can be freed.

3.3 Experimental Results

To evaluate our implementation of the Inverted File Manager, we ran a series of exper-

iments to measure bulk indexing speed, incremental update speed, disk space utilization,

68



and the impact of the inverted file construction technique on query processing speed. Be-
low we describe the experimental platform, the test collection used, and the results of our

measurements.

3.3.1 Platform

All of our experiments were run as superuser with logins disabled on an otherwiseidle
DECSystem 3000/600 (Alpha AXP CPU clocked at 175 MHz) running OSF/1V3.0. The
system was configured with 64 MB of main memory, one DEC 1.0 GB RZ26L Winchester
SCSI disk, and one Micropolis 4.3 GB M3243 SCSI disk. The executables were compiled
with the DEC C compiler driver 3.11 using optimization level 2. All of the data files
and executables were stored on the larger local disk, and a 64 MB “chill file” was read
before each parse, merge, or query processing run to purge the operating system file buffers
and guarantee that no inverted file data was cached by the file system across runs. The
effectiveness of the chilling procedure was verified by measuring the number of file inputs
charged to atest program that readsa 1 MB file. The test program was run 10 times, both
with and without chilling between iterations. Without chilling, the number of file inputs
required by each iteration after thefirst is0. With chilling before each iteration, the number
of fileinputs required by every iteration is 133. Since the file system block transfer sizeis
8 KB, 128 fileinputs are required to read the test file data. The remaining 5 fileinputs are
required by thefile system to read directory and file structure data. All times reported were

measured with the GNU time command.

3.3.2 Test Collection

For our experiments we used the 3.2 GB TIPSTER document collection distributed for
the Third Text REtrieval Conference (TREC-3) [40]. The TIPSTER document collectionis
broken down into anumber individual files containing awide variety documents. Table 3.1

gives the size, number of documents, number of term occurrences (Postings), and number

69



Table 3.1 TIPSTER document collection file characteristics

| File || MB [ Documents| Postings | Terms |
ws87 || 1256 46448 | 11404792 | 125035
ws88 || 1044 39904 | 9729119 | 53925
ws89 || 357 12086 | 3247328 | 16739
doe | 1838 226087 | 17240754 | 118444
ziff 2423 75180 | 21247322 | 96213
ap 254.2 84678 | 22386691 | 78330
fra || 1567 15640 | 14455792 | 84781
frb || 103.0 10320 | 9464721 | 44837
ws90 || 69.8 21705 | 6203493 | 19339
w91 || 139.2 42652 | 11853656 | 35432
wg92 | 329 10163 | 2747163 7808
ziff2 || 1755 56920 | 15272205 | 39598
ap2 || 2372 79919 | 20607785 | 46125
fr2 209.2 19860 | 19239417 | 66612
ziff3a | 1924 56398 | 17146002 | 43689
ziff3b || 1523 104623 | 8830722 | 17795
ap3 || 2375 78321 | 20692345 | 42228
patn | 2426 6711 | 19493312 | 76986
gma | 1899 60399 | 14106777 | 34533
gmb || 970 20858 | 7199499 | 14228
| total | 3181.2 [ 1077872 | 272568895 | 1062677 |

of uniquely indexed terms for each file. The term count for a given file is the number of
new terms added by that file to all of the files listed earlier in the table. The files contain
documents from the Wall Street Journal (wg*),! Department of Energy abstracts (doe),
Ziff-Davis Publishing Computer Select disks (ziff*), AP Newswire (ap*), Federal Register
(fr*), U.S. Patents (patn), and the San Jose Mercury News (§m*). This is one of the
first publicly available large scale document collections, and has become a standard test

collection in the information retrieval research community.

1Due to human error, the local version of wsj89 used for these experiments was missing 294 documents
from the origina distribution.

70



Table 3.2 TIPSTER file parsing results

| File || Time(sec) | msec/post | Temp Blocks | Temp Size (MB) |

wsj 87 800 0.070 9 424
ws 88 674 0.069 8 365
wsj 89 227 0.070 3 123
doe 1398 0.081 14 63.3
Zift 1515 0.071 14 70.3
ap 1583 0.071 18 86.1
fra 889 0.061 7 39.1
fr b 587 0.062 5 26.0
ws 90 449 0.072 5 234
ws 91 849 0.072 9 446
ws 92 201 0.073 3 104
Ziff2 1075 0.070 10 50.4
ap2 1491 0.072 16 78.9
fr2 1241 0.064 9 51.8
Ziff3.a 1145 0.067 11 56.3
Ziff3 784 0.089 6 29.9
ap3 1494 0.072 16 795
patn 1214 0.062 6 42.8
gm_a 1069 0.076 11 55.0
§m_b 552 0.077 6 28.1
[ total || 19237 | 0071 | 186 | 9271 |

3.3.3 Bulk Indexing

Thefirst question we areinterested inishow well the overall indexing scheme described
in Section 3.1 works. To answer this question, we measured the elapsed (wall-clock) time
required to index the entire 3.2 GB TIPSTER document collection. Using an 18 MB batch
buffer, the Parser was run separately on each of the TIPSTER files. Note that for the
experiments described in this chapter, INQUERY 's feature recognizers were not used. The
feature recognizers identify city names, company names, foreign country names (i.e., not
the United States), and references to the United States, and increase the time required for

parsing.

71



For each file, Table 3.2 gives the elapsed parsing time in seconds, the number of
temporary file blocks produced, and the aggregate size of the temporary file blocks. The
elapsed parsing time depends on the size of the input document file, so the table also gives
a normalized parsing time in terms of milliseconds per posting. The total elapsed time
required to parse the entire collection was 19237 seconds, or 5 hours 21 minutes. A total of
186 temporary file blocks were produced occupying 927 MB, or 29% of the space required
by the raw document collection. On average, 0.071 millisecondswere required per posting.
The table indicates, however, that parse time per posting fluctuates depending on the size
of the documents being parsed. The Department of Energy abstracts (doe) and some of the
Ziff-Davis publications (ziff3_b) contain relatively short documents and require moretime
per posting. The Federal Register (fr*) and U.S. Patents (patn) contain relatively long
documents and require less time per posting. This discrepancy is caused by the overheads
associated with parsing a single document, e.g., flushing the document buffer to the batch
buffer. Longer documents can amortize this overhead over more postings, resulting in
lower per posting costs.

All of thetemporary file blocks produced by the Parser were then merged by the Merger
using a 20 MB merge buffer. Mneme was allocated 16.4 MB for its buffers, of which
14.3 MB were alocated for the term hash table objects, 2 MB were allocated for Mneme
system (meta) data, and the remaining 126 KB were dlocated for inverted list objects. The
term hash table buffer waslarge enough to keep the entire term hash table memory resident
throughout the merge. This is done to prevent thrashing during hash table insertions—a
hash tableinsert typically requiresaccess to an entire bucket chain. Theinvertedlist objects
requirearelatively small amount of buffer space since the only operation we are performing
hereis creation. Once an object has been created, it can be flushed from main memory.

The Merger required 39 minutes to merge al of the temporary file blocks and store
the new inverted lists. This gives a total time of 6 hours to index the 3.2 GB TIPSTER

document collection, or an overall indexing rate of 530 MB per hour.

72



Bulk Indexing Time versus Collection Size

25000 . . . . . .
20000 Total —— e -
— Parser -+ el
(] P 4/*
S .
L
o 15000 f .
£
|_
©
$ 10000 -
o
<
Ll
5000 .
0 fm,,mﬂ—m—a—avﬂ-ﬂ’?'E'E"B"’Elrﬂﬂﬂ”m”EE‘E”EH?N» - "I”

0 5 10 15 20 25 30 35
Collection Size (x100 MB)

Figure 3.8 Bulk indexing times

The next question of interest is how well this indexing scheme scales. To answer this
guestion, we divided the TIPSTER document collection into 32 batches of approximately
100 MB each.? Thefirst batch containsthefirst 100 MB of wsj 87, the second batch contains
the remaining 25.6 MB of wg 87 and the first 74.4 MB of wg 88, etc. We then indexed 32
different document collections ranging in size from 100 MB to 3.2 GB, where a document
collection of size nx 100 MB consists of batches 1 through n. The elapsed time to index
each of these document collections is plotted in Figure 3.8. The figure suggests that total
indexing time scales linearly with the size of the document collection being indexed. This
isduemainly to the Parser, which dominatesthetotal running time, but maintainsaconstant

time per posting rate (as discussed earlier).

°The last batch is actually only 80.7 MB.

73



Table 3.3 TIPSTER Inverted file object statistics

Object || Number Space Usage (MB) Utiliza
Size (B) Total | Data | Free | Mneme | tion (%)
16 569188 8.7 51| 25 1.112 59.1
32 228940 7.0 44| 22 0.447 62.6
64 104034 6.3 43| 19 0.203 67.6
128 60849 7.4 51| 22 0.119 68.8
256 35795 8.7 61| 26 0.070 69.4
512 21257 | 10.4 73| 3.1 0.042 70.1
1024 13654 | 13.3 94| 39 0.027 70.7
2048 9170 | 179 | 126 | 5.3 0.018 70.4
4096 6536 | 255| 180 | 75 0.013 70.5
8192 102093 | 797.6 | 749.1 | 475 1.005 93.9

| total || 1151516 | 902.9 [ 8214 | 785 3.054| 910 |

If we change the collection size units in Figure 3.8 from bytes to postings and fit
a line to the Total points using a least-squares fit linear regression, the line obtained is
y = 114.63 + 7.58x107°x. The coefficient of determination for the linear regression
relationship is r? = 0.99976, suggesting a very strong linear relationship. The slope of the
line indicates an overall indexing rate of 0.076 msec/posting. This is consistent with the
overall parsing rate of 0.071 msec/posting reported in Table 3.2, with the difference due to
the merge costs included in the Total time.

Space utilization statistics for the final inverted file created for the 3.2 GB TIPSTER
collection are given in Table 3.3. For each object size, the table gives the number of
objects in the file, total space occupied by the objects, amount of inverted list data stored
in the objects, free space in the objects (i.e., currently unused space that may be allocated
in the future), Mneme overhead (object headers and data structures), and effective space
utilization (Datal Total * 100). The smallest objects are poorly utilized, with less than 60%
of their space occupied by inverted list data. However, they account for avery small portion
of the total inverted file size. On the other hand, most of the 8 KB objects are fully utilized

since they are in the middle of along inverted list. The overall object utilization is quite

74



Table 3.4 Indexing variations for 3.2 GB TIPSTER collection

| Variation | A | B | C | D |
Stemming yes no yes yes
Stopping yes yes yes no
Proximity yes yes no no
Parser (sec) 19297 17909 18744 17327
Merger (sec) 1726 2219 1029 1426
Total (sec) 21023 20128 19773 18753
Temp Blocks (MB) 929 1043 541 673
Inv File (MB) 913 1003 513 634
Vocab Size 1062667 | 1229847 | 1062667 | 1062690
Term Hash Thl (MB) 138 16.5 13.8 13.8

high—better than 90%. Mneme system dataand free spaceinthe object fileadd anegligible
9.7 MB to the object space tota, for atota inverted file size of 913 MB. The term hash
table requiresan additional 13.8 MB, such that the overall inverted index requires 927 MB,
or 29% of the space occupied by the original document collection.

Given that the Parser accounts for nearly 90% of the total indexing time, a closer ook
at how the Parser spends that timeisin order. Of the 19237 seconds spent parsing, 18076,
or nearly 94%, are charged to user CPU time. Since the Parser appears to be CPU bound,
it was profiled using the gprof profiler. The resultant profile report indicates that only 16%
of the CPU time is spent assembling and handling inverted lists, i.e., adding entries to the
document buffer, flushing the document buffer to the batch buffer, and flushing the batch
buffer. The rest of the CPU time is spent as follows: 61% is spent scanning and parsing,
14% is spent checking for stop words, 8% is spent updating the document catalog, and 1%
is spent stemming. From this profiling data we conclude that our efforts at improving the
efficiency of inverted list assembly have successfully eliminated the bottlenecks imposed
by that portion of the indexing system. Scanning and parsing are now the most expensive

components of the Parser and have the greatest need for future performance tuning.

75



To provide acomplete picture of the performance of our indexing system, we evaluated
anumber of variationson the original indexing process described above. Each variationwas
run on the 3.2 GB TIPSTER collection. Using an 18 MB batch buffer, the collection was
parsed in 32 batches of approximately 100 MB each. The temporary file blocks produced
were then merged in a single step using a 20 MB merge buffer. Results for the different
variations are shown in Table 3.4. Note that variation A is the original indexing process.

First, the Parser profile suggeststhat ssemming isarelatively insignificant component of
theoverall cost. To verify this, we measured thetimerequiredtoindex the3.2 GB TIPSTER
collection without stemming, shown as variation B in Table 3.4. Compared to the originad
indexing process (variation A), parse time decreased by 7%, mergetime increased by 29%,
and total indexing time decreased by 4%. The measured effect of stemming on parse time
is actually larger than the profile suggests, although the parse time savings obtained by
eliminating stemming is still modest and is offset somewhat by an increase in the time
required to merge.

The increase in merge time is due to a 12% increase in the size of the temporary
file blocks, a 10% increase in the size of the final inverted file, a 16% increase in the
size of the vocabulary (the number of unique terms indexed), and an overall increase in
the string length of the indexed terms. The temporary file blocks and final inverted file
are larger in the absence of stemming because many of the inverted lists in the sstemmed
version are now split into multiple inverted lists for terms that would otherwise stem to
the same term. This increases the average distance between two occurrences of the same
term, eliminating some of the benefits of delta encoding and reducing the effectiveness
of the inverted list compression algorithm. The larger vocabulary and term string length
additionally contribute to the increase in temporary file block size. More importantly, they
increase the size of the term hash table by 19%, which is created and written during the

merge.

76



Next, we explored the cost of storing term occurrence locations (i.e., proximity in-
formation) in the inverted file. In variation C, term occurrence locations were not stored
when indexing the 3.2 GB TIPSTER collection. Compared to variation A, parse timeis
reduced by 2.8%, merge time is reduced by 40%, and total indexing time is reduced by
5.9%, for an overall indexing rate of 580 MB per hour. The temporary file blocks produced
by the Parser occupy atotal of 541 MB, and the final inverted file produced by the Merger
occupies 513 MB, or just 16% of the size of the raw document collection. Compared to the
original indexing process, temporary file block and final inverted file space requirements
are reduced by 42% and 44%, respectively. Viewed another way, storing term occurrence
locationsincreases the size of the final inverted file by 78%.

When term occurrence locations are not stored, littletimeis saved during parsing. This
isexpected given that the savings are confined to inverted list assembly and handling, which
account for only 16% of the CPU time spent in the Parser. Scanning, parsing, stopping,
stemming, and document catal oging are unchanged. The substantial reductionin the size of
the temporary file blocks, however, yields alarge savings at merge time, where the amount
of datathat must be merged is nearly halved. The reduction in total indexing timeis rather
modest since merging accounts for only 10% of the total time. In the indexing system
described here, the extra processing cost of indexing and storing term occurrence locations
isminimal. The most noticeable expense is an increase in the size of the inverted file. We
should note that this comparison was made using aninversion algorithm originally designed
to store term occurrence locations. It islikely that the algorithm could be better tuned for
the case where term occurrence locations are not stored, resulting in a more significant
savingsin parse time.

Finally, the Parser profile suggeststhat stopping isarelatively expensive operation. The
last variation measured, variation D in Table 3.4, does no stopping and does not store term
occurrence locations (but does stemming). Compared to variation C, eliminating stopping

reduces parse time by 8%, increases merge time by 39%, reduces total indexing time by

77



5%, and increases both temporary file block and final inverted file space requirements by
24%. Sincethetermseliminated by stopping are highly frequent, indexing those terms (by
not stopping) increases the size of the temporary file blocks and final inverted file. If we
additionally stored term occurrence locations in this variation, the size increases would be
even more substantial—the number of postings indexed increases by 66% when stopping
is turned off. In spite of the increased file sizes and merge time compared to variation C,
variation D is the fastest variation we measured, with an overall indexing rate of 614 MB

per hour.

3.34 Incremental Update

We evauated the ability of our Inverted File Manager to accommodate document
additions by indexing the 3.2 GB TIPSTER document collection in a series of incremental
updates. In an incremental update, a new batch of documents is added to an existing
document collection and the necessary updates to the inverted file are performed in-place.
We use the term incremental to distinguish this process from the traditional method of
adding new documents, which smply re-indexes the entire document collection from
scratch, building awhole new inverted file.

Using the 100 MB document batches described earlier, we incrementally indexed the
TIPSTER collection by successively adding each document batch. Figure 3.9 shows
the elapsed time required to add each successive batch, where the x-axis enumerates the
100 MB batch updates in the order that they were applied. For example, at batch update
5, we have already indexed 400 MB in the first 4 batches, and are now adding 100 MB of
new documents to the existing 400 MB document collection. The figure shows a rapidly
increasing cost per update when the existing document collectionissmall. However, asthe
existing document collection becomes larger, the cost per update startsto level off. Thisis

an encouraging result, indicating that the overall technique will scale well. The cumulative

78



Elapsed Time per Incremental Update

1800 . . . . . .
1600 - Total —— _
Parser ——— PN _
1400 Merger = oo ~ ]
)
;y)’ 1200 r . i
£ 1000 |
=
S 800 - . |
8 ey I N Q \B A A
< 600 - B TR i
Ll ,E' ¥ - -
400 ]
200 | & |
O . L L 1 1 I
0 5 10 15 20 25 30 35

Incremental Update

Figure 3.9 Incremental update times

elapsed time required to incrementally index the entire 3.2 GB collection in 32 batchesis
just over 12 hours, giving an overall indexing rate of 265 MB per hour.

Consistent with the results reported above for bulk indexing, the parsing rate is es-
sentially constant with minor variations depending on the size of the documents in the
particular batch. In the case of an incremental update, however, we now must access the
term hash table during parsing so that partial inverted lists are written in inverted list object
identifier order. The extra cost of this operation is shown in Figure 3.10, which compares
bulk and incremental parsing costs for a series of collection sizes. The bulk parsing costs
are the same costs reported earlier in Figure 3.8. The incrementa parsing costs are the

cumulative parsing costs accrued when incrementally indexing in 100 MB batches. The

79



Elapsed Parse Time versus Collection Size
22000 . . . . . .

20000 Cum Incremental —— . 7
18000 | Bulk -+ S o
16000 f
14000 f
12000 f
10000 f
8000 r
6000 r
4000 t
2000 r

0 ¢ ' 1 1 1 1 1 1
0 5 10 15 20 25 30 35

Elapsed Time (sec)

Collection Size (x100 MB)

Figure 3.10 Parse time comparison

figure shows that incremental parsing costs are only dightly higher than bulk parsing costs,
and the incremental version scales well with collection size.

Unlike the bulk indexing version, the Merger eventually dominates running time in the
incremental version. The new cost is not actually due to the merge processitself, but rather
the extrawork that must be performed by the Inverted File Manager in the form of reading
existing invertedfiledata. When an existinginverted list isupdated, it must first beretrieved
from the inverted file. Although we have taken pains to make this retrieval sequential and
efficient, the fact remains that a certain portion of the existing inverted file must be read
from disk. Figure 3.11 shows the amount of existing inverted file data read during each
incremental update. When mergetime is plotted versus bytes of existing inverted file read

for each incremental update, we see a strong linear relationship. Figure 3.12 shows each

80



Data Read (MB)

Merge Time (sec)

Existing Inverted File Data Read versus Incremental Update

300 T T T T T T
250 1
200 r 1
150 | 1
100 | 1
50 1
O 1 1 1 1 1
0 5 10 15 20 25 30 35
Incremental Update
Figure 3.11 Inverted file data read per update
Incremental Merge Time versus Inverted File Data Read
1200 T T T T T
Measured 0%
* v o 7
1000 | 85.79 + 3.87 * X e 1
%
/,60,
800 | ad 1
05"
600 | o ]
400 | @(,,f/ 1
200 1
0 1 1 1 1 1
0 50 100 150 200 250 300

Inverted File Data Read (MB)

Figure 3.12 Incremental merge time versus data read

81



of these data points, along with the curve y = 85.79 + 3.87x, obtained via a least-squares
linear regression. The coefficient of determination for the linear regression relationship is
r = 0.9956, suggesting a very strong linear relationship and an incremental merge time
that, for a given batch size, is entirely dependent on the amount of existing inverted file
dataread.

Our inverted file organization allows us to bound the amount of inverted file data that
must be read when updating agiveninverted list. A long inverted lististhe most expensive
list to update, requiring two 8 KB objects to be read from the existing inverted file. All
other lists (i.e., short lists) are less than 8 KB; at most one disk access is required to read
these lists. In practice, less than one disk access is required per short inverted list update
since short lists are clustered in segments and our update algorithm takes advantage of
this clustering. In the worst case, therefore, the total amount of data that must be read is
bounded by a constant times the size of the vocabulary.

Heaps [43] suggests that vocabulary size can be estimated with V = aNP, whereV isthe
size of the vocabulary and N isthe number of term occurrences (postings) in the document
collection. Using least squares fitting, we fit this function to the vocabul ary sizes measured
when indexing the 3.2 GB TIPSTER collection. The constant and exponent obtained from
the fitting are a = 2.693395 and b = 0.664163, giving a sub-linear function. Figure 3.13
shows this function plotted along with the actua vocabulary sizes measured.

The function V = 2.693395N 684163 js |inear when plotted using alog-log scale. If we
take the log of both sides, we get In(V) = In(2.693395) + 0.6641631n(N). Substitutingy for
In(V) and x for In(N), we get the linear functiony = 0.990803 + 0.664163x. Thisis plotted
in Figure 3.14, dong with the logs of the measured vocabulary growth data points (from
Figure 3.13). The coefficient of determination for the linear relationship is r? = 0.9979,
suggesting avery strong linear relationship, and a function that models vocabulary growth

quite well.

82



Vocabulary Size

Vocabulary Size versus Postings Indexed
11e+06 T T T T T

| Measured o s
1e+06 I 5 693395 * (x ** 0.664163) s

900000 | 5 -
800000 | s -
700000 | -
600000 | .
500000 | el -
400000 o -
300000 -
200000 -

100000 g | | | | |
0 5e+07 1le+08 1.5e+08 2e+08 2.5e+08 3e+08

Postings Indexed

Figure 3.13 TIPSTER vocabulary growth

Log of Vocabulary Size versus Log of Postings Indexed

14 T T T T T T
Measured o s
0.990803 + 0.664163 *x o

135 0990 i
o 02
N pod
n @/9/
P s~
© 13 9//9 i
= o
o) P
[3] o
g
> 125 1
© /,6/
(@]
(@) L
|

12 | P ]
115 1 1 1 1 1 1

16 16.5 17 17.5 18 18.5 19 19.5

Log of Postings Indexed

Figure 3.14 Log of TIPSTER vocabulary growth

83



There are some noticeable systematic variations of the measured datafrom the function,
but they are due to the way in which we assembled the document collections that were
used to obtain each of the data points. Since a collection of a given size was created by
indexing the files listed in Table 3.1 from top to bottom, a relatively homogeneous set of
documents (i.e., documents that come from the same file or kind of files) represents the
difference between two data points plotted in Figure 3.13. This set of documents will
have dightly different vocabulary growth characteristics than the rest of the collection,
causing the occasiona systematic variations. |If the different document collections were
assembled by randomly drawing documents from all of the different files, this variation
would disappear.

Since vocabulary growth is sub-linear in terms of the size of the document collection,
the amount of existing inverted file data that must be read during an update grows sub-
linearly with the size of the existing document collection. Therefore, incremental update
merge costs (and total update costs) grow sub-linearly with the size of the existing document
collection. Bounding this cost with vocabulary size is very conservative, however, and we
areworking on a better model for estimating the amount of dataread during an incremental
update.

An inverted file produced by a series of incremental updates will have the exact same
object utilization asif theinverted filehad been builtin asingle bulk indexing operation. The
inverted file produced by the above incremental procedure, therefore, has the same object
characteristicsastheinverted filedescribed in Table 3.3. Theonly possibledifferenceisthe
addition of vacant objects created by inverted list relocationsin the incrementally produced
version. Because we add new objects last in a batch update, however, vacant objects have
high likelihood of being reused immediately, and there is no noticeable impact on the size
of theincrementally produced invertedfile. Infact, theinverted file produced incrementally
above occupies 906 MB of disk space, or 7 MB less than the inverted file produced in a

single bulk indexing operation. This reduction is somewhat misleading—it is caused by an



inefficiency in Mneme'slow-level fileallocation mechanism. Recall that 16 byteobjectsare
allocated in 4 KB physical segments, while all other objects are allocated in 8 KB physical
segments. Mneme aligns the 8 KB physical segments on 8 KB file boundaries, such that a
4 KB hole will be created when an 8 KB physical segment is created immediately after a
4 KB physical segment that wasaligned on an 8 KB boundary. These holes can be allocated
to 4 KB physica segmentsin the future, but it may take a while before the file free space
search algorithm (circular next fit) finds them. When the file is built incrementally, 4 KB
physical segments are created in bursts, reducing the chances for holes to be created.

One fina issue that we must address in evaluating the ability of our Inverted File
Manager to support document additions is the impact of incremental updates on query
processing speed. The danger with our implementation is that the objects that make up
along inverted list will be alocated far apart from each other during the different batch
updates. In contrast, along inverted list created in a single bulk indexing procedure will
haveall of itsobjectsallocated contiguoudy intheinvertedfile. Accessing anincrementaly
builtlonginverted list during query processing will potentially require additional disk seeks,
increasing the time required to process queries.

To determine if this is a factor, we measured the time to process Query Set 1 (see
Section 4.4.3) using both the bulk indexed inverted file and the incrementally built inverted
file. For each version, we ran the query set 6 times and measured the elapsed time for
each run. In both versions, the range between the best and worst times recorded for
the 6 runs was less than 1% of the average for the 6 runs (i.e., there was no noticeable
variation across runs). The average elapsed time for the bulk indexed inverted file was
2741 seconds. The average elapsed time for the incrementally indexed inverted file was
2694 seconds. The incrementally indexed version actually reduces query processing time
by nearly 2%. This pleasant result can be explained by considering the query evauation
strategy employed by INQUERY (discussed in more detail in Chapter 4). Queries are

evaluated document-at-a-time, such that all of the inverted lists for the termsin the query

85



are processed simultaneously. Rather than sequentially process each list one by one, we
cycle through al of the lists for each document in document identifier order. The long
inverted list objects in the incrementally indexed inverted file will be clustered based on
update batch, and a batch corresponds to a range of document identifiersin the document
collection. Therefore, accesstotheinvertedfilewill belocalized for each range of document
identifiers, actually reducing the amount of disk seeking.

There areanumber of alternativesto the technique described here for supporting docu-
ment additions. One aternative was mentioned briefly at the beginning of this subsection,
and is the simple strategy of re-indexing the entire document collection whenever a batch
of new documents must be added. This scheme has two serious problems. First, if the
document collectionisto remainavailablefor query evaluation during the indexing process,
theremust be sufficient disk space to hold two complete versions of theinverted file plusthe
temporary files required by the indexing process. For large existing document collections,
this may be impractical. Second, the cumulative bulk indexing costs will quickly exceed
the cumulative incremental indexing costs, making this alternative much more expensive.

If we can afford to save the temporary file blocks, we can avoid the redundant parsing
of the existing document collection required by the previous scheme. The processing costs
to add a batch of new documents will now be limited to parsing the new batch and merging
the entire collection. Even in this scheme, the cumulative bulk merge costs will eventually
exceed the cumulative merge costs of the incremental version. This is demonstrated in
Figure 3.15, which shows the cumulative merge costs for each scheme when the document
collection is indexed in 100 MB batches. Merge costs in the bulk indexing scheme are
proportional to the size of the existing collection and will continue to grow with each new
batch update. Overall, this modified bulk indexing scheme is a poor solution. It requires
more elapsed time than the incremental solution and wastes significant disk resources.
Moreover, document deletions will make the saved temporary file blocks obsolete and

useless.

86



Cumulative Elapsed Merge Time versus Collection Size
30000 . . . . . .

25000

Incremental —— / 8
Bulk -—+---

20000

15000

10000

5000

Cumulative Elapsed Merge Time (sec)

0 & —"// I I I I I
0 5 10 15 20 25 30 35

Collection Size (x100 MB)

Figure 3.15 Cumulative merge time comparison

Onelast alternativeisto parsejust the new document batch and use the existing inverted
file as input to the merge process, rather than the temporary file blocks used to build the
inverted file. The entire existing inverted file is scanned and a new complete inverted file
iswritten. This scheme is similar to the incremental version. However, the incremental
version performsupdatesin-placeand, aswesaw in Figure 3.11, must read arelatively small
proportion of the existing inverted file. Wewould expect, therefore, that thislast alternative
scheme will have higher merge costs due to its complete scan of the existing inverted file.
Furthermore, this last scheme will certainly have higher storage costs, requiring enough

disk space to hold two complete copies of the inverted file.

87



3.4 Conclusions

The inverted file index is a critical component in an information retrieval system,
determining to alarge extent the performance and functionality available from the system.
A number of issues must be considered in the management of an inverted file, including
efficient inverted file construction, support for inverted file modification, and efficient access
to the contents of an inverted file. We have discussed a number of these issuesin detail and
presented a comprehensive solution to the inverted file management problem.

Our first hypothesis with respect to indexing is that fast, scalable document indexing
can be achieved by localizing sort and insertion operations, building intermediate results
in main memory, minimizing 1/0, and favoring sequential 1/0O over random 1/0O. We have
presented an inversion scheme that adheres to these principles. Documents are processed
using adocument based main memory buffer that |ocalizes theinversion of each document.
The document buffer is then flushed to a main memory batch buffer, delaying the output
of intermediate results to disk as long as possible. Furthermore, the batch buffer stores
compressed data, increasing its effective capacity. When the batch buffer must be flushed,
itiswritten to disk in a sequential fashion.

Thetemporary file blocks written during parsing incur a disk space overhead of approx-
imately 100% of the size of the final inverted file—only 30% to 40% of the size of the raw
document collection. The temporary file blocks are efficiently merged using alarge main
memory merge buffer. The merge process can keep disk seek time down to aslittle as 16%
of the total 1/0 time required to read the temporary file blocks, and the final inverted lists
produced by the merge process can be sequentially written. The overall system was shown
to index documents at a rate of 530 MB per hour on a current, midrange workstation, and
experiments over awide range of collection sizes indicate excellent scalability, all of which
lead us to accept our first indexing hypothesis.

Without implementing alternative algorithms or measuring other systems on the same

platform, it is difficult to compare the indexing system described here with previoudy

88



proposed solutions in terms of speed. Possibly the best indexing speeds reported in the
literature have been obtained by Witten et al. [90], who achieve an overall indexing rate
of 430 MB per CPU hour when indexing the 2 GB TIPSTER collection on a Sun SPARC
10 Model 512 using one processor. In their implementation, Witten et al. do not store
term occurrence locations (proximity information) in their inverted files and do not use a
stop words list. The particular inversion scheme used to obtain these results performs two
passes over the document collection. The first pass gathers statistics for a parameterized
compression agorithm, aminimal perfect hash function for the terms, and the final size of
eachinverted list. Using these statistics, an inverted file skeleton islaid out in main memory
marking the start of each invertedlist. During the second pass over the document collection,
compressed inverted list entries are entered directly into the main memory inverted file at
the appropriate locations, avoiding the use of linked lists or sorting. For large document
collections, thetext is partitioned into chunks. Aninverted file for each chunk isisbuiltin
main memory as before. A skeleton of the final inverted fileislaid out on disk. At the end
of each chunk, the main memory inverted file is flushed to disk, filling in the final inverted
file skeleton at the appropriate locations.

If we do not store term occurrence locations and do not use stopping, our indexing
system requires 5 hours 13 minutes of wall-clock time to index the 3.2 GB TIPSTER
collection on a DECSystem 3000/600 (arate of 614 MB per hour). Of thiswall-clock time,
4 hours 54 minutes is CPU time, for a rate of 654 MB per CPU hour. For a very rough
comparison to Witten et a.’s system, we can project the indexing speed they might obtain
on the machine we used by scaling their reported time based on the difference in machine
performance as measured by the SPEC (Standard Performance Evauation Corporation)
benchmark. The SPECint92 numbers for the DECSystem 3000/600 and Sun SPARC 10
Model 512 (one processor) are 114.1 [81] and 65.2 [80], respectively, suggesting that the
DECSystem is 1.75 times as fast as the Sun. We speculate, therefore, that Witten et al.’s

89



scheme would index at arate of 753 MB per CPU hour on our platform, or 15% faster than
our indexing system.

This comparison suggests that our indexing system still has room for improvement.
Recall that a profile of the Parser showed that most of the time is spent scanning and
parsing. System tuning efforts aimed at scanning and parsing promise to close the gap
between the speed of our system and that of Witten et al.’s. Even if a performance gap
remains, our system offers other advantages. First, as we have already seen, the modular
design of the Parser and Merger allow them to be used “asis’ in a system that supports
dynamic document collections. Second, if multiple processors or machines are available,
the parsing process can be parallelized by partitioning the document collection into sub-
collections and parsing all sub-collections simultaneoudly (followed by a single merge of
all temporary file blocks). Third, we can easily extend our indexing system to handle
a “rea-time” stream of new documents augmented with specific indexing deadlines and
availability constraints (thisis pursued further in Section 5.1.1).

Our second indexing hypothesisisthat document additions can be efficiently supported
by an inverted list data structure that minimizes access to the existing inverted file during
the update. Support for such an inverted list data structure was obtained by using the
Mneme persistent object store as a foundation for our inverted file implementation. The
object data model provided by Mneme alowed us to create an inverted file organization
that met the functionality requirements specified in the hypothesis. By continuing to adhere
to the design principles stated in the first hypothesis, an incremental indexing scheme was
designed and implemented that can add new documents to an existing large document
collection by accessing less than 30% of the existing inverted file and requiring temporary
disk space equal to 30% to 40% of the size of the new document batch. We obtained an
overall indexing rate of 265 MB per hour when indexing a 3.2 GB document collection
in 100 MB batches. While the incremental indexing costs of this scheme are not entirely

independent of the existing document collection, they are significantly better than the

90



aternative schemes considered, and the trends observed in our experiments indicate good
potential for scale. Furthermore, the impact of incremental indexing on query evauation
speed was shown to be negligible. In fact, document-at-a-time style query evaluation can
actually benefit from the inverted file locality created by an incremental indexing scheme.
These results led us to accept our second hypothesis.

Our last indexing hypothesisis that a general, “ off-the-shelf” data management system
can be used to manage an inverted file if the system provides the appropriate data model
and extensibility mechanisms. We conducted an in-depth exploration of the functionality
requirementsof aninverted fileand concluded that apersistent object store could best satisfy
these requirements. A full design and implementation was described, and experimental
results related to indexing were presented to validate the feasibility of the implementation.
Results pertaining to query evaluation are presented in the following chapter. All of these
results combined led us to accept this last hypothesis. While the full potential of this
architecturein termstraditional database functionality (e.g., concurrency control, recovery,
transactions) is yet to be explored, the work described here lays a strong foundation for the

pursuit of a comprehensive information management system.

91



92



CHAPTER 4
QUERY EVALUATION

In this chapter we turn to the second main topic addressed in this dissertation—
improving execution performance during query evaluation. Query evaluation speed has
always been an important factor in the success and acceptance of informationretrieval sys-
tems. If an information retrieval system istoo slow it will be intolerable to use, regardiess
of itsability to identify relevant documents. Recent trendsin the volume and avail ability of
information suggest that system speed will continue to become more important. Commer-
cial document collections aready contain tens of gigabytes of data, and projectsinvolving
digital librariesforecast document collections containing hundredsof gigabytesof data. Re-
call the conflicting system goals depicted in Figure 1.1. As document collections become
larger, document retrieval inevitably becomes more expensive. Moreover, more sophis-
ticated retrieval techniques are necessary to identify relevant documents. Unfortunately,
more sophisticated retrieval typically implies more expensive retrieval, compounding the
problem of providing answers quickly and efficiently.

Resolution of the conflict between these competing system goals can be found through
the use of query optimization techniques. A query optimization can be targeted at reducing
computation, /O, or both, and is generally intended to result in an overall reduction in
running time. A number of query optimization techniques have been proposed for the
Boolean, vector-space, and probabilistic retrieval models. Optimizations for the Boolean
retrieval model focus on identifying an evaluation order that will constrain the result set
as quickly as possible. This is accomplished by considering the collection frequency of

each term and distributing any conjunctive operators such that potential result set sizes are

93



minimized. Optimizationsfor the vector-space and probabilistic retrieval models generaly
focus on identifying term weights that can be eliminated from the final document score
calculation, saving computation and possibly the I/0 that would otherwise be required to
retrieve the term weights. Selection of term weights for elimination is often done in such a
way that guarantees can be made about the quality of the final document ranking.

While anumber of query optimization results have been published for the threeretrieval
models just mentioned, comparatively little has been published on optimizations for a
fourth class of retrieval models, namely statistical ranking retrieval models that support
structured queries. These retrieval models are characterized by a statistical or probabilistic
term weighting function and a query language that provides a variety of query operators
for combining term weights, proximity information, and the results of nested operators.
Although many of the optimization techniques proposed for other retrieval models are
applicable to retrieval models in this fourth class, the extent to which they can be applied
and the effectiveness of their application has not been thoroughly evaluated. Moreover,
few optimization techni ques have been suggested specifically for statistical ranking retrieval
models that support structured queries. We begin to address this situation with the work
presented here. We consider a number of issues related to reducing the cost of evaluating
structured queries in aranking retrieval model and present a new optimization technique
that yields a dramatic reduction in evaluation time with no noticeable impact on retrieva
effectiveness.

Our exploration of structured query optimization techniques uses INQUERY as an
experimental framework. INQUERY supports a rich, structured query language and has
been shown to produce good levels of retrieval effectiveness [39, 40]. Moreover, the
inference network-based retrieval model provides a general framework for representing a
variety of retrieval strategies, suggesting that the results reported within this experimental

framework will have applicability beyond that of just the inference network-based model.

94



We begin with an overview of structured queries, including background information on
the probabilistic retrieval model, its generalization in the inference network-based retrieval
model, and INQUERY’s implementation of this model. We then consider the issues
involved in optimizing structured queries and present our new optimization technique.
Thisisfollowed by implementation details and a performance evaluation of the technique.
Extensions to the basic optimization technique are considered, and its effectiveness on

short, unstructured queriesis explored. Finally, the chapter ends with conclusions.

4.1 Structured Queries

A retrieval model supports structured queries if its query language provides a variety
of operators that can be nested to create a query tree!. This definition includes the Boolean
retrieval model, but excludes the vector-space model, which supports flat queries only. We
further restrict the retrieval models of interest by requiring support for statistical ranking.
This last restriction eliminates the ssimple Boolean retrieval model from consideration.

The best example of a statistical ranking model that supports structured queries is
the inference network-based retrieval model as implemented by INQUERY. The inference

network-based retrieval model is rooted in the probabilistic retrieval model.

411 Probabilistic Retrieval

Maron and Kuhns [56] first suggested the probabilistic retrieval model in 1960. The
basicideaisto rank thedocumentsin acollection based ontheir probability of being relevant
to the current information need. Thisisexpressed as P(relevant | d), or the probability that
the information need is met given document d. A user’s information need is something

internal to the user and cannot be expressed exactly to the system, so this probability must

n fact, the query can form a DAG, although a tree structure can be obtained by duplicating nodes or
subtrees as necessary.

95



be estimated using the terms supplied by the user in aquery. The estimation is simplified

using aversion of Bayes theorem to rewrite the probability as

P(d | relevant)P(relevant)
P(d)

P(relevant | d) =

Document d can be represented as a binary vector X = (Xg, Xz, ..., %), Wherex = 1if termi
appears in document d, x; = 0 otherwise, and the terms are (typically) limited to those that
appear in the query. Now the estimation task amounts to estimating the probability of the
terms appearing in a relevant document, P(x | relevant), and the a priori probability of a
document, P(x). P(relevant) will be constant for a given query and so may be ignored.
Robertson and Sparck Jones [ 71] revised the probabilistic model into its current form.
They observed that a document should be retrieved if its probability of being relevant is
greater than its probability of being not relevant, P(relevant | d) > P(not relevant | d). For

the purposes of ranking the documentsin acollection, this can be restated as a cost function

P(x | relevant) N P(relevant)
P(x | not relevant) P(not relevant)

9(x) = log

where document d is expressed as the binary vector x, Bayes theorem has been used, and
the logs have been introduced to linearize the function.

If we assume that terms appear independently in the relevant documents, we can rewrite
P(x | relevant) as P(x; | relevant)P(x, | relevant) - - - P(x, | relevant), and similarly for the

not relevant case. Let p; = P(x =1 | relevant) and g = P(x = 1| not relevant), then
P(x | relevant) = T pr(1 — pi)—
i
and
P(x | not relevant) = J] g (1 — q )
i
Our cost function can now be rewritten as

B of P(relevant)
9(x) = (ZX' |Og (1 _ |) ) <Z|: |Og qi) " P(not relevant)

96



The last two terms will be constant for a given query (since x; does not appear in them),
so we are left with the first term as our ranking function. This is known as the binary
independence model.

We are till faced with the problem of estimating p; and g. The solution is to use
some other technique to return an initial set of documents to the user and obtain feedback
about the relevant and non-relevant documents in the set. The distribution of query terms
in the relevant and non-relevant documents in this sample is then used to estimate p; and
i, and the query is re-evaluated probabilistically. Croft and Harper [22] showed how the
probabilistic model could also be used for the initial search. They assume that p; is the
same for al terms and g; can be estimated with n;/N, where n; is the number of documents
in which term i occurs and N is the number of documents in the collection. The ranking

function now becomes
N—-n
n;

9(x) =C2ij>q +Zij>qlog (4.1)
Thisisreferred to as the combination match, which applies the constant factor C timesthe
number of matches between the terms in the query and the terms in the document, plus
what is essentially the inverse document frequency of each query term that appearsin the
document.

Equation 4.1 assumesthat atermiseither fully assigned to adocument, or not at all. The
mere appearance of aterm in adocument, however, does not necessarily mean that the term
isindicative of the contents of the document. Rather than make such extreme judgments,
we would prefer to use a finer granularity when expressing the degree to which a term
should be assigned to adocument. Thiswas accomplished by Croft [19, 20] who expressed
this degree as the probability of a term being assigned to a document, P(x; = 1 | d), such

that documents should now be ranked by the expected value of Equation 4.1, or

909 =3 [Ps =1 ] @)(C+log ™ )]

n;

P(x = 1 | d) is then estimated using the normalized within document frequency of the

term, ntf,y = tf; //max_tfy, where tf,4 is the number of occurrences of termi in document d,

97



and max_tf, isthe maximum of {tfy,tf,,...}. Toincrease the significance of even asingle
occurrence of aterm in a document, a constant K in therange 0 to 1 is applied to yield the

final probabilistic ranking function

9 =3 [(K +(1— K)ntf,) (c +log " )] (4.2)

n;
4.1.2 Inference Network-based Retrieval

The Bayesian inference network model generalizes the probabilistic retrieval model by
treating retrieval asan evidential reasoning processwheredocumentsareused asevidenceto
estimatethe probability that auser’sinformation need ismet. Aninferencenetwork consists
of nodes and directed edges between the nodes forming a directed acyclic graph (DAG).
The nodes represent binary valued (i.e., true or false) propositional variables or constants
and the edges represent dependencies between the nodes. If the proposition represented by
agiven node p impliesthe proposition represented by node g, then adirected edgeis drawn
from p to g. Node g will also contain alink matrix that specifies the probability of g given
p, P(q | p), for al possiblevaluesof pand g. Since p and g may each be either true or false,
this link matrix will contain four entries. If g has multiple parents (m), the link matrix
will specify the conditional probability of g on the set of parents, P(q | 7). Typicaly the
network is large such that storing the entire link matrix for a node isimpractical. 1nstead,
thelink matrix isrepresented in acanonical form and we store only theinformation required
to compute each matrix entry from the canonical form.

If the probabilities of the root nodesin the network are known, Bayesian inferencerules
can be used to condition these probabilities over the rest of the network and compute a
probability, or belief, for each of the remaining nodesinthenetwork. Moreover, if our belief
in any given proposition should change, its probability can be adjusted and the network can
be used to update the probabilities at the rest of the nodes.

The application of Baysien inference networks to information retrieval was advanced

by Turtle and Croft [86, 88, 87]. The inference network used for information retrieval is

98



document
network

query
network

Figure 4.1 Inference network for information retrieval

divided into two parts, adocument network and aquery network, shownin Figure4.1. The
document network consists of document nodes (d;’s), text representation nodes (t;’s), and
concept representation nodes (r;’s). A document node represents the event that a document
has been observed at an abstract level, while atext node represents the event that the actual
physical content of a document has been observed. This distinction is made to support
complex documents which may have multiple physical representations (e.g., multimedia
documentswithtext and video), and sharing of the same physical text by multiple documents
(e.g., if two documents are merely different published forms of the same text). In the first
case, a document node will have multiple children text nodes, while in the second case, a

text node will have multiple parent document nodes. Typically, each document has only

99



one text representation and the text representations are not shared by multiple documents,
such that the document network may be smplified by eliminating the text nodes.

A concept representation node represents the event that a document concept has been
observed. Document concepts are the basic concepts identified in the document collection.
Commonly these are the terms in the document collection, but they may also be more se-
mantically meaningful concepts extracted from the text by sophisticated indexing methods.
The conditional probability P(r; | d;) stored in aconcept representation node quantifies our
estimate of the degree to which the concept should be assigned to the document, as well
as the ability of the concept to describe the information content of the document. This
estimate can be borrowed from the probabilistic retrieval model, using Equation 4.2 as the
foundation of the estimate.

The query network consists of query concept nodes (¢;'s), query nodes (g’s), and a
singleinformation need node (1). Node| representsthe event that auser’sinformation need
has been met. Query nodes are a representationa convenience that allow the information
need to be expressed in multiple query forms. They represent the events that particular
query forms have been satisfied, and could be eliminated by using more complicated
conditional probabilitiesat nodel. Query concepts are the basi ¢ concepts used to represent
the information need. A query concept node describes the mapping between the concepts
used in the document representation and the concepts used in the query representation, and
will have one or more document concept representation nodes for parents. In the common
case, each query concept node will have a single parent.

The document network is constructed once at indexing time. The links between the
nodes and the link matrices stored within the nodes never change. The query network
is constructed when the query is parsed. The link matrix stored in a query node will be
based on the query operator represented by the node. Such operators might include the
boolean operators, simple sums, or welghted sums where certain query concepts have been

identified as being more significant and consequently given more weight. The link matrix

100



in the information need node will describe how to combine the results from the different
guery representations. Unlike the document network, the conditional probabilities in the
guery network may be updated given additional information from the user, as might occur
during relevance feedback.

The inference network is used by attaching the roots of the query network to the leaves
of the document network. To produce a score for document d;, we assert d; = true and
dq = false for al k # j, and condition the probabilities through the network to obtain
P(l | d;). If adocument provides no support for aconcept (i.e., it doesn’t contain that term),
a default belief is assigned to that concept node when conditioning over the network. A
score is computed in this way for al documents in the collection, which are then ranked
based on their scores. In practice, we need only compute scores for documents which
contain at least one of the query concepts. Asthe query is evaluated, a default document
score is computed which is then assigned to all documents that contain none of the query

terms.

413 INQUERY

In INQUERY, a user’s information need is satisfied by expressing that need as a query
and evaluating the query against a collection of documents. Evauating the query for a
given document produces an estimate of the probability of that document satisfying the
information need, expressed as a final belief score. After all of the documents in the
collection have been evaluated, they are ranked based on their final belief scores. A ranked
document list is then returned to the user.

A query consists of indexed concepts, belief operators, and proximity operators. These
elements are combined in atree structure with indexed concepts at the |leaves and operators
at theinternal nodes. Anexamplequery isshowninFigure4.2, where operatorsare prefixed
with a hash mark (#). An indexed concept is a term or other special object identified at

indexing time. A proximity operator produces constructed concepts by combining indexed

101



: final belief score

belief _..-- ... belief

" belief
proximity ¢~ \,\proximity

information

Figure 4.2 Example query in internal treeform

concepts and other constructed concepts at query processing time.2 Concepts contribute
belief values for every document in which they appear. Belief operators describe how to
combine these belief values to produce the final belief score.

Belief operators operate on belief values and return belief values. The belief operators
include and, or, not, sum, weighted sum, and maximum. The first three are probabilistic
implementations of the traditional boolean operators. The next two return the average and
weighted average, respectively, of their children’s belief values. The last operator returns
the maximum of the belief values from its children.

Proximity operatorsoperate on proximity listsand return either anew proximity list or a
belief value. A proximity list contains the locations where its associated concept occursin
agiven document. For example, in Figure 4.2 the proximity list for the term “information”
in document j would contain the locations of each occurrence of “information” in document
J. When the #phrase operator combines that proximity list with the proximity list for the
term “retrieval” in document j, anew proximity list for the phrase“informationretrieval” is

constructed that contains the locations where “information retrieval” appears in document

2This definition of concept is a slight departure from the formal definition in the inference network [88].
The distinction between indexed and constructed conceptsis emphasi zed here to facilitate discussion from an
implementation perspective.

102



J. This may be returned to a parent proximity operator, or a belief value may be computed
from the proximity list and returned to a parent belief operator.

The proximity operators include phrase, ordered distance n, unordered window n,
synonym, and passage sum. The ordered distance n operator identifies documents that
contain all of the operator’s child concepts {c; ... ¢k} with the constraint that the concepts
must appear in order and be spaced such that the distance between ¢; and ¢i.1 isless than
or equal to n. The unordered window n operator is sSimilar except that al of the child
concepts must appear within a window of size n and they may appear in any order. The
phrase operator is initially evaluated as an ordered distance n with n = 3. However,
depending on the quality of the resultant phrase, the operator may ultimately be evaluated
asan ordered distance n with n = 3, asum, or amaximum of these two.

The synonym function combines two or more proximity lists into a single proximity
list by taking the union of the locations for each document in the lists. The new proximity
list represents a constructed concept that occurs anywhere any of the child concepts occur.

Thelast function, passage sum, calculates abelief for adocument asfollows. First, the
document isdivided intofixed size overlapping passages, wherethelast half of each passage
overlaps the first half of the subsequent passage. Next, a belief score for each passage is
calculated based on the number of occurrences of each of the child concepts within the
passage and any wei ghts associated with the child concepts. Finally, the maximum passage
belief is returned as the belief for the document. Proximity lists are required from the
children to determine concept occurrences within each passage, and abelief list isreturned
from the passage operator itself.

The belief value contributed by a concept for a given document is calculated using
a probabilistic version of the tf - idf score. The tf weight is directly proportiona to the
within document frequency of the concept, such that the more times the concept appearsin
the document, the greater the belief value. The idf weight isinversely proportional to the

concept’s document count (the number documents in which the concept appears), such that

103



the greater the document count, the smaller the belief value. Specifically, the belief value

for concept i in document j is calculated with the following formula:
belief;; = C + (1 — C) ntfj; nidf; (4.3)

where

ntf; = KH + (1 — K) ( log(tf; + 0.5) )

log(max_tf; + 1.0)
- _ 10g((N +0.5)/n;)
nidti = log(N + 1.0)

ntfi  isthe normalized within document frequency
nidf;  isthe normalized inverse document frequency
tfij  isthe within document frequency
max_tf; isthe maximum of {tfy, tfy,...}
N isthe# documentsin the collection
n;, isthe# documentsin which concept i appears

The constants C and K both default to 0.4 in INQUERY, although they may be specified
by the user. C is the default belief value returned for documents that do not contain the
given concept. K acts to increase the significance of even a single occurrence of a concept
in adocument. H is used to reduce the influence of document length for long documents.
If max_tf; is greater than 200, then H is set to 200/max_tf;. Otherwise, H is set to 1.0.
Additionally, if tf; is equal to max_tfj, then ntf;; is set to 1.0. Note that a belief value will
aways be between 0 and 1.0 inclusive.

The document counts, within document frequencies, and proximity lists for indexed
conceptsare extracted and stored in an inverted filewhen the document collectionisindexed
(see Chapter 3). Aninverted file consists of a record, or inverted list, for every indexed
concept that appears in the document collection. A concept’s inverted list contains its
document count and an entry for every document in which that concept appears, identifying
the document and giving the within document frequency and proximity list of the concept
within the document.

To facilitate locating information about a particular document in an inverted list, the

document entries are stored in document id order. This naturally leads to the following

104



guery processing strategy. First, each node in the query tree is initialized with the next
document id (NID) to be processed at that node. For indexed concept (leaf) nodes, thisis
simply theid of thefirst document that appearsintheinverted list for that concept. Operator
(internal) nodes are classified as either union or intersection style operators. Union style
operatorscalculate aresult for the current document if at least one of itschildren contributes
a result for that document (e.g., weighted sum). Intersection style operators calculate a
result for the current document only if all of itschildren contributearesult for that document
(e.g., ordered distance n). A union style operator is initialized with the minimum of its
children’s NIDs, while an intersection style operator isinitialized with the maximum of its
children’sNIDs.

Processing is performed document-at-a-time with the current document to process de-
termined by the NID at the query tree root. The query tree is evaluated in a depth-first
fashion for the current document. When a node representing a concept is encountered, a
belief value for the current document is computed using Equation 4.3. The belief values
flow from the leaves to the root, being combined according to the belief operators along the
way. In addition, as each node is evaluated the node’'s NID is updated appropriately from
its children. When the root node returns the final belief score for the current document,
itissaved in alist for later ranking. This process repeats until the NID at the root node
indicates that all documents have been processed. The list of final belief scores can then
be sorted and the ranked listing returned. Note that the only documents eval uated are those
that appear in the inverted lists for the indexed conceptsin the query. All other documents
receive a default final belief score.

It turns out that an extra query processing step isrequired. In order to calculate a belief
value for a constructed concept (e.g., a phrase), we need the concept’s idf weight. The idf
weight depends on the number of documentsin which the concept occurs. Thisisunknown
until the constructed concept has been evaluated for all of the documents. Therefore, a

preprocessing step is needed to fully evaluate the constructed concepts and determine their

105



idf weights. The results of this preprocessing step are saved in temporary inverted lists,
allowing proximity lists and belief values to be obtained immediately from constructed

concepts during the final query evaluation phase.

4.2 Structured Query Optimization

Optimization techniquesfor informationretrieval systemsthat support statistical ranking
may be classified as either safe or unsafe. Safe techniques have no impact on retrieval
effectiveness, while unsafe techniquesmay traderetrieval effectivenessfor execution speed.

We consider anumber of safe optimizationsand introduce anew unsafe optimization bel ow.

421 Safe

The first safe technique is intended to improve execution performance by eliminating
unnecessary 1/0. Inthetraditional inverted list organization, aninverted list document entry
storesitsterm weight and proximity list together. We saw in the last section, however, that
proximity lists are not required when processing a belief operator. The traditional inverted
list organization results in unnecessary 1/0O when processing a belief operator. To remedy
this situation, we can use an inverted list organization that separates term weights from
proximity lists and allows selective access to one or the other. If belief operators no longer
need to read proximity lists from disk, they will be less expensive to process and execution
performance will improve.

The next safe technique can generaly be caled an intersection optimization, and is
borrowed from the Boolean retrieval model. In that model, a query consisting of a con-
junction of terms can be evaluated in thefollowing fashion. First, a candidate document set
is created consisting of the set of documents in which one of the terms appears. Then, for
each of the remaining terms, the set of documentsin which that term appearsisintersected
with the set of candidate documents. After all terms have been processed, the candidate

document set will consist of the documentswhich satisfy the conjunction. This process can

106



be improved by starting with the term that appears in the smallest number of documents
and processing the remaining terms in increasing order of document frequency. At each
intersection, it isonly necessary to check if the current term appearsin the documentsin the
candidate set, since the candidate set can only shrink or stay the same. Therefore, savings
can berealized if we can access just the portions of the inverted list for the current term that
might contain an entry for a candidate document. Furthermore, if the candidate set should
become empty, processing can stop immediately.

Unfortunately, the conjunction operation in the probabilistic retrieval model is not a
strict intersection, so this optimization is not applicable to the and operator. However, the
proximity operations described above are strict intersectionsin the sense that every termin
a proximity must appear in adocument (and satisfy any ordering and window constraints)
in order for the document to satisfy the proximity. Therefore, the exact same technique
can be used to improve execution performance for proximity operations. This technique
requires the ability to access just that portion of an inverted list that might contain an entry
for agiven document, i.e., selective access to the contents of an inverted list.

The final safe technique for improving execution performanceisinverted list compres-
sion. Assume that we have u bytes of datathat can be compressed down to z bytes, z < u.
If the cost of decompressing z bytes of datais|essthan the cost of reading u — zbytes from
disk, then execution performancewill improve. Note also that if the cost of decompressing
z bytes exceeds the cost of reading the u — z extra bytes in an uncompressed inverted list,
then execution performance will deteriorate.

Compression techniquesfor inverted listshave received afair amount of attentioninthe
literature[90, 57, 51, 2, 6, 95]. We do not claim anything novel with respect to compression.
Rather, for completenesswe merely describe how it fitsinto an overall optimization strategy
and give anecessary condition for providing benefit with respect to execution performance.
Note that compression clearly has other desirable side effects, e.g. reduced disk space

requirements, whose benefits may outweigh any additional execution costs.

107



422 Unsafe

While the previous techniques will always guarantee a correct answer to a query, they
generaly depend on the particular operators used in the query. We now introduce a more
genera technique that attacks the evaluation costs inherent in any structured query [7].
There are two factors that determine the cost of query evaluation. First, there is the
complexity of the query. The discussion in Section 4.1.3 suggests that queries may be quite
complex. The more complex the query, the more processing required for each document
in order to evaluate the document’s final belief score. The second factor is the size of the
set of documents that must be evaluated, or the candidate document set. This set may be
quitelarge. Moffat and Zobel [58] found that for queries containing around 40 terms, using
the terms’ inverted lists to populate the candidate document set caused nearly 75% of the
documents in the collection to be placed in the candidate document set. Thisis consistent
with our results reported below, where our unoptimized candidate document set typically
contained over half of the documents in the collection.

Given the relatively small number of top documents a user might actually review in an
interactive system, such alarge candidate document set seems exorbitant. 1f our document
collection contains one million documents, the system may have to evaluate over five
hundred thousand documents, while the user will rarely consider more than the top one
thousand documents. Therefore, the goal of our optimization technique is to constrain the
set of candidate documents. If we can reduce the size of the candidate document set, we
will reduce the number of per document evauations of the query tree, reducing overall
guery processing time. Moreover, if we are no longer processing every document that
appears in the inverted lists, we may be able to skip portions of inverted lists [60]. If
the skipped portions are large enough and our inverted list implementation provides the
necessary functionality, the overall number of disk I/Os might be reduced.

To constrain the set of candidate documents, we want to add just those documents that

have a strong chance of satisfying the user’sinformation need. Without actually evaluating

108



the query, the best we can do to estimate this chance for a given document is to consider
the belief contributions from the indexed conceptsin the query. Recall that the belief value
for concept i in document j isa product of theidf weight for concept i and the tf weight for
concept i in document j. This leads to the following two observations and corresponding

rules:

1. Due to their large idf weights, rarely occurring concepts are likely to make large
contributions to a document’s final belief score. Therefore, they will identify highly
ranked candidate documents. For aconcept whoseidf weight exceedssomethreshold,
add to the candidate document set all documents that contain the concept (i.e., all

documents that appear in the concept’s inverted list).

2. More frequently occurring concepts may still contribute significant belief values for
the documents in which they appear frequently (i.e., have alarge tf weight). For a
concept that does not exceed theidf weight threshold, add to the candidate document

set the documents associated with the concept’s top n tf weights.

An indexed concept’sidf weight isinversely proportional to the length of its inverted
list. Rather than establish an idf weight threshold for candidate set population, we use an
inverted list length threshold. Aninverted list isshort if it can be obtained in asingle disk
read, otherwiseitislong. From our first rule, al of the documentsthat appear in ashort list
will be used to populate the candidate document set. The cost associated with this activity
isasingledisk read per short inverted list. Since onedisk read isrequired anyway to access
an inverted list for later processing, populating the candidate document set with a short list
will incur no extral/O costs.

From our second rule, we need to obtain the documents associated with the top n tf
weights in the long inverted lists. This suggests that the inverted lists should be sorted by
tf weight. However, query evaluation is document driven and requires that the inverted

lists be sorted by document identifier. Instead, if nisdefined to be relatively small, we can

109



maintain a separate list of the documents associated with the top n tf weights for each long
inverted list. Zipf’'s Law [94] suggests that there will be relatively few long inverted lists,
but they will consume the mgjority of the space in the inverted file. If each top document
list is constrained to be smaller than a disk page, then the overhead associated with the top
document lists will be a small percentage of the total space occupied by the long inverted
lists. Furthermore, obtaining the top document list for along inverted list will require a
single disk read.

Using our two rules, the candidate document set is created in a fina preprocessing
pass over the query tree, after the constructed concepts have been built. When an indexed
concept with a short list is encountered, all of the documents in that list are added to the
candidate set. When an indexed concept with a long list is encountered, the documents
with the top n tf weights from that list are added to the candidate set. When a constructed
concept built by a proximity operator is encountered (e.g., aphrase), it could be handled in
the sameway asan indexed concept. However, for smplicity inthe current implementation,
constructed concepts are treated like short lists and al of the documents in a constructed
concept’sinverted list are added to the candidate set.

One specia case isthe not operator. In this case, we ignore the subtree below the not
altogether. The not operator returns 1 — belief., where belief. is the belief value returned
by c, the child of the not operator (i.e., the negated concept). belief, will be greater than
or equal to the default belief value at ¢, such that the largest possible belief value returned
by the not operator will be for documents that do not contain the negated concept. In other
words, documents identified by inverted lists in the subtree below the not can only have
their final belief scoresreduced by thenot. Therefore, it issufficient to ignorethe not when
establishing the candidate set and smply evaluate the not on the candidate set established
from the rest of the query tree.

The final candidate document set is used to drive the document evaluation process.

Rather than choose the current document to evaluate based on the NID at the root of the

110



query tree, we simply evaluate each of the documentsin the candidate set. Otherwise, query
evaluation proceeds as described in Section 4.1.3. Each document in the candidate set is
fully evaluated and receives an accurate final belief score. Thefinal relative ranking of the
documents in the candidate set will be the same as if no optimization had been used. The
only difference will be that documentsthat were not added to the candidate set will receive
the default document score and may appear lower in the final ranking than they would have

had they been evaluated.

4.3 Implementation

The optimization techniques described above place certain functionality requirements
on theinverted file implementation. The safe optimizations require separation and isolated
access of proximity and belief information and the ability to skip portionsof aninverted list
when reading the list from disk. The new unsafe optimization requires storage of the top
document listsfor thelong inverted lists and the ability to distinguish between the different
types of lists and handle them accordingly at indexing time, query processing time, and
collection modification time.

Fortunately, we can easily extend the Mneme-based inverted file implementation de-
scribed in Chapter 3. Recall that short lists are defined to be 8 KB or less. Since asingle
file read will obtain an entire short inverted list, it is not profitable to support disk access
of short listsin granularities smaller than the entire inverted list. Short lists, therefore, are
stored as before using fixed length objects, ranging in size from 16 bytesto 8 KB by powers
of 2 (i.e, 16, 32, 64, ..., 8K). The same small-object, fixed-object, and page-object pools
are used to create and manage these objects.

Long inverted lists must satisfy all of the functionality requirements stated above.
The simple linked list implementation for long inverted lists described in Section 3.2.3 is
inadequate. Instead, long inverted lists are stored as shown in Figure 4.3. A long inverted

list is split into two distinct lists: a frequencies list and a locations list. The frequencies

111



Freqguencies <. [requencies

topdoc “Head S st
st directory Vs
------- /
Locations ,____________Ipc?ggns
Head . L
directory 2
- / \x
I:[-—’- ---- // ‘.x\

Figure 4.3 Long inverted list structure

list contains the document id and frequency statistics from each of the document records
in the original inverted list. The locations list contains the locations (proximity lists) from
the document entries. Each of these new lists is stored in 8 KB objects accessed through
a directory. A directory entry contains a pointer to an object, along with the document
id for the first list entry in the object. To obtain the information for a specific document,
the directory is used to identify and directly access the objects that contain the desired
information.

The directory for the frequencieslist is compressed and stored in a special 8 KB object
called the Frequency Head. When the inverted list is first accessed, the Frequency Head
is obtained and the directory is decompressed. This is al that is needed to access the
frequencies list and satisfy requests for belief values from parent belief operators. If a
proximity list is required, the Locations Head must be obtained. The Locations Head is

another special 8 KB object that contains the compressed directory for the locations list.

112



Both the frequencies list and the locations list are accessed simultaneoudly to return the
desired proximity list.

The Head objects will store the tails of their respective lists if there is enough room.
In addition, the Frequencies Head contains the top document list stored in a compressed
format. For our initial implementation, we set the number of top documents n to 1000.
Within inverted list i, documents are ranked based on their tf weights, calculated as the
normalized term frequency ntf;; (see Equation 4.3). This produces a floating point number
between 0.0 and 1.0. To increase the amount of compression possible on the top document
list, each document’s normalized term frequency was multiplied by 16383 (i.e., 214 — 1)
to produce an integer guaranteed to fit in two bytes or less using our variable length
compression technique. This reduces the precision of our within list ranking function, but
yields a significant space savings. The lost precision is seen only at the boundary score
for the worst document in the top document list, where we may not be sure that we have
the best document mapped to that integer. All documents with larger integer scores are
guaranteed to have alarger ntfj;.

Our use of normalized term frequency to rank documentswithin an inverted list has one
drawback. Recall that if termi isthe most frequent term in document j (i.e., tf; = max_tf;),
then ntf;; is set to 1.0. All of the documents in which term i is the most frequent term will
have a normalized term frequency of 1.0 for termi. These documents will be arbitrarily
ranked relative to each other within the inverted list for term i. If term i is the most
frequent term in more than 1000 documents, the top document list for i may not contain
I’s“best” 1000 documents. In cases such as this, however, term i will have a very low idf
weight; i islesslikely to identify relevant documents and morelikely to act as afine tuning
adjustment on fina document scores, reducing the need for accuracy in i’s top document
list. If the calculation for normalized term frequency were modified to differentiate between
documentsinwhichtermi isthe most frequent term, then wewould expect our optimization

technique to perform even better.

113



Thisinverted file implementation furnishes al of the functionality necessary to support
the safe optimizations described above as well as our new unsafe optimization technique.
The split long inverted lists alow the selective access of inverted list contents required
by the first safe optimization described above. The directory based access into the long
inverted lists supports skipping through the lists due to a reduced candidate document set or
from application of a safe intersection style optimization in a proximity operator. The long
inverted lists provide storage of the top document lists. Finally, the customized Mneme
object support described in Section 3.2.3 facilitates the distinction between short and long

inverted lists and simplifies appropriate handling of each.

4.4 PerformanceEvaluation

We now eval uate the eff ectiveness of the optimization techniques considered above. For
safe optimization techniques, it is sufficient to merely measure their impact on execution
speed. For unsafe optimizations, we must additionally assess the impact of the optimiza-
tion technique on the system’s retrieval effectiveness. We describe our evaluation below,
including the platform on which we ran our experiments, the test collections and query sets

used, the performance measured, and the levels of retrieval effectiveness observed.

441 Platform

All of our experiments were run as superuser with logins disabled on an otherwiseidle
DECSystem 3000/600 (Alpha AXP CPU clocked at 175 MHz) running OSF/1V3.0. The
system was configured with 64 MB of main memory, one DEC 1.0 GB RZ26L Winchester
SCSI disk, and one DEC 2.0 GB RZ28B Winchester SCSI disk. The executables were
compiled with the DEC C compiler driver 3.11 using optimization level 2. All of the data
files and executables were stored on the larger local disk, and a64 MB “chill file” wasread
before each query processing run to purge the operating system file buffers and guarantee

that no inverted file data was cached by the file system across runs (see Section 3.3.1 for

114



Table 4.1 Test collection statistics

| Collection || Size(MB) | Docs | Terms | Postings |

Tipl 1206 510343 | 639914 | 112812693
Tipl2 2069 741562 | 859121 | 191742705
Tip123 3181 1077872 | 1090896 | 281417622

verification of the chill procedure). Inall cases we allocated 15 MB of Mneme buffer space

to cache memory resident inverted list objects.

442 Test Collections

For our experiments we used three test collections drawn from the three volume TIP-
STER document collection used in the TREC [39] evaluations. This is the same test
collection described in Chapter 3, although here it is divided into three separate volumes.
Statistics for the test collections can be found in Table 4.1, where Terms is the number of
unique indexed concepts and Postings is the total number of occurrences of the indexed
concepts. Tiplisvolumel, Tipl2isvolumes1and 2, and Tip123isall three volumes.

The test collections were indexed automatically, usng stemming to reduce words to
common roots and a stop words list to eliminate words too frequent to be worth indexing.
Feature recognizerswere also used to identify city names, company names, foreign country
names (i.e., not the United States), and references to the United States.® Statistics for the
inverted files generated during the indexing process can be found in Table 4.2. For each
file the table gives the size of the inverted list data after compression, the overheadsin the
file, and the total file size. Top Docsis the space required for the top document tables, Free
Spaceis unused space at the end of an object that could be allocated in the future, and Other
is data structure and Mneme overhead. Most of the free space appears in the Head objects

of long inverted lists, indicating that a better implementation could be more space efficient.

3Notethat feature recognizerswere not used during theindexing experimentsin Chapter 3, which explains
why the posting and term counts reported there do not reconcile with those reported here.

115



Table 4.2 Inverted file space requirements (MB)

Collec- || IL Overheads (% of IL data) Total
tion | Data | Top Docs | Free Space | Other
Tipl || 338 | 22(65)| 89(26.4) | 9(27)| 458
Tip12 || 574 | 30(53) | 122(21.2) | 11(1.9) | 737

Tip123 || 836 | 39(4.6) | 154(18.4) | 14(1.7) | 1043

Regardless, the overall inverted files are still only 33%-38% of the size of their respective
document collections.

The more complicated long inverted list structure described in Section 4.3 doesimpose
an additional time overhead when the inverted fileis being built. The top document tables
must be built, inverted list entries must be separated into frequenciesand locationslists, and
directories must be created for both of these lists. Fortunately, the overhead is restricted
to the merge phase of indexing; the dominant cost of indexing—parsing—is the same
regardless of the final inverted list structure.

For comparison to the results presented in Section 3.3.3, we measured the time required
to build an inverted file employing the complex long inverted list structure for the 3.2 GB
TIPSTER collection using the temporary file blocks produced during our bulk indexing
experiment (see Table 3.2). On the platform described in Section 3.3.1, the Merger required
76 minutesto mergethetemporary file blocks and build the final inverted fileemploying the
complex long inverted list structure. Thisis nearly twice the time required by the Merger
when the ssimpler linked list long inverted list structureis used (described in Section 3.2.3).
The Parser requires 5 hours 21 minutes in either case, however, so the overal increase in
indexing timeisjust 10%. Even with our more complex long inverted list implementation,

we achieve a bulk indexing rate of 484 MB per hour.

116



443 Query Sets

The query sets used in these experiments were generated locally from topics provided
for the TREC evaluations. The first query set, Query Set 1, was generated from TIPSTER
topics 51-100 using automatic and semi-automatic methods. The resultant fifty queries
consisted primarily of weighted sums of terms, phrases, and ordered proximities, with an
average of 39 terms per query.

The second query set, Query Set 2, was generated from TIPSTER topics 151-200in a
series of steps. Firdt, a base query set was created using automatic methods. Next, each
base query was run against a PhraseFinder [46] database built from TIPSTER volumes 1
and 2. PhraseFinder returnsa set of phrases extracted from the supporting database based
on the given query. Thirty new phrases were automatically added to each query, forming
an augmented query. The augmented queries were then interactively modified to simulate
changes an end user might make to automatically generated queries. The changes were
limited to the del etion of words judged spurious by the user, changes in weighting based on
perceived relative importance, and the addition of proximity constraints. Approximately
five minuteswas spent on each query. Finally, each modified query was duplicated and one
copy was placed inside a passage sum operator with a passage size of 200, which in turn
was added to the other copy in aweighted sum. The final set of fifty queries contained an
average of 105 terms per query.

The third query set, Query Set 3, was generated from TIPSTER topics 51-100 by
taking the text of the description section from each topic and placing it inside a sum
operator. Rudimentary manual processing was performed to remove stop phrases, resulting
in short, flat (i.e., unstructured) queries with an average of 8 terms per query. Query Set 3

isessentially asimplified version of Query Set 1.

117



444 Peformance Resaults
4441 Sdfe

To evauate the impact of the safe optimization techniques on execution speed, a com-
parison was made between the original linked list list implementation for long inverted lists
described in Section 3.2.3 and the split list implementation for long inverted lists described
in Section 4.3. The linked list implementation does not support the safe optimizations that
are based on selective access of inverted list contents, while the split list implementation
does. Two versions of the inverted file for Tip12 were constructed, one using the linked
list implementation, the other using the split list implementation. The three query sets
were then run against each of these inverted file implementations and the execution time
was measured using the GNU time command. Each query set was run five times and the
average of thefiverunsisreported below. Inall cases, the range between the best and worst
times recorded for a given query set/implementation configuration was less than 1.3% of
the average. Note that Query Sets 1 and 2 were measured on the platform described in
Section 4.4.1, while Query Set 3 was measured on the platform described in Section 3.3.1.4

Figure 4.4 shows the wall-clock times broken down into CPU and I/O time for each of
the configurations.® Thelabelsin thefigure areinterpreted asfollows: Qn standsfor Query
Set n, Linked stands for the linked list implementation, and Split stands for the split list
implementation. The impact of the safe optimizationsis generally disappointing. In Query
Set 1, the split list implementation is able to skip a total of 1,254 long list objects when
“intersecting” proximity operators. This, combined with selective access of term weights
and proximity information, leads to a reduction in object faults of 29% over the linked list
implementation. An object fault occurs when a non-memory resident object is accessed
and must beread from disk. The reduction in object faultstrandatesinto areductionin 1/0O

time of 14%. Thiswould be notable, except that the increased complexity of the split list

4Note that no comparisons are made across platforms
SCPU time s the sum of the user and system CPU times returned by the GNU time command. /O time
is estimated by subtracting total CPU time from wall-clock time.

118



4500 T

4000 +
L1 cpu Time
3500 T
& 1o Time
3000 +
g
8 2500 +
Q
£ 2000 +
|_
1500 +
1000 +
500 +
0
Q1, Q1, Q2, Qz, Q3, Q3,
Linked Split Linked Split Linked Split

Query Set, Inverted List Implementation

Figure 4.4 Linked versus Split inverted lists wall-clock time

implementation causes an increase in CPU time of 8% over the linked list implementation,
for anet wall-clock timereduction of 0. In Query Set 1, the safe optimizations are awash.

InQuery Set 2, thesituation iseven worse. The split list implementationisableto skip
2,302 long list objects when “intersecting” proximity operators. However, recall that each
guery in Query Set 2 has a core component that is duplicated, with one copy placed inside
apassage operator. Since the passage operator requires proximity lists, and every termina
query will appear inside a passage operator, proximity listsare required for every term. No
gainswill be made from selective access of term weights and proximity information. This
is reflected in the number of object faults recorded for each implementation—58,746 for
the linked list implementation versus 58,471 for the split list implementation. Similarly,
the I/O time required by both implementationsis the same. The split list implementation,
however, requires 6% more CPU time, resulting in a5% increase in wall-clock time.

In Query Set 3 we finally see a benefit to the split list implementation. There are

no proximity operators in this query set, so no proximity lists are required during query

119



processing. The selective access of term weights provided by the split list implementation
leads to areduction in I/O time of 20%. The increase in CPU time caused by the split list
implementation is only 2%, leading to an overall reductionin wall-clock time of 7%.

There isone more saf e optimization technique that is specific to evaluation of proximity
operators but independent of the inverted list implementation. In our discussion of query
evauation in INQUERY (Section 4.1.3), we noted that a preprocessing step is required
to fully evaluate constructed concepts and compute their idf values. The results of this
preprocessing step are saved in inverted lists constructed on the fly, which are used during
thefinal query evaluation step and then discarded. Construction of these temporary inverted
lists for constructed concepts can be viewed as a safe optimization. If these inverted lists
were not built, the constructed concepts would have to be redundantly evaluated in full
during the final query evaluation phase.

To see the effect of this optimization, we measured the wall-clock time required to
evauate Query Sets 1 and 2 on Tip12 both with and without temporary inverted lists
for constructed concepts.? For Query Set 1, 2336 seconds are required to evaluate the
guery set without using temporary inverted lists. 36% of the terms appear inside proximity
operators, and 255 seconds (11% of the total time) are spent in the preprocessing step.
When temporary inverted lists are used, an average of 6 temporary inverted lists occupying
atotal of 188 KB are built per query, reducing the total evaluation time by 137 seconds
(6%0). Thisentiresavingsisdueto areductionin CPU time, indicating that when temporary
inverted listsare not built, theinverted list dataread during the preprocessing step is cached
until thefinal evaluation step (i.e., no 1/O isrequired during the redundant evaluation of the
constructed concepts).

For Query Set 2, 4923 seconds are required to evaluate the query set when temporary
inverted lists are not used. 54% of the terms appear inside proximity operators, and 594

seconds (12% of the total time) are spent in the preprocessing step. When temporary

SFor these results, all experiments were run on the platform described in Section 3.3.1.

120



inverted lists are used, an average of 27 temporary inverted lists occupying a total of
449 KB are built per query, reducing thetotal evaluation time by 662 seconds (13%). Here,
roughly 12% of thetotal savingsisdueto reduced I/O, whiletheremainder isdueto reduced
CPU time. The large number of terms and proximity operators per query in Query Set
2 makes it impossible to cache all of the inverted list data read during the preprocessing
step, such that, in addition to the CPU savings, building temporary inverted lists yields a
noticeable savings in I/O during the final evaluation phase.

Curioudly, the optimization reduces total evaluation time by more than the cost of the
preprocessing step to evaluate the constructed concepts. Thisis unexpected, given that the
optimization replaces the redundant evaluation of the constructed concepts (the equivalent
of the preprocessing step) in the final evaluation phase with another computation—belief
calculation from the temporary inverted lists. Belief calculation, however, is substantialy
less complex than proximity evaluation and causes much less data to be processed during
evaluation. For the very large queriesin Query Set 2, we speculate that this leads to better

cache locality and a further reduction in execution time.

4442 Unsafe

To evaluate our new unsafe optimization technique, weleavethelinked list implementa-
tion behind and focus on the split list implementation. The new optimization was eval uated
using a variety of experimental configurations, where each configuration involved three
variables. query set, document collection, and level of optimization. Query Set 1 was
run against all three document collections, while Query Set 2 was run against just the first
two document collections (relevance judgements were not available for topics 151-200 on
volume 3). (Query Set 3 is evaluated separately in Section 4.6 below.) For a given query
set and document collection, performance was measured at three levels of optimization:
all, 1000, and 100. all is the unoptimized baseline, where the candidate document set is

defined by the original query processing strategy described in Section 4.1.3. 1000 is the

121



Table 4.3 Number of documents eval uated

Collec- | Qry Documents (% change)
tion Set All | 1000 | 100
Tipl 1 | 13436637 | 1057900 (—92) | 382841 (—97)
2 | 11131087 | 977694 (—91) | 419740 (—96)
Tipl2 | 1 | 21207958 | 1263141 (—94) | 559012 (—97)
2 | 17384562 | 1181650 (—93) | 611787 (—96)
Tipl23 | 1 | 29763641 | 1439024 (—95) | 710976 (—98)

most conservative level of optimization we considered, where the candidate document set
is populated from constructed concepts, short inverted lists, and the top 1000 documents
from long inverted lists. 100 is a more aggressive level of optimization, where the candi-
date document set is populated from constructed concepts, short inverted lists, and the top
100 documents from long inverted lists. The level of optimization is controllable with a
run-time switch allowing the same inverted file to be used for all optimization levels within
agiven configuration.

Our first metric of interest is the size of the candidate document set. Table 4.3 gives
the total number of documents evaluated in each query set configuration. For example,
when Query Set 1 was run against Tip1 with no optimization, scores were calculated for
a total of 13,436,637 documents, or an average of 268,733 documents per query. This
is over half of the documents in the entire collection. However, when only the top 1000
documents from long inverted lists are used to popul ate the candidate document set, scores
were calculated for atotal of 1,057,900 documents, or an average of 21,158 documents per
guery. We have reduced the number of documents being evaluated by over 90%. The more
aggressive level of optimization reduces the number of documents being evaluated even
further. From thistableitis clear that we have met our first goal of reducing the size of the
candidate document set.

The moreimportant question is how this trandatesinto areduction in query processing

time. To answer this question, we measured the real (wall-clock) time required to run

122



Table 4.4 Wall-clock times

Collec- | Qry Seconds (% change)
tion Set | All | 1000 | 100
Tipl 1 |1364 | 632(—54) | 569 (—58)
2 | 2530 | 938(—63) | 806 (—68)
Tipl2 | 1 | 2258 | 1054 (—53) | 980 (-57)
2 | 4195 | 1535(—63) | 1394 (—67)
Tipl23 | 1 | 3300 | 1518 (—54) | 1445 (—56)

each query set configuration. Real time was measured using the GNU time command and
includes all time from start to finish of the query set batch run, including the processing
of relevance judgements. constant overhead, regardless of the optimization configuration.
For example, relevance judgement processing requires 306 wall-clock seconds (41 CPU
seconds, 265 |I/0 seconds) when evaluating Query Set 1 on Tipl2, and 247 wall-clock
seconds (51 CPU seconds, 196 1/0O seconds) when evaluating Query Set 2 on Tipl2.
Elimination of relevance judgement processing would make query evaluation more CPU
bound and would increase the percent improvement obtained with query optimization (the
same constant reduction would occur in both unoptimized and optimized times, increasing
the percentage difference between the two). While an interactive system does not havethis
overhead, it does have other overheads (e.g., document title lookup for display to the user).
Therefore, weinclude relevance judgement processing in our measurements as a substitute
for these other overheads. ten separate runs for each configuration. In al cases the range
between the best and worst times recorded for a given configuration was less than 3.3% of
the average for the configuration.

The query processing speedup realized even with our most conservative level of op-
timization is quite dramatic. In all cases, query processing time is cut at least in half.
Moreover, most of the improvement is realized in the more conservative 1000 configu-

ration. Optimizing more aggressively in the 100 configuration yields just an additional

123



2%-5% improvement over the baseline. Clearly we have achieved our ultimate goa of
reducing query processing time.

With the candidate document set considerably reduced, we would expect to be able to
skip significant portions of the long inverted lists during query evaluation. To measure
this, we counted the number of whole objects skipped during long inverted list processing.
Perhaps surprisingly, inal 1000 configurationsthere was no increase in the number of long
list objects skipped. In fact, even at more aggressive optimization levels, the number of
additional objects skipped was minimal. Moreover, the real impact of any skipping was
measured in terms of a reduction in the number of object faults. Even when there was an
increasein skipping, the reduction in object faultswas insignificant, indicating that we were
skipping memory resident objects which wouldn’t have required a disk read anyway. An
object will be memory resident if it was referenced during evaluation of a previous query
and not purged from the buffer, or the associated term is used more than once in the current
guery, causing multiple references to the same inverted list.

The reason for the limited skipping is twofold. First, the information in the long
inverted lists is very densely packed in order of document id. Second, the membership of
the candidate set is independent of document id, meaning the entriesin along inverted list
that must be accessed during query processing should be arbitrarily distributed over the
entire list. Therefore, even though we are in fact skipping large portions of the long lists,
we gtill end up accessing at least one document entry in nearly every object in thelists.

To investigate this effect further, we built our inverted files using 2 KB objects in the
frequencies and locationslists. In thisversion skipping was more noticeable (especialy at
more aggressive optimization levels), but again the number of object faults was reduced by
lessthan 2%. Moreover, sincedisk readsare 8 KB, wewouldn’t expect to see any reduction
in the number of raw disk I/Oswhen compared with the version that used 8 KB objects.

The question remains as to where the reduction in wall-clock timeis coming from. The

answer can be found by examining the CPU and 1/O time components of the wall-clock

124



Time (sec)

Time (sec)

3500

3000

2500

2000

1500

1000

500

4500
4000
3500
3000
2500
2000
1500
1000

500

T ] CPU Time
1 B 1o Time
Tip1, Tip1, Tipl2,  Tipl2, Tip123, Tipl23,
all 1000 all 1000 all 1000

Collection, Optimization Level

Figure 4.5 Query Set 1 wall-clock time breakdown

[ cpPU Time

E /0 Time

Tip, all Tip1, 1000 Tip12, all Tip12, 1000

Collection, Optimization Level

Figure 4.6 Query Set 2 wall-clock time breakdown

125



time. Figures4.5 and 4.6 give the wall-clock time broken down into CPU and 1/O time for
baseline (all) and optimized (1000) versions of the two query sets on each of the three test
collections. The figures show that the optimization reduces CPU time 70% to 75%, but has
essentially no impact on 1/0 time. CPU time, however, is the dominant component of the
wall-clock time, such that the CPU savings trandates into a significant wall-clock savings.
The rate of reduction in CPU time is till less than the rate of reduction in candidate
document set size due to query evaluation overheads common to both the baseline and
optimized versions, with the largest overhead being the preprocessing step to fully evaluate

constructed concepts.

445 Retrieval Effectiveness

Along with query processing speed, we must also look at the impact on retrieval
effectiveness in order to fully evaluate our unsafe optimization technique. Precision at
standard recall points obtained with different levels of optimization for each of our five
query set/document collection combinationsisreportedin Tables4.5-4.9 (the corresponding
Recall-Precision curves are shown in Figures 4.7-4.9). The relevance judgements used to
generate these tables came from the TREC evaluations. We show interpolated precision
based on full rankingsat the standard 11 recall pointsand the 11pt average. Asbefore, all is
the unoptimized baseline version, while 1000 through 50 are optimized versions where the
label indicates the number of top documents taken from long inverted lists to popul ate the
candidate document set. We show a broader range of optimization levels here than in our
timing test to give a better feel for the impact on retrieval effectiveness as the optimization
becomesmoreaggressive. 1n each of thetables, percent changeisfromthebaselineversion.

Consider the results for the 1000 configuration in Tables 4.5-4.9. For al query
set/document collection combinations, retrieval effectivenessisremarkably good. At recall
levels up to 70%, there is no noticeable degradation in precision. The implication hereis

that the high end of a document ranking returned by the optimized system, or the docu-

126



Table 4.5 Precision at standard recall ptsfor Tipl, Query Set 1

Precision (% change) — 50 queries

Recall

all

1000

500

300

100

50

10
20
30
40
50
60
70
80
90
100

83.5
60.3
52.7
46.8
40.6
34.9
304
253
19.9
121

24

837 (+0.2)
605 (+0.2)
53.0 (+0.6)
471 (+0.6)
409 (+0.7)
352 (+1.0)
306 (+0.6)
257 (+1.7)
19.8 (-0.1)
116 (—4.6)
1.7(-29.2)

83.9
60.9
53.3
47.0
40.9
35.1

(+0.5)
(+1.0)
(+1.2)
(+0.9)
(+0.8)
(+0.8)
30.7 (+1.1)
256 (+1.3)
18.3 (-7.9)
11.3 (-6.9)
1.5(-38.7)

839 (+05)
60.8 (+0.8)
534 (+1.3)
46.7 (—0.3)
410 (+1.0)
351 (+0.7)
30.1 (—1.0)
24.0 (-5.1)
17.7(-10.9)
9.6(—20.9)
1.6(—36.2)

839 (+0.5)
614 (+1.7)
535 (+1.5)
46.1 (—1.7)
389 (—4.2)
33.1 (-5.0)
28.1 (~7.6)
20.9(—17.1)
15.8(—20.7)
8.6(—29.4)
1.6(—36.1)

839 (+05)
616 (+2.1)
53.1 (+0.8)
443 (-55)
384 (-55)
324 (-7.1)
27.2(-10.4)
20.4(—19.4)
14.6(—26.4)
7.6(-37.1)
1.6(—33.3)

average

37.2

373 (+0.2)

372 (—0.1)

36.7 (—1.2)

356 (—4.2)

350 (—5.9)

Precision

0.2

0.4

127

Recall

Figure 4.7 Recall-Precision curves for Tipl, Query Set 1




Table 4.6 Precision at standard recall ptsfor Tipl2, Query Set 1

Precision (% change) — 50 queries

Recall

all

1000

500

300

100

50

10
20
30
40
50
60
70
80
90
100

83.6
57.2
49.0
43.1
37.7
324
27.7
225
17.3
11.2

12

837 (+0.1)
575 (+0.6)
495 (+1.0)
434 (+0.8)
381 (+1.0)
329 (+1.5)
279 (+0.6)
228 (+1.4)
17.0 (-16)
10.0(—10.6)
0.5(—59.3)

835 (—0.1)
57.7 (+0.9)
49.7 (+1.4)
435 (+0.9)
380 (+0.9)
325 (+0.3)
272 (-18)
217 (-3.8)
15.0(—13.4)
8.5(—24.2)
0.6(—54.0)

83.3 (—0.4)
57.7 (+0.9)
496 (+1.1)
432 (+0.4)
37.3 (-1.0)
320 (-1.3)
26.0 (—6.1)
20.2(—10.4)
13.8(—20.0)
7.8(—30.3)
0.6(—55.4)

833 (—0.3)
56.8 (—0.6)
48.7 (-0.7)
420 (-2.5)
349 (-75)
29.2 (-9.8)
23.9(—13.6)
17.7(-215)
12.2(—29.3)
7.8(—30.7)
0.7(—47.5)

836 (+0.0)
56.5 (—1.2)
481 (-1.9)
40.3 (—6.4)
344 (-88)
28.7(—11.3)
23.2(—16.5)
17.2(-23.7)
12.1(-29.9)
7.8(—30.1)
0.7(-42.2)

average

34.8

349 (+0.1)

343 (—13)

338 (—3.0)

325 (—6.7)

321 (7.9

Precision

Figure 4.8 Recall-Precision curvesfor Tipl2, Query Set 1

0.2

0.4

128

Recall




Table 4.7 Precision at standard recall ptsfor Tip123, Query Set 1

Precision (% change) — 50 queries

Recall

all

1000

500

300

100

50

10
20
30
40
50
60
70
80
90
100

84.3
54.6
471
40.6
35.3
30.3
25.7
20.7
155

9.1

05

843 (+0.0)
54.8 (+0.4)
473 (+0.5)
409 (+0.7)
355 (+0.5)
304 (+0.6)
257 (+0.1)
20.0 (~3.6)
13.3(-14.3)
7.2(—20.9)
0.2(—67.2)

842 (—0.1)
550 (+0.8)
473 (+0.4)
405 (-0.3)
349 (-13)
295 (—2.6)
24.0 (—6.7)
18.1(—12.6)
11.8(—24.1)
6.1(—32.6)
0.1(—73.6)

84.1 (—0.2)
54.8 (+0.4)
470 (-0.2)
39.7 (-2.3)
33.4 (~5.4)
27.9 (-7.9)
22.4(—13.0)
17.2(-17.2)
11.3(—27.0)
5.8(—35.9)
0.1(-73.2)

84.7 (+05)
53.6 (—1.8)
454 (—35)
37.2 (-84)
30.7(—12.9)
25.7(—15.0)
21.1(—18.0)
16.7(-19.2)
10.2(—34.0)
6.0(—34.2)
0.1(-72.7)

845 (+0.3)
53.2 (—2.5)
439 (—6.6)
36.4(—10.3)
30.0(—14.9)
25.7(—15.2)
20.9(—18.5)
16.6(~19.9)
10.2(-34.2)
6.1(—33.4)
0.1(—72.6)

average

331

327 (-11)

319 (—3.4)

312 (-55)

30.1 (—89)

298 (—9.9)

Precision

Figure 4.9 Recall-Precision curvesfor Tipl123, Query Set 1

129

Recall




Table 4.8 Precision at standard recall ptsfor Tipl, Query Set 2

Precision (% change) — 50 queries

Recall

all

1000

500

300

100

50

10
20
30
40
50
60
70
80
90
100

91.1
75.9
66.0
55.6
474
414
35.1
274
221
155

3.7

91.1 (+0.0)
75.9 (~0.0)
66.0 (~0.0)
55.6 (+0.1)
474 (+0.1)
41.3 (-0.2)
350 (~0.1)
27.3 (~0.4)
218 (-12)
15.3 (-1.5)
2.7(-27.4)

91.1 (+0.0)
758 (-0.1)
65.9 (-0.1)
55.2 (~0.7)
470 (-0.8)
411 (-0.7)
348 (-0.8)
26.6 (—2.9)
214 (-3.1)
146 (-6.1)
2.3(—37.0)

91.1 (+0.0)
758 (-0.1)
65.8 (—0.3)
55.2 (—0.7)
470 (-0.8)
408 (~1.3)
345 (-1.7)
26.1 (—5.0)
214 (-3.1)
13.1(—15.9)
1.8(—51.9)

911 (+0.0)
758 (~0.1)
65.8 (—0.3)
55.0 (—1.1)
46,6 (—1.6)
40.3 (—2.7)
32.8 (—6.4)
24.7 (-9.8)
19.4(-12.3)
11.0(—29.4)
1.4(—62.8)

91.1 (+0.0)
758 (—0.1)
65.8 (—0.3)
54.9 (~1.3)
464 (-2.1)
40.2 (-2.9)
324 (-75)
24.6(-10.2)
18.6(—15.5)
10.6(—31.8)
1.3(—64.6)

average

43.7

436 (-0.4)

433 (-11)

430 (—18)

422 (—36)

420 (—4.0)

Precision

Figure 4.10 Recall-Precision curvesfor Tipl, Query Set 2

0.2

0.4

130

0.6

Recall




Table 4.9 Precision at standard recall ptsfor Tipl2, Query Set 2

Precision (% change) — 50 queries

Recall

all

1000

500

300

100

50

10
20
30
40
50
60
70
80
90
100

89.4
73.8
64.3
56.6
49.6
43.6
36.9
30.1
24.7
16.5

2.3

89.4 (+0.0)
73.8 (-0.0)
64.2 (-0.1)
56.5 (—0.0)
496 (-0.0)
435 (-0.3)
36.4 (-1.2)
295 (-2.1)
240 (-3.2)
154 (-6.7)
1.4(-37.9)

89.4 (+0.0)
73.7 (-0.1)
64.1 (—0.3)
56.4 (—0.2)
496 (-0.1)
43.2 (-0.9)
35.7 (-3.2)
28.8 (—4.3)
234 (-52)
13.0(-21.3)
1.4(—39.4)

89.4 (+0.0)
73.7 (-0.1)
64.1 (—0.2)
56.2 (—0.5)
495 (~0.4)
430 (-15)
34.7 (-5.8)
28.1 (—6.6)
21.1(-14.8)
12.7(—22.9)
1.5(—37.6)

89.4 (+0.0)
73.7 (-0.1)
64.1 (—0.3)
56.0 (—1.0)
490 (-1.2)
419 (-3.9)
33.3 (-9.7)
25.8(—14.5)
20.1(—18.8)
12.5(—24.2)
1.0(—56.4)

894 (+0.0)
73.7 (-0.2)
64.1 (—0.3)
55.9 (—1.2)
489 (—1.4)
418 (—4.2)
332 (-9.8)
25.3(—16.0)
20.0(—19.4)
12.5(-24.2)
1.0(-55.9)

average

444

440 (-0.8)

435 (-18)

431 (—2.8)

424 (—43)

423 (-45)

Precision

Figure 4.11 Recall-Precision curves for Tipl12, Query Set 2

0.2

0.4

131

0.6

Recall

0.8




ments most likely to be considered by auser in an interactive system, will be just asrichin
relevant documents as in the unoptimized version. Furthermore, the 11pt averages are not
significantly different from those for the unoptimized version.

Now consider the results in Table 4.5. As the optimization becomes more aggressive
(from 1000 to 50), we see two trends. First, at low recall, precision actually improves a
tiny amount and then falls off. This indicates that the technique is doing a good job of
identifying the very best candidate documents, and is consistent with other results using
similar techniques [65, 58]. Second, at high recall, precision becomes significantly worse
as the optimization becomes more aggressive. This is because we are not considering
documents which have a strong combined belief from all of the query terms, but lack a
single query term belief strong enough to place the document in the candidate set.

In Tables 4.8 and 4.9 we do not see any improvement in precision at low recall as the
optimization becomes more aggressive. This is due to the use of the passage operator in
Query Set 2. The calculation of belief for concept i in document j is slightly modified
insde a passage operator since it is based on a passage of the document, rather than the
entire document. Thus, our ranking of document j within the inverted list for concept i
is dightly inaccurate with respect to the passage operator. This suggests that our retrieval

performance could even be improved.

45 Extensions

The optimization technique described above has a large impact on CPU time, but very
little impact on I/O. In the baseline query sets considered above, CPU time accounts for
70% to 90% of the overall running time, such that reducing CPU costs is an appropriate
goal. After the optimization has been applied, however, 1/0O becomes a larger component
of overall running time. A natural question that arises here is whether or not the amount

of 1/0 that must be performed during query evaluation can be reduced. Two approaches

132



for explicitly reducing 1/0 are consdered below (from here on the unsafe optimization
described above will bereferred to as the original optimization).

The first approach explores the effects of ignoring the bulk of along inverted list and
using just the term weighting information stored in the inverted list’s top document list.
In the original optimization, a long inverted list | contributes belief scores for all of the
documents in the candidate document set that contain I’s associated term. In other words,
during final query evaluation, | will contribute belief scores not only for the documents
added to the candidate set by |, but also for other documents added to the candidate set by
other parts of the query, where those documents happen to contain the term associated with
|. These other documents appear in |, just not in I’s top document list. The result is that
large parts of | must still be retrieved during final query evaluation to obtain belief scores
for these other documents.

If instead | contributes belief scores for documents in its top document list only, the
rest of | can beignored and significant 1/0 savings should be realized. Aswith the original
optimization, constructed concepts are fully built during the preprocessing step. Moreover,
this extended optimization is applied only to selected long inverted lists in the query. The
selection is made by identifying al of the termsin the query tree reachable from the root
along a path that includes only sum, weighted sum, and, or, and max operators—the other
guery operatorsare either proximity operatorsthat were evaluated in the preprocessing step
anyway, or operators where this approach is inappropriate. The identified terms, called
the optimization candidates, are then sorted in increasing order of weighted idf score (the
weighting is based on any weighted sum operators encountered on the path from the query
root to theterm). A percentage of the lowest scoring terms are then selected for application
of the extended optimization, such that the optimization is applied to the terms with the
lowest estimated impact on final document score. This approach is called top-docs-only.

The second approach is a more aggressive version of the first approach. Rather than

obtain belief scores from aselected long inverted list’s top document list, thelist isignored

133



altogether. The lists to ignore are selected in the same way as above—a percentage of
the terms are chosen based on weighted idf score from the optimization candidates. This
approach is smilar to the optimization of Buckley and Lewit [10], where entire inverted
listsareignored during query evaluation. The approachesdiffer intheway theinverted lists
to ignore are chosen. Buckley and Lewit use upper bound thresholds to decide when an
inverted list can be ignored without affecting the top ranked documents. In our case, query
structure complicates the computation and maintenance of similar upper bounds. Instead,
we ignore an arbitrary percentage of the inverted lists with the lowest estimated impact on
final document score. This approach is called term-elimination.

A preliminary investigation of these two approaches revealed that the retrieval effec-
tiveness obtained with top-docs-only isthe same as or inferior to theretrieval effectiveness
obtained with term-elimination. Thisis shown in Tables 4.10 and 4.11 (the corresponding
Recall-Precision curves are shown in Figures 4.12 and 4.13) for Query Sets 1 and 2 on
Tipl2. Each table gives the precision at standard recall points for the baseline version
(all), the origina optimization using 1000 top documents from long lists (1000), the orig-
ina optimization extended with top-docs-only on 50% of the terms (1000-50a), and the
original optimization extended with term-elimination on 50% of the terms (1000-50D).
Term-elimination provides agreater execution savings than top-docs-only because selected
termsare completely ignored, rather than evaluated using their top document list. Giventhe
relative retrieval effectiveness of the two approaches, term-elimination is deemed superior
to top-docs-only, and top-docs-only is not considered further.

Term-eliminationisageneral optimization technique by itself; it can be applied directly
to the basdline (all) configuration, as well as in combination with the origina optimiza-
tion. To determine how these optimizations compare and interact, an evauation of the
performance of different optimization configurations was conducted using both query sets
on Tipl2. The experiments were run on the same platform described in Section 3.3.1.

Note that the large disk drive used in that platform is different from the one used in the

134



Table 4.10 Precision at standard recall ptsfor Tipl2, Query Set 1, extended

Precision

Precision (% change) — 50 queries

Recall

all

1000

1000-50a

1000-50b

0
10
20
30
40
50
60
70
80
90

100

83.6
57.2
49.0
43.1
37.7
32.4
27.7
225
17.3
11.2

1.2

83.7
57.5
49.5
434
38.1
32.9
27.9
22.8
17.0

10.0 (—10.6)
0.5 (—59.3)

(+0.1)
(+0.6)
(+1.0)
(+0.8)
(+1.0)
(+1.5)
(+0.6)
(+1.4)
(—1.6)

85.5
59.4
49.5
441
384
331

(+2.2)
(+3.9)
(+1.0
(+2.3)
(+1.8)
(+2.1)

275 (=0.7)
218 (—3.0)
165 (—4.3)
103 (~7.8)
0.6 (—53.4)

85.8
58.0
49.2
44.2
38.9
335
28.1
22.9
17.3
10.8

0.7

(+2.6)
(+1.4)
(+0.4)
(+2.7)
(+3.1)
(+3.5)
(+1.2)
(+1.9
(-0.2)
(=3.7)
(—39.9)

average

34.8

34.9

(+0.2)

35.2

(+1.0

354

(+1.7)

0.6

0.4

0.2

all ——

1000 -

1000-50a =

1000-50b - ]

0.2

0.4

Recall

0.6

Figure 4.12 Recall-Precision curves for Tipl2, Query Set 1, extended

135




Table 4.11 Precision at standard recall ptsfor Tipl2, Query Set 2, extended

Precision

Precision (% change) — 50 queries

Recall

all

1000

1000-50a

1000-50b

0
10
20
30
40
50
60
70
80
90

100

89.4
73.8
64.3
56.6
49.6
43.6
36.9
30.1
24.7
16.5

2.3

89.4
73.8
64.2
56.5
49.6
435
36.4
29.5
24.0
154

(+0.0)
(—0.0)
(-0.1)
(—0.0)
(—0.0)
(-0.3)
(—1.2)
(—2.1)
(-3.2)
(—6.7)

1.4 (—37.9)

89.1
73.6
63.9
56.4
49.5
43.7
36.3
29.5
24.0
154

(-0.4)
(-0.3)
(—0.6)
(-0.3)
(-0.3)
(+0.2)
(—=15)
(-2.2)
(—2.9)
(—6.7)

1.5 (—36.0)

89.3
73.6
63.9
56.3
49.7
43.6
35.9
29.3
24.0
15.3

15

(-0.1)
(—-0.2)
(—0.6)
(—0.4)
(+0.1)
(+0.0)
(—2.6)
(—=2.7)
(-3.1)
(=7.0)
(—35.8)

average

444

44.0

(—0.8)

43.9

(—1.0)

43.9

(—1.1)

0.8

0.6

0.4

0.2

1000-50a =
1000-50b - ]

all ——

1000 -

0.2

0

4

0.6

Recall

Figure 4.13 Recall-Precision curves for Tipl2, Query Set 2, extended

136



2500 T

2000 +
L] cPU Time
E /0 Time

< 1500 +

(O]

)

(O]

S

= 1000 +

500 +

all all all all 1000 1000 1000 1000
10% 25% 50% 10% 25% 50%

Optimization Configuration

Figure 4.14 Extended optimization wall-clock times for Tipl2, Query Set 1

platform described in Section 4.4.1, so the timing results presented below are not directly
comparable to those presented in Section 4.4.4.

Asbefore, al of the datafiles and executables were stored on thelarger local disk, and a
64 MB “chill file’ was read before each query processing run to purge the operating system
file buffers and guarantee that no inverted file data was cached by the file system across
runs. In al cases 15 MB of Mneme buffer space was allocated to cache memory resident
inverted list objects. The timing results were measured with the GNU time command and
the average of 5 runs s reported for each configuration. In all cases the range between the
best and worst times recorded for a given configuration was less than 3% of the average for
the configuration.

The execution performance for Query Set 1 on Tip12 is shown in Figure 4.14. Each
bar gives the wall-clock time broken down into CPU and 1/0O components for a given
configuration (raw timing figures for all of the query sets considered throughout the rest

of this Chapter are summarized in Table 4.19). The bar label on the x-axis identifies the

137



configuration. For example, all is the unoptimized baseline, all 50% is the baseline plus
50% term-elimination, and 1000 50% isthe original optimization using 1000 top documents
from long lists plus 50% term-elimination.

The term-elimination optimization is quite effective when used by itself. Ignoring 50%
of thetermsidentified as candidatesfor elimination (all 50% ) producesareductionin wall-
clock time comparableto that achieved in the 1000 configuration. Comparedto all, all 50%
produces a reduction in 1/O time of nearly 18%, a reduction in CPU time of nearly 68%,
and an overall wall-clock time reduction of 56%. Eliminating terms reduces CPU time by
eliminating the processing that would otherwise be required on those terms. The size of the
candidate document set is also reduced. In all 50%, 5,941,239 documents are evaluated
across the 50 queries—a reduction of 72% from the 21,207,958 documents evaluated in
all. Thisisstill substantially less than the 94% reduction in candidate document set size
afforded by 1000 (see Table 4.3), explaining why the reduction in CPU time obtained with
1000 is better than that obtained with all 50%. In 1000, CPU time is reduced by 75%,
compared to 68% for all 50%.

Recall that the original motivation for this optimization was to reduce 1/0. While the
18% reduction in 1/O timeis notable, it is not exceptional. Since 50% of the optimization
candidate terms are not processed, and these are the terms with the largest inverted lists,
we might expect a much larger reduction in I/O. The reason for this less-than-expected
reduction in 1/O is revealed by looking at the object fault rates. Compared to all, all 50%
reducesthe number of object faultsby only 20%. The number of object referencesisactually
reduced by 30%, indicating that the optimization is eliminating references to objects that
were aready resident in main memory—eliminating these references nets no savings in
1/O. Furthermore, the optimization is eliminating 50% of the optimization candidate terms
only. The selection agorithm does not consider for elimination terms that participate in a
constructed concept (i.e., proximity operator), so the optimization is actually eliminating

less than 50% of the total termsin the query. It is aso possible that a term appears more

138



than once in the query with different weighted idf scores, causing it to be selected for
eliminationin one part of the query but not the other. No 1/O will be saved in thiscase since
only one copy of the term’sinverted list would have been read in the unoptimized version,
and this copy must still be read in the optimized version.

When term-elimination is combined with the original optimization, the execution per-
formance improvement is even better. 1000 50% produces areductionin I/O time of 18%,
areductionin CPU timeof 82%, and areduction intotal wall-clock time of 67%. Compared
toall 50%, 1000 50% reduces overall wall-clock time by an additional 25%. This suggests
that term-elimination is complementary to the original optimization and the best execution
performance will be obtained by combining the two techniques.

The term-elimination optimization is unsafe; we must assess its impact on retrieval
effectiveness. Table 4.12 and Figure 4.15 give precision at standard recall points for the
baseline case and selected configurations of the optimization. Surprisingly, precision at
nearly all levels of recall improves up to a certain point as a larger percentage of the high
frequency terms are eliminated. The best precision is found at 50% term-elimination.
At 75% term-elimination, precision has substantially deteriorated. Moreover, adding 50%
term-eliminationtothe original optimizationimprovesitsprecisionat nearly all recall levels
as well. Although improving retrieval effectivenessis never frowned upon, obtaining the
improvement by removing evidence from the query suggests that the evidence is being
improperly incorporated into the final document belief scores. Ragjashekar and Croft [68]
show that retrieval effectiveness generaly improves as more evidence is added to the
query. Itislikely, therefore, that the query can be expressed better, either with improved
term weighting, different query operators, or an improved retrieval model. We will return
to thisissue later in the context of the other query sets.

1000 50% produces the best precision at low recall of al of the configurations listed
in Table 4.12, abeit by an insignificant margin. Low recall corresponds to the top end of

the ranked listing returned to the user; it is the more important end of the recall spectrum

139



Table 4.12 Precision at standard recall ptsfor Tip12, Query Set 1, optimized

Precision (% change) — 50 queries

Recall

all

all 50%

all 75%

1000

1000 50%

1000 75%

0
10
20
30
40
50
60
70
80
90

100

83.6
57.2
49.0
43.1
37.7
324
27.7
225
17.3
11.2

12

85.8 (+2.6)
57.8 (+1.2)
49.0 (-0.2)
442 (+2.6)
38.8 (+2.9)
335 (+3.2)
28.0 (+0.9)
23.0 (+2.1)
17.8 (+2.9)
12.0 (+7.2)
1.3 (+7.2)

874 (+4.5)
54.8 (-4.1)
453 (~7.6)
38.1(~115)
32.4(-14.1)
27.5(~15.2)
22.7(-18.2)
17.7(-21.4)
13.0(—24.9)
8.2(—27.1)
0.6(—48.8)

837 (+0.1)
575 (+0.6)
495 (+1.0)
434 (+0.8)
38.1 (+1.0)
329 (+1.5)
27.9 (+0.6)
228 (+1.4)
17.0 (-1.6)
10.0(—10.6)
0.5(—59.3)

858 (+2.6)
58.0 (+1.4)
49.2 (+0.4)
442 (+2.7)
389 (+3.1)
335 (+3.5)
281 (+1.2)
229 (+1.9)
173 (-0.2)
10.8 (-3.7)
0.7(—39.9)

874 (+4.5)
54.8 (~4.1)
454 (~7.4)
38.2(~11.2)
32.5(~13.8)
27.8(-14.1)
23.0(-17.0)
18.4(—18.4)
12.4(—28.3)

8.0(-29.0)

0.3(~74.7)

average

34.8

356 (+2.1)

316 (—9.2)

349 (+0.1)

354 (+1.7)

317 (-9.0)

Precision

0.8

0.6

0.4

0.2

all

all 50% -
all 75%
1000 <
1000 50%
1000 75% -

0.2

0.4

Recall

Figure 4.15 Recall-Precision curves for Tipl2, Query Set 1, optimized

140




4500 T

4000 —+

3500 + L] cPU Time
3000 + E /0 Time
2500 +

2000

Time (sec)

1500 +

1000 +

500

all all 50% all *50% 1000 1000 50% 1000 *50%

Optimization Configuration

Figure 4.16 Extended optimization wall-clock times for Tip12, Query Set 2

when considering an interactive system. The precision produced at low recall by 1000
50%, combined with its superior execution performance, indicate that 1000 50% is the
configuration of choice for processing queries like those in Query Set 1 in an interactive
information retrieval system.

Term-elimination was aso evaluated for Query Set 2. Recall that each query in this
query set iscreated by duplicating a core query, placing one copy inside a passage operator,
and combining that with the first copy in a weighted sum. The passage operator presents
a dilemmawhen identifying the optimization candidate terms because it works to localize
application of the query within the document, changing the impact of high frequency query
terms. When this happens, eliminating high frequency query termswill most likely degrade
retrieval effectiveness.

Onthe other hand, if term-eliminationisapplied only to the portion of the query outside
of the passage operator, the reduction in 1/O is certain to be insignificant—any term outside

of the passage operator that is eliminated will still appear inside the passage operator and

141



its inverted list will still be read. The optimization, therefore, was applied both ways.
Figure 4.16 shows the execution performance of Query Set 2 on Tipl2 using various
optimization configurations, where a star (*) indicates that term-elimination was applied
insde the passage operator as well as outside, e.g., all *50% is the baseline plus 50%
term-elimination applied both inside and outside of passage operators. Note that in all
*50% , twice as many termsare eliminated asin all 50%, since twice as much of the query
is considered for term-elimination.

As predicted, term-elimination applied only outside of the passage operator (all 50%)
yields no reduction in 1/0O time, only a 19% reduction in CPU time, and an overall 17%
reduction in wall-clock time. Moreover, the size of the candidate document set is not
reduced at all. Applying 50% term-elimination inside the passage operator (all *50%),
however, reduces 1/0 time by 21%, CPU time by 63%, wall-clock time by 58%, and the
size of the candidate document set by 44%. While the 21% reduction in I/O time is better
than the 0% reduction obtained in 1000, the overall improvement isinferior. 1000 reduces
the candidate document set size by 93%, CPU time by 73%, and wall-clock time by 64%.
Again, combining the two optimizationsyields the best overall improvement. 1000 *50%
reduces I/0O time by 21%, CPU time by 81%, and wall-clock time by 74%. The reduction
in the candidate document set size is the same as in 1000.

Table 4.13 and Figure 4.17 show the retrieval effectiveness for the various optimized
versonsof Query Set 2onTipl2. Unliketheresultsseenfor Query Set 1, term-elimination
in Query Set 2 leads to adeterioration in precision at most recall levels. The deterioration
is even worse when term-elimination is applied insde the passage operator (the starred
versions). Returning to the point considered earlier regarding the removal of evidence
from a query, the behavior observed in Query Set 2 suggests that the user’s information
need is better expressed in these queries and removing evidence will produce the expected

degradation in retrieval effectiveness.

142



Table 4.13 Precision at standard recall ptsfor Tip12, Query Set 2, optimized

Precision (% change) — 50 queries

Recall

all

all 50%

all *50%

1000

1000 50%

1000 *50%

0
10
20
30
40
50
60
70
80
90

100

89.4
73.8
64.3
56.6
49.6
43.6
36.9
30.1
24.7
16.5

2.3

89.3 (-0.1)
73.7 (-0.2)
63.9 (—0.6)
56.3 (—0.4)
49.7 (+0.1)
438 (+0.4)
36.4 (—1.4)
30.0 (-0.6)
24.8 (+0.1)
165 (+0.1)
24 (+4.2)

875 (-2.1)
724 (-1.9)
63.6 (—1.1)
554 (—2.0)
480 (-3.3)
416 (-4.8)
342 (-7.2)
288 (-4.2)
235 (-4.9)
155 (—6.1)
23 (+0.4)

89.4 (+0.0)
738 (-0.0)
64.2 (—0.1)
56.5 (—0.0)
49.6 (—0.0)
435 (—0.3)
36.4 (—1.2)
295 (—2.1)
24.0 (—3.2)
154 (-6.7)
1.4(-37.9)

89.3 (—0.1)
736 (-0.2)
63.9 (~0.6)
56.3 (—0.4)
497 (+0.1)
436 (+0.0)
35.9 (—2.6)
29.3 (-2.7)
24.0 (-3.1)
153 (~7.0)
1.5(-35.8)

875 (-2.1)
724 (-1.9)
63.6 (—1.1)
55.3 (~2.1)
480 (-3.4)
414 (-51)
34.1 (-7.5)
285 (—5.2)
227 (-8.1)
14.7(-10.8)
1.5(—34.3)

average

444

442 (-02)

430 (-3.)

440 (—0.8)

439 (-1.1)

27 (-37)

Precision

0.8

0.6

0.4

0.2

all

all 50% -

all *50%
1000 <
1000 50%
1000 *50% -

0.2

0.4

0.6

Recall

Figure 4.17 Recall-Precision curves for Tipl2, Query Set 2, optimized

143




Atlower recal levels, thedeteriorationin precision isless marked using just theorigina
optimization (1000). Adding term-elimination to the original optimization (1000 *50% )
causes a further deterioration in precision at al recal levels, although precision at low
recall in 1000 *50% is still about the same asin all *50% . Compared to term-elimination
alone, 1000 producesthe same or dightly better precision at low recall and better execution
performance, making it the optimization of choicefor evaluating querieslikethosein Query
Set 2inaninteractivelR system. Furthermore, if we arewilling to sacrifice some precision,
combining the two optimizationsin 1000 *50% produces an additional 28% improvement

in wall-clock time over 1000.

4.6 Short Unstructured Queries

Although we are primarily concerned with improving the execution performance of
structured query evaluation, it is worthwhile to investigate how well the optimization
techniques described here perform on short, unstructured queries. Recall that the queriesin
Query Set 3areshort and flat, containing an average of 8 uniquetermscombinedinasum or
weighted sum operator. Using these short, unstructured queries and the same experimental
platform and methodol ogy as in the previous section, theimpact of the variousoptimization
techniques was evaluated. Again, the timing results were measured with the GNU time
command and the average of 5 runsisreported for each configuration. Inall casestherange
between the best and worst times recorded for a given configuration was less than 3% of
the average for the configuration.

Figure 4.18 shows the execution performance obtained for Query Set 3 on Tip12 using
avariety of optimization configurations. Thetrendsobservedin Query Set 1 generally hold
in this query set as well. Here, 50% term-elimination (all 50%) dightly outperforms the
original optimization (1000), producing areductionin 1/O time of 25%, areductionin CPU
time of 65%, and areductionin overall wall-clock time of 51%. Thereductionin CPU time

can again be traced to areduction in the size of the candidate document set. The baseline

144



1000 T

900 +
800 +

L] cPU Time
700 +

E /0 Time
600

500

Time (sec)

400

300

200

100

all all all all 1000 1000 1000 1000
10% 25% 50% 10% 25% 50%

Optimization Configuration

Figure 4.18 Extended optimization wall-clock times for Tip12, Query Set 3

query set evaluates scores for 12,931,770 documents, or an average of 258,635 documents
per query (35% of the documents in the collection). 50% term-elimination reduces the
number of documents scored by 69%, to 80,210 per query.

The original optimization stays competitive by producing a more substantial reduction
in the number of documents scored. 1n 1000, 7,561 documents are evaluated per query—a
reduction of 97% in the size of the candidate document set. Thistrand atesinto areduction
in CPU time of 78% and an overall reduction in wall-clock time of 50% (1000 yields no
reduction in I/O time). Combining 50% term-elimination with the origina optimization
(1000 50%) produces the best overall performance, leading to a reduction in 1/0O time
of 25%, a reduction in CPU time of 84%, and a reduction in wall-clock time of 62%.
These results show that both the original optimization and term-elimination can produce a
substantial execution performance improvement even on relatively short queries.

Given that these queries are so small, we might expect retrieval effectiveness to suffer

considerably when the unsafe optimizations are applied. Table 4.14 and Figure 4.19 show

145



the retrieval effectiveness obtained with Query Set 3 on Tip12 for various optimizations.
Contrary to expectations, application of the optimizations can actually improve retrieval
effectiveness. Term-elimination of up to 50% dramatically improves precision at all levels
of recall. The original optimization improves precison at low recall, but displays its
characteristic deteriorationin precision at high recall levels. Adding 50% term-elimination
to the original optimization, however, producesthelargest improvement at low recall. Once
again, 1000 50% provides the ideal combination of execution performance and precision
at low recall for an interactive IR system.

We have also encountered another situation where retrieval effectiveness hasimproved
viathe removal of evidence from the queries. To investigate this phenomenon further, an
attempt was made to duplicate thisimprovement in retrieval effectiveness using atechnique
other than optimization. The hypothesis here is that the high frequency query terms are
polluting thefinal document scoresbecausethey haveagreater likelihood of occurring many
times within a document. Term-elimination removes this pollution, improving precision.
An dternative is to focus the contribution of high frequency query terms by placing them
in a passage operator. Using the technique proposed by Callan [11] (the same technique
used for Query Set 2), anew query set—Query Set 4—was created from Query Set 3 by
duplicating each core query, placing one copy inside a passage operator, and combining the
passage operator with the first core copy in a weighted sum, where the passage operator’s
weight is twice the weight of the first core copy.

The retrieva effectiveness obtained with the new query set is shown in Table 4.15 and
Figure 4.20. It is compared with the baseline version of Query Set 3 (Q3 all); Query
Set 3 plus 50% term-elimination (Q3 all 50%) is shown for reference. The new query
set (Q4 all) provides asubstantial improvement in retrieval effectiveness over the baseline
Query Set 3, supporting the hypothesis that retrieval effectiveness will improve when the

high frequency terms are focused in a passage operator. The improvement in retrieval

146



Table 4.14 Precision at standard recall ptsfor Tipl2, Query Set 3, optimized

Precision (% change) — 50 queries

Recall all all 50% all 75% 1000 1000 50% 1000 75%
0] 599|646 (+7.9) | 59.2 (—1.1) | 60.6 (+12) | 65.1 (+8.6) | 60.3 (+0.7)
10 | 33.8 | 36.6 (+8.5) | 335 (-0.9) | 358 (+6.1) | 37.3 (+10.6) | 340 (+0.6)
20 | 286 | 315 (+10.2) | 284 (-0.9) | 30.1 (+5.2) | 32.2 (+125) | 28.2 (-15)
30 | 249 | 27.8 (+11.7) | 244 (-2.0) | 25.0 (+05) | 27.7 (+11.0) | 23.0 (-7.6)
40 | 223 | 252 (+12.9) | 21.1 (-5.2) | 20.3 (=9.1) | 21.7 (-2.6) | 17.2(—23.0)
50 | 18.7 | 22.0 (+17.2) | 181 (-35) | 16.5(—11.8) | 17.4 (-6.9) | 14.4(—22.9)
60 | 15.6 | 18.3 (+17.4) | 14.7 (-6.1) | 10.6(—32.1) | 11.7(-25.0) | 9.7(-38.1)
70 | 12.8 | 14.6 (+14.0) | 105(-17.7) | 4.9(—617) | 53(-58.3) | 4.0(-68.7)
80| 9.7 | 108 (+12.0) | 7.8(-19.0) | 24(-751) | 2.7(-71.8) | 2.8(-70.8)
90| 59| 7.2(+220)| 52(-120) | 11(-81.9) | 15(-745)| 18(-70.2)
100 | 08| 09(+215) | 0.4(-47.0)| 01(-82.3)| 0.1(-8L4) | 02(-74.7)
average | 21.2 | 236 (+11.4) | 20.3 (-4.2) | 18.9(—10.9) | 20.3 (—4.3) | 17.8(—16.1)
1 T T T T

all ——

all 50% -

all 75% =

0.8 1000 < ]
1000 50% -=--
1000 75% -x--

Precision

Recall

Figure 4.19 Recall-Precision curves for Tipl12, Query Set 3, optimized

147




Precision

Table 4.15 Precision at standard recall ptsfor Tipl2, Query Sets3 and 4

Precision (% change) — 50 queries
Recall | Q3all | Q3all 50% Q4 all
0| 599 | 646 (+7.9) | 70.3 (+17.4)
10| 338 | 36,6 (+85) | 37.6 (+11.3)
20| 286 | 315 (+10.2) | 31.8 (+11.0)
30| 249 | 278 (+11.7) | 275 (+10.3)
40| 223 | 252 (+129) | 24.7 (+10.5)
50| 187 | 22.0 (+17.2) | 21.2 (+13.0)
60 | 156 | 18.3 (+17.4) | 175 (+11.8)
70| 128 | 146 (+14.0) | 143 (+11.4)
80| 9.7 | 108 (+12.0) | 110 (+135)
90 59 72 (+22.0) | 6.9 (+17.3)
100 0.8 09 (+215) | 09 (+16.5)
average | 21.2 | 23.6 (+11.4) | 239 (+13.1)
1 T T T T
Q3all —-—
Q3 all 50% -+
08 L Q4 all |

0.2 0.4

Recall

Figure 4.20 Recall-Precision curvesfor Tipl2, Query Sets3 and 4

148



1800 T

1600 +
1400 + L] cPU Time
1200 + E /0 Time

m

$ 1000 +

(O]

S

'_

all all 50% all *50% 1000 1000 50% 1000 *50%

Optimization Configuration

Figure 4.21 Extended optimization wall-clock times for Tip12, Query Set 4

effectiveness in Q4 all is smilar to that obtained in Q3 all 50% —dlightly better at low
recall, dightly worse at high recall.

Of course, we can apply our optimizationsto Query Set 4 aswell. Execution timesfor
various optimization configurations of Query Set 4 are shown in Figure 4.21 and retrieval
effectiveness is shown in Table 4.16 and Figure 4.22. Under application of the various
optimization techniques, Query Set 4 behaves similarly to Query Set 2 in terms of both
execution performance and retrieval effectiveness. The changes in precision seen across
various optimization configurations of Query Set 4 are essentialy “magnified” versions
of those seen in Query Set 2 (compare Table 4.16 with Table 4.13). In Query Set 4,
however, all 50% provides a notable improvement in retrieval effectiveness, while all
*50% is markedly worse. For these relatively short queries (with no structure other than
the passage operator), eliminating high frequency terms outside of the passage operator
improves precision, while eliminating high frequency terms inside the passage operator

worsens precision.

149



Table 4.16 Precision at standard recall ptsfor Tipl2, Query Set 4, optimized

Precision (% change) — 50 queries
Recall | all all 50% all *50% 1000 100050% | 1000 *50%
0| 703 | 735 (+4.6) | 61.4(-126) | 71.2 (+1.3) | 734 (+4.4) | 635 (—9.6)
10 | 37.6 | 405 (+7.7) | 36.3 (-3.5) | 379 (+0.9) | 408 (+84) | 382 (+1.7)
20 | 318 | 341 (+7.3) | 30.3 (—4.5) | 329 (+36) | 346 (+9.0) | 317 (-0.2)
30| 275|297 (+79) | 26.1 (-5.0) | 26.2 (—4.6) | 279 (+14) | 253 (-7.8)
40 | 24.7 | 26.8 (+8.7) | 225 (—8.8) | 20.9(—15.3) | 22.3 (—9.8) | 19.7(-20.2)
50 | 21.2 | 23.6 (+11.4) | 18.9(—10.9) | 17.5(—17.5) | 18.8(—11.4) | 15.9(—24.8)
60 | 17.5 | 195 (+11.8) | 15.2(-12.8) | 11.2(—35.8) | 12.4(—29.0) | 10.0(—43.0)
70 | 143 | 16.2 (+13.3) | 124(-131) | 5.6(-60.6) | 6.1(-57.2) | 4.7(-67.0)
80 | 11.0 | 126 (+15.1) | 9.0(-17.6) | 3.0(-725) | 35(-681) | 2.3(-79.3)
0| 69| 81(+175 | 57(-178) | 12(-820) | 16(-77.2) | 1.0(-86.1)
100 | 09| 12(+332) | 08(-152) | 02(-833)| 0.1(-852) | 0.1(-84.9
average | 239 | 26.0 (+85) | 21.7 (—94) | 20.7(-135) | 21.9 (-—8.4) | 19.3(—19.4)
1 T T T T
all ——
all 50%
all ¥*50% =
0.8 1000 < ]
1000 50% -=--
1000 *50% - *- -
c
Q
2
@
o

Recall

Figure 4.22 Recall-Precision curves for Tipl2, Query Set 4, optimized

150




1800 T

1600 +
L] cpu Time
1400 +
. 1/10 Time
1200 +
3
$ 1000 T
(O]
€ 800 1
£
600 +
400 +
200 +

Q3 Q3 Q3 Q4 Q4 Q4
all all 1000 all all 1000
50% 50% 50% 50%

Optimization Configuration

Figure 4.23 Extended optimization wall-clock timesfor Tipl2, Query Sets 3 and 4

Although improving retrieval effectiveness through query modification rather than op-
timization is perhaps more “theoretically sound,” the bottom line is which version gives
the best combination of retrieval effectiveness and execution performance. Figure 4.23
compares the execution performance of selected configurations of Query Sets 3 and 4,
and Table 4.17 and Figure 4.24 compare their retrieval effectiveness using the unoptimized
configuration of Query Set 3 (Q3 all) as the baseline. The best execution performance
is obtained in Q3 1000 50%, while the best overall retrieval effectiveness is obtained in
Q4 all 50% . The best compromiseis achieved by Q4 1000 50% , which matches the best
precision obtained at low recall and providesthe third best overall execution performance.
Although Q3 1000 50% provides an additional 44% reduction in wall-clock time over Q4
1000 50% , the substantially better precision at low recall obtained in Q4 1000 50% makes
it the better choice for an interactive IR system.

While eight term queries are certainly small compared to the much larger queries in

Query Sets 1 and 2, novice information retrieval system users are likely to enter even

151



Table4.17 Precision at standard recall ptsfor Tipl2, Query Sets 3 and 4, optimized

Precision (% change) — 50 queries

Recal | Q3 Q3 Q3 Q4 Q4 Q4
all | all50% 1000 50% all all 50% 1000 50%
0] 599 | 646 (+7.9) | 65.1 (+8.6) | 70.3 (+17.4) | 735 (+22.7) | 734 (+22.5)
10 | 338 | 366 (+85) | 37.3(+10.6) | 37.6 (+11.3) | 40.5(+20.0) | 40.8 (+20.7)
20 | 286 | 315(+10.2) | 32.2(+125) | 31.8 (+11.0) | 34.1(+19.1) | 34.6 (+20.9)
30 | 249 | 27.8 (+11.7) | 27.7 (+11.0) | 27.5(+10.3) | 29.7 (+19.1) | 27.9 (+11.9)
40 | 22.3 | 25.2 (+12.9) | 21.7 (-26) | 247 (+105) | 26.8(+20.1) | 223 (-0.3)
50 | 18.7 | 22.0(+17.2) | 174 (—6.9) | 21.2 (+13.0) | 236 (+26.0) | 188 (+0.2)
60 | 15.6 | 183 (+17.4) | 11.7(-25.0) | 17.5(+11.8) | 19.5(+25.0) | 12.4(—20.6)
70 | 128 | 146 (+140) | 53(-58.3) | 143 (+114) | 162(+26.2) | 6.1(~52.3)
80 | 97| 108(+120) | 27(-718) | 110 (+135) | 126 (+30.6) | 3.5(—63.8)
90 | 59| 72(+220) | 15(-745) | 69(+17.3) | 81(+37.8) | 1.6(-733)
100 | 08| 09(+215) | 01(-814) | 09(+165) | 12(+552) | 0.1(-82.8)
average | 21.2 | 23.6 (+11.4) | 20.3 (—4.3) | 23.9 (+13.1) | 26.0 (+22.7) | 219 (+3.6)
1 T T T T
Q3all —-—
Q3 all 50% -+
Q3 1000 50% -5
0.8 Q4 all - ]
Q4 all 50% -=--
Q4 1000 50% -*--
c
2
T
®
a

Recall

Figure 4.24 Recall-Precision curvesfor Tipl2, Query Sets 3 and 4, optimized

152




500 T

450 + L] cPU Time

400 + E /0 Time

350

300

250

Time (sec)

200

150

100

all all 25% all 50% 1000 1000 25% 1000 50%

Optimization Configuration

Figure 4.25 Extended optimization wall-clock times for Tip12, Query Set 5

smaller queries. For completeness, we evaluated our optimization techniques on a fifth
guery set, Query Set 5, generated from the title fields of TIPSTER topics 51-100. Each
query is simply a sum of the terms in the corresponding title field, with an average of
3 terms per query. Measurements were made using the same platform and experimental
methodology as above.

Execution performance results are shown in Figure 4.25. With 25% term elimination,
I/O time is reduced by 5%, CPU time is reduced by 24%, and overal time is reduced
by 15%. These improvements are modest because only queries with at least 4 terms are
affected by the optimization. Only 22 of the 50 queries comprise 4 or more terms. 50%
term elimination causes a 17% reduction in I/O time, a 55% reduction in CPU time, and an
overall wall-clock time reduction of 36%. All queries with more than 1 term are affected
by 50% term elimination, and all but 4 of the 50 queries consist of more than 1 term.

When our original optimization is applied (1000), I/O is unchanged, CPU time is
reduced by 61%, and overall time is reduced by 31%. All queries are affected by this

153



optimization, regardless of the number of query terms. Adding term elimination to our
original optimization yieldsthe samereductionin I/O asthat obtained with term elimination
aone. 1000 25% provides a 63% reduction in CPU time and a 34% reduction in overal
time, and 1000 50% providesa65% reduction in CPU time and a 42% reduction in overall
time.

Evenwiththesevery short queries, our original optimizationisabletoimproveexecution
performance by significantly reducing the size of the candidate document set. In the base
case (all), an average of 119,787 documents are evaluated per query. In 1000, an average
of 3,172 documents are evaluated per query, or 97% less than in the base case, leading to a
31% reduction in execution time. Although this execution time reduction is noticeable, it
isless than the 50+% reductions observed earlier for the larger query sets. Note, however,
that the base query set here takes relatively little time to evaluate in the first place, such
that relevance judgement processing becomes a substantial component of the overall cost.
Relevance judgement processing accounts for 53% of the total timein all and 82% of the
total time in 1000. If this time is factored out in both cases, the reduction in total time
provided by 1000 is actually 73%.

The impact on retrieval effectiveness when optimizing Query Set 5 is shown in Ta
ble 4.18 and Figure 4.26. Unlike the results obtained earlier, optimization never causes
retrieval effectiveness to improve. 25% term elimination incurs the smallest degradation
in retrieval effectiveness, although lessthan half of the queriesin the query set are affected
by the optimization. 1000 provides the next best level of retrieval effectiveness, includ-
ing good precision up to 30% recall. Adding term elimination to 1000 causes retrieval
effectiveness to deteriorate further with relatively little payback in terms of execution per-
formance. Withitsgood precision at low recall and 31% reductionin executiontime (73%if
relevance judgement processing is excluded), 1000 offersthe best combination of retrieval

effectiveness and execution performance.

154



Table 4.18 Precision at standard recall ptsfor Tip12, Query Set 5, optimized

Precision (% change) — 50 queries
Recall | all all 25% all 50% 1000 1000 25% 1000 50%
0| 66.6 | 66.6 (+0.0) | 58.8(-11.7) | 66.2 (—0.6) | 64.8 (—2.7) | 58.8(—11.6)
10 | 435 | 424 (-26) | 36.4(—16.2) | 426 (—2.1) | 415 (—4.6) | 35.2(—19.0)
20 | 37.0 | 36.1 (—25) | 30.2(-18.3) | 358 (—3.3) | 35.2 (—4.9) | 28.6(—22.6)
30 | 326 | 320 (—1.9) | 25.3(—22.4) | 294 (—9.7) | 28.6(—12.1) | 22.2(-31.8)
40 | 286 | 279 (—2.3) | 22.3(—22.1) | 21.9(—23.2) | 21.7(—24.1) | 17.0(—40.4)
50 | 245 | 240 (—1.9) | 189(—22.8) | 18.3(—25.2) | 18.2(—25.6) | 13.5(—44.8)
60 | 209 | 204 (—2.3) | 16.0(—23.6) | 11.3(—46.0) | 11.3(—45.9) | 7.3(—65.0)
70 | 156 | 15.2 (-3.1) | 12.0(-23.6) | 53(—66.1) | 53(—65.9) | 3.8(-75.9)
80| 121 | 11.8 (-2.7) | 9.0(-259) | 3.1(-743) | 31(-743) | 21(-823)
| 78| 74 (-48) | 55(-293) | 17(-776) | 1.7(-776) | 1.4(-824)
100| 09| 09 (-0.8) | 05(-411)| 02(-78.7) | 0.2(-787) | 0.0(-95.1)
average | 264 | 259 (-1.9) | 21.4(-19.0) | 21.4(—18.7) | 21.1(—20.1) | 17.3(—34.5)
1 T T T T
all ——
all 25% ——
all 50% =
0.8 1000 -~ ]
1000 25% -=--
\ 1000 50% -x--
C ‘\
Q
2
@
o

Recall

Figure 4.26 Recall-Precision curves for Tipl12, Query Set 5, optimized

155




eu |BM  |eM || Thy | el |/I€||eM | |eM | OTTT | g2/ |¥6E || B |[BM | el || %0Sx000T
0/ |28 | 88T ||ST9 |T8T | VeV |[EvE |¥6 | 6VC || 6V¥T | S¥6 | ¥0S || T2. | 20€ | 6T ||  %0S 000T
GoE |88 | /TZ||BM |eMU | || 86E | 60T |68Z | BM |eu |eU || 408 | 9SE | 8F ||  %SZ 000T
U |BU el U U B | ¥hy |¥2T | 0ZE||eu  |BM  |eu || G/8 | 86E | Ly || %OT 000T
02 |26 | 822 || €€9 |SOCZ |82F || 9Sv | /2T | 62€ || 2¥ST | EVOT | 66V || 956 | 82 | 80S 000T
eU  |BU |BMU || ¥S8 |98 | 8IE ||BM |BU |BMU | TOST | YOVT | 6E ||BMU |BM  |eu %0G « |[e
G6C | /0T | 88T || 0OFT | S96 | SEV || 0S| 202 | 8¥2 || €6SE | 880€ | SOS || 096 | 2vS | 8Tv %0G I[e
G6E | 6.T | 9T ||BM |BU  |BMU ||G99 |G/E | 062 | M |BM |eu | TBET | 266 | 61 %SZ e
U |eu el lBU U MU || T98 |OFS | TZE || BM |BM el | OS8T | EGET | LY %O0T |
€9y | 95¢ | /22 || T¥9T | 80ZT | €€¥ || 606 | 8/S | TEE || LTEV | LT8E | 00S || €612 | ¥89T | 60S e
el | ndd | o/ || ewol [ndd [ o/ | el [ndd o/l ewl [ ndd [ o/ || el [ ndd | o/l || uomeinbyuod
G 1S ABnO ¥ 1S ABnO € 1S Arnd 2 1S Aend T 1S ABNO uoreziwndo

(Spuodss) zTd11 Joj Arewins awn %00[0-|eM 6T 7 3Idel

156



4.7 Conclusions

In this chapter we have examined a variety of techniques for improving the execution
speed of structured queries, including both safe and unsafe optimizations. The safe tech-
niquesexplored here generally depend on theinverted fileimplementation satisfying certain
functionality requirements. It was hypothesized that two inverted list featuresin particul ar
would lead to reductions in 1/O and execution time. First, separating term weights from
proximity lists would free belief operators from the overhead of accessing proximity lists
and result in better execution performance. Thiswas showntobethecasein Section4.4.4.1,
where Query Set 3 (which contains no proximity operators) experienced a 20% reduction
in 1/0 time and a 7% reduction in wall clock time when evaluated using an inverted file
implementation that provides the requisite functionality.

This meager reduction in wall-clock time, however, is barely sufficient to justify the
optimization, especially when we consider the following. In Section 4.6 it was shown
that the retrieval effectiveness obtained with Query Set 3 could be significantly enhanced
through the use of the passage operator. This is consistent with other results [11, 21]
which show that using a passage operator, or proximity operatorsin general, can improve
retrieval effectiveness. This suggests that the kind of query that will benefit from this
safe optimization is one that should be augmented with proximity operators to improve
its retrieval effectiveness, making the safe optimization no longer applicable. It might be
better, therefore, to smplify the implementation and store term weights and proximity lists
together, since the proximity lists should be used in evaluating the query anyway. A final
answer to this question requires more work in the area of proper query formulation, and is
beyond the scope of thisinvestigation.

The second feature that was hypothesized to be useful is the ability to skip portions
of an inverted list. This comes into play when evaluating an intersection style operator
where one of the terms in the intersection is infrequent and can be used to constrain the

intersection process. While skipping opportunities were found in Query Sets1 and 2 (see

157



Section 4.6), they only amounted to an average of 25 to 46 long list objects per query.
The small improvement obtained in 1/0 was generally overshadowed by the extra CPU
costs incurred in the more complex split list implementation. However, given that the
more complex inverted list implementation generally pays for itself, it is still worthwhile
to support this optimization. There will inevitably be situations where an intersection can
be significantly constrained and this optimization will produce alarge payback.

We explored a third safe optimization that eliminates redundant evaluation of con-
structed concepts during the final query evaluation phase. As with the other safe optimiza-
tions, the benefit derived from this optimization depends on the makeup of the query. A
greater improvement was obtained in Query Set 2 than in Query set 1 because Query
Set 2 has a larger proportion of proximity operators. In this case, the improvement is
significant—we measured a 13% reduction in total wall-clock time. This optimization is
independent of the inverted file implementation and is always worthwhile. It can also be
extended asfollows. The temporary inverted lists built during the preprocessing phase can
be cached across queries, potentially eliminating the need to evaluate the same constructed
concept in the future. Furthermore, frequently accessed temporary inverted lists can even-
tually be written to the inverted file, treating the corresponding constructed concepts as if
they were terms. To fully support this, the document indexing system must be modified
to recognize the saved constructed concepts and appropriately update the corresponding
inverted lists. The net result is automatic indexing of frequently used phrases.

The unsafe optimization introduced in this thesis generated much more rewarding
results. Our experimental results show that for highly structured queries (e.g., Query Sets
1 and 2), our optimization will reduce query processing time by over 50% with no noticeable
degradation in precision until better than 70% recall. The basic hypothesis here was that
the candidate document set could be significantly constrained with minimal effort, which
in turn would produce a significant savings in query evaluation execution time. Using

the heuristics developed in Section 4.2.2 and the inverted list implementation described in

158



Section 4.3, we were able to efficiently reduce the size of the candidate document set by
over 90%. This was shown to produce a significant savings in CPU time and a substantial
improvement in overall execution performance, |eading to the acceptance of the hypothesis.

We also applied our optimization technique to short, unstructured queries. The results
in this case were very rewarding aswell. On queries comprising an average of 8 terms, the
candidate document set reduction was still better than 90%, leading to a 50% reduction in
wall-clock time. Theimpact on retrieval effectiveness was somewhat more noticeable. For
example, in Table 4.14, our top 1000 optimization (1000) produces worse precision than
the unoptimized version after 40% recall. Note, however, that the precision at 30% recall
is 25%. Since this result was generated using a query set with an average of 328 relevant
documents per query, 40% recall is over 400 documents down in the ranked listing. Inan
interactive system, thislevel of retrieval effectiveness will still be quite acceptable.

Our optimization technique mainly attacks the CPU costs of evaluating a query. We
considered additional techniques specifically aimed at reducing I/O. In particular, term-
elimination was evaluated. This technique was originally introduced in the context of
the vector-space retrieval model [10]. We have described a novel application of term-
elimination to structured queries, including an adjustable selectivity based on estimated
contribution to final document score. 50% term-elimination alone was found to reduce
I/0O time by 17% to 25%. Moreover, in queries without passage operators, it produced
reductionsinwall-clock time comparableto our top 1000 optimization. The best execution
performance, however, was obtained by combining our original top 1000 optimization with
50% term-elimination, which reduced wall-clock time by an additional 8% to 38% over
either optimization alone.

Perhaps surprisingly, term-elimination of up to 50% generally caused precision to
improve in query sets without passage operators. The improvement was quite dramatic in
8 term, unstructured queries. We suspected that obtaining such an improvement via the

remova of evidence is actually indicative of a problem in either the query formulation

159



or the retrieval model. This was pursued further by augmenting the 8 term, unstructured
gueries with passage operators. The new queries were able to better the improvement in
retrieval effectiveness produced by the optimization, confirming our suspicions. Inthevery
short, 3 term unstructured queries, optimization never caused an improvement in retrieva
effectiveness, suggesting that when queries are sufficiently short, all terms in the query
must be considered to achieve adequate recall.

In the case of passage operators, term-elimination provides little improvement in exe-
cution performance unless applied within the passage operator. Doing so generally caused
retrieval effectiveness to suffer. Our top 1000 optimization was much more robust with
respect to the passage operator, providing at least a 61% reduction in wall-clock time with
no impact on precision a low recal. Applying 50% term-elimination just on the out-
Side of the passage operator was found to actually improve precision markedly on short
gueries (Query Set 4). Thiswas less true on larger queries (Query Set 2). Adding 50%
term-elimination just on the outside of the passage operator to the top 1000 optimization
improved its precision as well.

In general, the best combination of execution performance and precision at low recall
was found by combining 50% term-elimination with the top 1000 optimization. In an
interactive system, this optimization is unlikely to impact the user’s perception of the
effectiveness of the system. However, the reduction in query processing time by morethan
half is certain to impact the user’s perception of the usefulness of the system. Moreover,
the level of aggressiveness for both of these optimizationsis tunable at run-time, allowing
the user to control the tradeoff between speed and precision.

The execution performance improvements obtained with the optimization technique
introduced here compare favorably with results reported by others. The optimization
proposed by Buckley and Lewit [10] produces reductionsin CPU time ranging from 37%
to 84%, where the greatest savings are obtained when only the top document in the final

ranking is guaranteed to be correct. These results were obtained using the relatively small

160



CACM and INSPEC document collections, which contain 3,204 and 12,684 documents,
respectively. Buckley and Lewit do not present standardized retrieval effectivenessresults,
making it difficult to fully assess the effect of this optimization on retrieval effectiveness.
Their optimizationis similar to the term-elimination optimization evaluated here, however,
and we obtained very good retrieval effectiveness with term-elimination on sufficiently
large queries. It is notable that this optimization does not work well on very short queries.

The pruning optimization proposed by Harman and Candela [41] produces a 62%
reduction in candidate set size and a 29% reduction in total search time with essentially
no reduction in average precision. These results were obtained using the Cranfield test
collection of 1,400 abstracts. On the CACM, INSPEC, and 1,033 document MEDLARS
collection, Smith’'s [79] list pruning optimization reduces query evaluation time 11% to
51%. The effect of list pruning on retrieval effectivenessissimilar to that obtained with our
optimization—precision at low recall is unchanged while precision at higher recall levels
degrades. Smith does not report final candidate document set sizes after pruning.

Using the 2 GB TIPSTER document collection, Moffat and Zobel [58] reduce the
size of the candidate document set nearly 99% by fixing the number of document score
accumulators. Thisin turn producesa55% reduction in CPU time during query evaluation,
withnolossinaverageretrieval effectiveness. Using just theWall Street Journal documents
in the TIPSTER collection (532 MB), Persin’s [65] optimization reduces the candidate
document set size by 98%, yielding an 80% reduction in query evaluation CPU time with
no lossin average retrieval effectiveness.

Turtle and Flood [89] use a 254 MB document collection to evaluate their max-score
optimization in terms of the number of postings and intermediate document scores read
or written. With document-at-a-time evaluation, max-score reduces the total number of
read and write operations 25% to 74%. The amount of savings depends on the number of
final document scores guaranteed to be correct and whether or not term occurrence location

information isused. The largest savings (74%) occurs when term occurrence locations are

161



used and the top 20 documents in the final ranking are guaranteed. With term-at-a time
eva uation, the savings range from 53% to 85%, with the greatest savings occurring under
the same conditions as before. While the savings in number of postings and intermediate
document scores read or written is clear, it is difficult to infer the real savingsin terms of
CPU time, 1/0 time, and total execution time. Charging the same cost to each posting read
is mideading if the postings are compressed, and elimination of individua posting reads
does not necessarily trandate into 1/0 savings—if the amount of data skipped within an
inverted list does not exceed the file access granularity, then no I/O savings are realized.
Admittedly, elimination of the need to process these postings should result in comparable
CPU savings.

The main characteristic that distinguishes our optimization technique fromthe onesdis-
cussed aboveistheway inwhich the candidate document set is popul ated. Our optimization
usesinformation created and stored at indexing time (thetop document lists) to establish the
candidate document set beforefinal evaluation of the query. The other optimizations above
establish the candidate document set asquery eval uation proceeds, using either upper bound
document scores or candidate document set insertion and modification thresholdsto control
the population process. The use of upper bound document scores has the advantage that
guarantees can be made about the final document ranking. Adapting asimilar strategy to a
structured query environment is not straightforward, since each query operator will require
adifferent upper bound calculation. In particular, the not operator is troublesome and may
requirethat upper and lower bounds (i.e., arange) be calculated. Thisisan interesting area
for futurework. The bottom line here, however, isthat our optimization technique produces
competitive reductions in execution time, causes no noticeable degradation in precision at
low recall, and works for structured queries.

One topic not directly addressed in the performance evaluation above is the impact of
our implementation and optimization techniques on main memory usage. Optimization

techniques that reduce the size of the candidate document set provide an immediate main

162



memory savings opportunity for systems that alocate a document score accumulator for
every member of the candidate document set [58, 61]. If the size of the candidate document
set is reduced, the number of document score accumulators can be reduced accordingly.
This main memory savings, however, is advantageous only to systemsthat evaluate queries
term-at-a-time. For systemsthat eval uate queries document-at-a-time (such as INQUERY),
the number of document score accumul ators can be reduced trivially to the number of final
document scores that will be returned to the user. For example, assume that the user will
be shown n final document scores. Thefirst nfinal document scores calculated are saved in
the accumulators. Then, as each remaining final document score is calculated, it replaces
one of the saved scores only if it exceeds the smallest currently saved score. Otherwise
it isdiscarded. This scheme has an additional computational cost to update and maintain
the n final document scores, although the additional cost is similar to that incurred by a
system that uses term-at-a-time eval uation and must |ocate and update document scoresin a
constrained accumulator space. Furthermore, a sorted search structure (e.g., binary search
tree) allowsthe document-at-a-timeimpl ementation to bypass the final sorting step required
by the term-at-a-time implementation to present the final document scoresin ranked order.

Another potential main memory savingsis provided by our Mneme-based inverted file
implementation. In thisimplementation, even if aterm appears more than once in aquery,
only one copy of the inverted list for that term will be read into main memory. Each
occurrence of thetermin the query tree will refer to the term’sinverted list using the object
identifier for the Mneme object that contains the inverted list (or the head of the inverted
list). Mneme awaysresolves multiplereferencesfor the same object to asingle copy of that
object in main memory. Thisisabasic but central concept in a persistent object store. A
simpler inverted file implementation might very well retrieve as many copies of an inverted
list as there are occurrences of the term in the query.

Finally, while our implementation and experimental evaluation have been carried out in

the context of aninference network-based retrieval model, thetechniquesdescribed hereare

163



generaly applicable to any statistical retrieval model that supports structured queries. As
these retrieval models are applied to larger and larger document collections, optimization

techniques such as these will become ever more crucial to the success of these systems.

164



CHAPTER S
CONCLUSIONS

The goa of this thesis was to provide solutions to the challenges in information re-
trieval created by large, dynamic document collections, and to lay the foundation for a
comprehensive information management system that incorporates sophisticated document
management. We have addressed a number of issues related to indexing and modifying
a document collection in Chapter 3, including the design, implementation, and evaua
tion of an inverted file architecture based on a persistent object store. Our design and
implementation was guided by the following principles:

e Localize sort and insert operations.

¢ Build intermediate resultsin main memory.
e Minimizel/O.

e Favor sequentia 1/0 over random I/0O.

e Minimize access to the existing inverted file.

We described an indexing system that providesabulk indexing rate of 530 M B per hour,
provides an incremental indexing rate of 265 MB per hour, and supports a fully dynamic
document collection. These results lead us to conclude that our indexing system design
principles are sound and a persistent object store provides an effective solution for inverted
file management.

In Chapter 4, we addressed the problem of providing fast evaluation of structured

gueries in information retrieval and presented a new, unsafe optimization technique that

165



returns a 50% reduction in execution time with no noticeable degradation in retrieval
effectiveness. We explored a variety of other optimization techniques and presented a
comprehensive evaluation of the tradeoffs between optimization aggressiveness, speed,
and retrieval effectiveness.

Our safe optimizations dealt primarily with the overheads imposed by storing and
processing term occurrence locations. Storing term occurrence locationsincreases the size
of theinverted file by 78% and adds an additional 6% to the total indexing time. Proximity
operators that use term occurrence locations require an extra preprocessing step during
guery evaluation, although this was measured to be only 12% of the total query evaluation
time for queries with 36% to 54% of their terms appearing inside proximity operators.
Moreover, the temporary inverted lists built during the preprocessing step can be cached
for future use.

The additional indexing and retrieval overhead imposed by proximity operators appears
to be small interms of computation. Attempts at further reducing these overheads through
the use of more complex inverted list structures were generally ineffective. Compared
to a smple linked list implementation for long inverted lists, a directory based split list
implementation served only to increase indexing time with little payback during retrieval
for the queries that we considered. The greatest cost of storing term occurrence locations
is a near doubling in the size of the inverted file. However, given the generally better
retrieval effectiveness obtained through the use of operators that require term occurrence
locations (e.g., the passage operator), the additional overheads of storing and processing
term occurrence locations are well worthwhile.

Our results lead us to conclude that:

e Safe optimizations are generally ineffective, although they provide contingency so-

lutions.

e Candidate set reduction isageneral, robust optimization for structured queries.

166



e Term-eliminationis amost as good.

e A combination of candidate set reduction and term-elimination is best.

The contributions of thisthesiswork are primarily practical in nature, with implications
for information retrieval system implementation. The main contributions are summarized

below:

¢ Implementation and evaluation of afast, scalable indexing system.

e Design and implementation of an inverted file management architecture using “off-
the-shelf” data management technology, providing opportunities for all aspects of
an information retrieval system to benefit from traditional database management

features, such as buffer management and efficient low-level storage management.

e Development and evaluation of an incremental indexing strategy enabled by the

above architecture.

e Ground work for a comprehensive information management system where informa-

tion retrieval is afull-featured component.

¢ Development and evaluation of astructured query optimization that reducesexecution

time by over 50% with no noticeable impact on retrieval effectiveness.

e Aninvestigation of the impact of high frequency query terms in short, unstructured
gueries and how to handle them for best retrieval effectiveness and execution perfor-

mance.

5.1 Futurework

A dignificant contribution of this thesis work was the integration of INQUERY and

Mneme. The product of this integration is an information retrieval system positioned to

167



explore a number of new issues in scalable, multi-user information retrieval. We consider

possible future directions here.

511 Small updates

The solution presented in Chapter 3 for supporting document additions works best when
the new batch of documentsisrelatively large. If small batch updates are more common,
the solution must be extended. Thefirst possible extension isstraightforward. If the partia
inverted listsfor the entire batch of new documents can be buffered in asingle batch buffer
(Figure3.3), the Merger can be bypassed and the partial inverted lists can be handed directly
to the Inverted File Manager for addition to the existing inverted file. In this case, there
will only be a single temporary file block, obviating the merge step. This also eliminates
the I/O that would otherwise be required to write the temporary file block after the batch is
parsed and read the temporary file block during the merge.

If the batch buffer islarge, it may take awhile beforeadocument presented to the system
for indexing actually becomes visible in the inverted file. To accommodate environments
where documents must be indexed and available immediately, the system can be extended
to take advantage of the following observation: once a document has been parsed and
flushed to the batch buffer, partial inverted lists for that document are availablein the batch
buffer. The batch buffer in main memory isessentialy an extension of the existing inverted
file on disk. Documents that have been parsed and added to the batch buffer can be made
visible during query processing by modifying the Inverted File Manager to check the batch
buffer for relevant inverted list information.

For example, suppose aquery isbeing processed involving theterm “cat”. The Inverted
File Manager will first retrieve the inverted list for “cat” from the existing inverted file.
When the end of that list is reached, the batch buffer is checked to see if it contains a
partial inverted list for “cat”. If it does, query processing continues with this additional

information. Since the partia inverted list in the batch buffer will eventually be appended

168



totheexistinginverted list on disk, the sequential processing of inverted list contents during
guery processing transitions smoothly from the on-disk version to the batch buffer version.

This solution assumes that document indexing and query processing can run simulta-
neoudy and share main memory. A reasonable way to support this configuration is with
threads. A document indexing thread handles requests to add new documents to the docu-
ment collection. The new documents are parsed, inverted, and their partial inverted listsare
added to the batch buffer. When the batch buffer isfull, it isflushed directly to the existing
inverted file, as described in the first extension above. Meanwhile, a query evauation
thread handles requests to process queries and interacts with the Inverted File Manager as
usual. The main issues are coordination of the threads with suitable concurrency control

mechanisms and proper interaction with the Inverted File Manager.

5.1.2 Multi-user support

Although the current implementation does support concurrency control, recovery, and
transactions, these issues have yet to be explored in a systematic fashion. In particular,
an informationretrieval system offers opportunitiesto relax the consistency and coherency
constraints typically imposed by traditional data processing applications. For example,
since query results are actually estimates based on the information available in the inverted
file, aslong as a result is internally consistent, it is reasonable to return this result to the
user. If the underlying inverted file management system can identify (and retrieve) the last
consistent version of the database before the current write transaction began, then during
guery evaluation the retrieval engine need never block on inverted list data that is locked
for update [69]. This scheme must be tailored to suit the particular visibility requirements
of the system (i.e., how soon new documents must be available in the system) and the rate
of new document additions.

Other issues worth pursuing involve log file management for transactions and recovery.

The kind of updates that an inverted file will experience are relatively constrained, and

169



include append operations to existing objects, creation of new objects, and rewriting of
the magjority of the objects in the database. The first two activities occur during document
additions and are the most common. The last activity occurs during the occasional purge
of deleted documents. This characterization of modification behavior combined with apre-
dictable occurrencerate can be used to customi ze transaction and recovery |og management

and improve performance.

5.1.3 Hardware based optimization

Thefinal areafor futurework that we propose hereisbased on our rel ativelack of success
at significantly reducing 1/0O costs during query evaluation. In fact, since our optimization
technique provides such a significant reduction in CPU time, it shifts the query evaluation
cost model from being CPU bound to being 1/0 bound. Our attempts at attacking these I/0
costs with sophisticated data structures and agorithmswere minimally successful.

This suggests that lower-level hardware support must be pursued to obtain true scala-
bility. Techniquessuch asdisk striping[14], parallel processing, and distributed computing
need to be investigated more thoroughly. Previous work has been done in this area [83],
but not in the context of the sophisticated retrieval models considered here. Using the
architecture that has been built for this thesis work, substantial insights can be gained into
the efficacy of these hardware techniques.

Improvementsin 1/O speed, either through the approaches suggested above or through
advancesin magnetic disk speed, will shift the dominant cost back to CPU timeand increase
the importance of optimization techniques such as ours. Reductions in 1/O speed, on the
other hand, decrease the benefit derived from these optimization techniques. In particular,
optical disk environments introduce a substantially different query evaluation cost model
and require areevaluation of inverted fileimplementation and query optimization decisions.
While an investigation of these issuesis beyond the scope of this dissertation, we note that

our inverted filearchitectureiswell suited to such aninvestigation. The ability to customize

170



the inverted file implementation and control the low level storage and access mechanisms
will greatly facilitate an exploration of appropriate file organizations and optimizations for

optical disk environments.

171



172



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

BIBLIOGRAPHY

Belkin, N. J. and Croft, W. B. Retrieval techniques. In M. E. Williams, editor, Annual
Review of Information Science and Technology, volume 22, pages 109-145. Elsevier
Science Publishers, New York, 1987.

Bell, T. C., Moffat, A., Nevill-Manning, C. G., Witten, I. H., and Zobel, J. Data
compression in full-text retrieval systems. J. Amer. Soc. Inf. Sci., 44(9):508-531, Oct.
1993.

Biliris, A. An efficient database storage structure for large dynamic objects. In Proc.
8th |EEE Inter. Conf. on Data Engineering, pages 301-308, Tempe, AZ, Feb. 1992.

Biliris, A. The performance of three database storage structures for managing large
objects. In Proc. of the ACM SGMOD Inter. Conf. on Management of Data, pages
276-285, San Diego, CA, June 1992.

Blair, D. C. An extended relational document retrieval model. Inf. Process. & Mgmnt.,
24(3):349-371, 1988.

Bookstein, A., Klein, S. T., and Ziff, D. A. A systematic approach to compressing a
full-text retrieval system. Inf. Process. & Mgmnt., 28(6):795-806, 1992.

Brown, E. W. Fast evaluation of structured queriesfor information retrieval. In Proc.
of the 18th Inter. ACM SIGIR Conf. on Research and Development in Information
Retrieval, pages 3038, Seattle, WA, July 1995.

Brown, E. W., Cdlan, J. P, and Croft, W. B. Fast incremental indexing for full-text
information retrieval. In Proc. of the 20th Inter. Conf. on Very Large Databases
(VLDB), pages 192—202, Santiago, Sept. 1994.

Brown, E. W,, Cdlan, J. P, Croft, W. B., and Moss, J. E. B. Supporting full-text
information retrieval with a persistent object store. In Proc. of the 4th Inter. Conf.
on Extending Database Technology (EDBT), pages 365-378, Cambridge, UK, Mar.
1994.

Buckley, C. and Lewit, A. F. Optimization of inverted vector searches. In Proc. of the
8th Inter. ACM S GIR Conf. on Research and Development in Information Retrieval,
pages 97-110, June 1985.

Cadlan, J. P. Passage-level evidence in document retrieval. In Proc. of the 17th Inter.
ACM SGIR Conf. on Research and Development in Information Retrieval, pages
302—310, Dublin, July 1994.

173



[12] Cdlan, J. P, Croft, W. B., and Harding, S. M. The INQUERY retrieval system. In
Proc. of the 3rd Inter. Conf. on Database and Expert Systems Applications, Sept. 1992.

[13] Carey, M. J.,, DeWitt, D. J, Richardson, J. E., and Shekita, E. J. Object and file
management in the EXODUS extensible database system. In Proc. of the 12th Inter.
Conf. on \ery Large Databases (VLDB), pages 91-100, Kyoto, Aug. 1986.

[14] Chen, P. M., Lee, E. K., Gibson, G. A., Katz, R. H., and Paterson, D. A. RAID:
High-performance, reliable secondary storage. ACM Comput. Surv., 26(2):145-185,
June 1994.

[15] Comer, D. The ubiquitous B-tree. ACM Comput. Surv., 11(2):121-137, 1979.

[16] Cormen, T. H., Leiserson, C. E., and Rivest, R. L. Introduction fo Algorithms. The
MIT PresssMcGraw-Hill Book Company, Cambridge, MA, 1990.

[17] Crawford, R. G. Therelational model ininformation retrieval. J. Amer. Soc. Inf. i,
32(1):51-64, 1981.

[18] Crawford, R. G. and MacLeod, I. A. A relational approach to modular information
retrieval systems design. In Proc. of the 41st Conf. of the American Society for
Information Science, 1978.

[19] Croft, W. B. Document representation in probabilistic modelsof informationretrieval.
J. Amer. Soc. Inf. Sci., 32(6):451-457, Nov. 1981.

[20] Croft, W. B. Experiments with representation in a document retrieval system. Inf.
Tech.: Res. Dev, 2(1):1-21, 1983.

[21] Croft, W. B., Cook, R., and Wilder, D. Providing government information on the
internet: Experienceswith THOMAS. InProc. of the 2nd Annual Conf. onthe Theory
and Practice of Digital Libraries (Digital Libraries’95), Austin, TX, June 1995.

[22] Croft, W. B. and Harper, D. J. Using probabilistic models of document retrieval
without relevance information. J. Documentation, 35(4):285-295, Dec. 1979.

[23] Croft, W. B. and Savino, P. Implementing ranking strategies using text signatures.
ACM Trans. Office Inf. Syst., 6(1):42—62, Jan. 1988.

[24] Cruden, A., Adams, A. D., Irwin, C. H., and Waters, S. A. Complete concordance to
the Holy Scriptures of the Old and New Testaments. Holt, Rinehart and Winston, New
York, 1949.

[25] Cutting, D.and Pedersen, J. Optimizationsfor dynamicinverted index maintenance. In
Proc. of the 13th Inter. ACM S GIR Conf. on Research and Devel opment in I nformation
Retrieval, pages 405411, 1990.

174



[26] DeFazio, S., Daoud, A., Smith, L. A., Srinivasan, J., Croft, B., and Cdlan, J. Inte-
grating IR and RDBMS using cooperative indexing. In Proc. of the 18th Inter. ACM
S GIR Conf. on Research and Development in Information Retrieval, pages 84-92,
Seattle, WA, July 1995.

[27] Deogun, J. S. and Raghavan, V. V. Integration of information retrieval and database
management systems. Inf. Process. & Mgmnt., 24(3):303-313, 1988.

[28] Elmasri, R. and Navathe, S. B. Fundamentals of Database Systems. The Ben-
jamin/Cummings Publishing Company, Inc., Redwood City, CA, 1989.

[29] Faoutsos, C. Access methods for text. ACM Comput. Surv., 17:50-74, 1985.

[30] Faoutsos, C. and Christodoulakis, S. Signaturefiles: Anaccess method for documents
and itsanalytical performance evaluation. ACM Trans. Office Inf. Syst., 2(4):267-288,
Oct. 1984.

[31] Faoutsos, C. and Jagadish, H. V. Hybrid index organizations for text databases.
In Proc. of the 3rd Inter. Conf. on Extending Database Technology (EDBT), pages
310-327, 1992.

[32] Faoutsos, C. and Jagadish, H. V. On b-treeindices for skewed distributions. In Proc.
of the 18th Inter. Conf. on \ery Large Databases (VLDB), pages 363—-374, Vancouver,
1992.

[33] Fox, C. A stop list for general text. SGIR Forum, 24(1-2):19-35, 1990.

[34] Fox, C. Lexical analysis and stoplists. In W. B. Frakes and R. Baeza-Yates, editors,
Information Retrieval: Data Structures & Algorithms, chapter 7, pages 102-130.
Prentice Hall, Englewood Cliffs, NJ, 1992.

[35] Fox, E.A.andLee, W. C. FAST-INV: A fast algorithmfor building largeinverted files.
Technical Report TR-91-10, VPI& SU Department of Computer Science, Blacksburg,
VA, March 1991.

[36] Frakes, W. B. Stemming algorithms. In W. B. Frakes and R. Baeza-Yates, editors,
Information Retrieval: Data Structures & Algorithms, chapter 8, pages 131-160.
Prentice Hall, Englewood Cliffs, NJ, 1992.

[37] Graefe, G. Query evauation techniques for large databases. ACM Comput. Surv.,,
25(2):73-170, June 1993.

[38] Grossman, D. A. and Driscoll, J. R. Structuring text within a relational system. In
Proc. of the 3rd Inter. Conf. on Database and Expert Systems Applications, pages
7277, Sept. 1992.

[39] D. Harman, editor. The Second Text REtrieval Conference (TREC-2), Gaithersburg,
MD, 1994. National Institute of Standards and Technology Specia Publication 500-
215.

175



[40] D.Harman, editor. The Third Text REtrieval Conference (TREC-3), Gaithersburg, MD,
1995. National Institute of Standards and Technology Specia Publication 500-225.

[41] Harman, D. and Candela, G. Retrieving records from a gigabyte of text on a mini-
computer using statistical ranking. J. Amer. Soc. Inf. ci., 41(8):581-589, Dec. 1990.

[42] Harman, D., Fox, E., Baeza-Yates, R., and Lee, W. Inverted files. In W. B. Frakes
and R. Baeza-Yates, editors, Information Retrieval: Data Sructures & Algorithms,
chapter 3, pages 28-43. Prentice Hall, Englewood Cliffs, NJ, 1992.

[43] Heaps, H. S. Information Retrieval, Computational and Theoretical Aspects. Aca
demic Press, Inc., New York, 1978.

[44] Hessdl, A. A History of Libraries. The Scarecrow Press, New Brunswick, NJ, 1955.
Trandated by Reuben Peiss.

[45] Jannink, J. Implementing deletion in B*-Trees. SGMOD RECORD, 24(1):33-38,
Mar. 1995.

[46] Jing, Y. and Croft, W. B. An association thesaurus for information retrieval. In Proc.
of RIAO 94 Conf., pages 146-160, New York, Oct. 1994.

[47] Knaus, D. and Schauble, P. Effective and efficient retrieval from large and dynamic
document collections. In Harman [39], pages 163-170.

[48] Kohlenberger, J. R. The NRSV concordance unabridged: including the apocryphal /
deuterocanonical books. Zondervan, Grand Rapids, M1, 1991.

[49] Lamb, C., Landis, G., Orenstein, J.,, and Weinreb, D. The ObjectStore database
system. Commun. ACM, 34(10):50-63, Oct. 1991.

[50] Lehman, T. J. and Lindsay, B. G. The starburst long field manager. In Proc. of the
15th Inter. Conf. on \eery Large Databases (VLDB), pages 375-383, Amsterdam, Aug.
1989.

[51] Linoff, G. and Stanfill, C. Compression of indexeswith full positional informationin
very large text databases. In Proc. of the 16th Inter. ACM S GIR Conf. on Research
and Development in Information Retrieval, pages 88-95, Pittsburgh, PA, June 1993.

[52] Lucarella, D. A document retrieval system based on nearest neighbour searching.
J. Inf. i, 14(1):25-33, 1988.

[53] Lynch, C. A. and Stonebraker, M. Extended user-defined indexing with application to
textual databases. In Proc. of the 14th Inter. Conf. on \ery Large Databases (VLDB),
pages 306—317, 1988.

[54] MacLeod, |. A. SEQUEL asalanguagefor document retrieval. J. Amer. Soc. Inf. i,
30(5):243-249, 1979.

176



[55] MacLeod, I. A. and Crawford, R. G. Document retrieval as a database application.
Inf. Tech.: Res. Dev., 2(1):43-60, 1983.

[56] Maron, M. E. and Kuhns, J. L. On relevance, probabilistic indexing and information
retrieval. J. ACM, 7(3):216-244, July 1960.

[57] Moffat, A. and Zobel, J. Compression and fast indexing for multi-gigabyte text
databases. Australian Comput. J., 26(1):1-9, February 1994.

[58] Moffat, A. and Zobel, J. Fast rankingin limited space. In Proc. 10th | EEE Inter. Conf.
on Data Engineering, pages 428437, Feb. 1994.

[59] Moffat, A. and Zobel, J. Self-indexing inverted files. In Proc. Australasian Database
Conf., Christchurch, New Zealand, January 1994.

[60] Moffat, A. and Zobel, J. Self-indexing inverted files for fast text retrieval. Technical
Report 94/2, Collaborative Information Technology Research Institute, Department
of Computer Science, Royal Melbourne Institute of Technology, Australia, Feb. 1994.

[61] Moffat, A., Zobel, J., and Sacks-Davis, R. Memory efficient ranking. Inf. Process. &
Mgmnt., to appear.

[62] Moss, J. E. B. Design of the Mneme persistent object store. ACM Trans. Inf. Syst.,
8(2):103-139, Apr. 1990.

[63] Panagopoulos, G. and Faloutsos, C. Bit-diced signature files for very large text
databases on a paralel machine architecture. In Proc. of the 4th Inter. Conf. on
Extending Database Technology (EDBT), pages 379-392, Cambridge, UK, Mar. 1994.

[64] Perry, S.A.and Willett, P. A review of theuse of inverted filesfor best match searching
in information retrieval systems. J. Inf. Sci., 6(2-3):59-66, 1983.

[65] Persin, M. Document filtering for fast ranking. In Proc. of the 17th Inter. ACM
S GIR Conf. on Research and Development in Information Retrieval, pages 339-348,
Dublin, July 1994.

[66] Pfeifer, U. and Fuhr, N. Efficient processing of vague queries using a data stream
approach. InProc. of the 18th Inter. ACM S GIR Conf. on Research and Devel opment
in Information Retrieval, pages 189-197, Sesttle, WA, July 1995.

[67] Putz, S. Using arelational database for an inverted text index. Technical Report
SSL-91-20, Xerox Palo Alto Research Center, Jan. 1991.

[68] Rgashekar, T. B. and Croft, W. B. Combining automatic and manual index rep-
resentations in probabilistic retrieval. J. Amer. Soc. Inf. Sci., 46(4):272-283, May
1995.

[69] Ridgway, J. Persona communication. Mneme design team, University of Mas-
sachusetts, 1995.

177



[70] Robertson, S. E. Theprobability ranking principleinIR. J. Documentation, 33(4):294—
304, 1977.

[71] Robertson, S. E. and Sparck Jones, K. Relevance weighting of search terms. J. Amer.
Soc. Inf. i, 27(3):129-146, May 1976.

[72] Salton, G., Fox, E. A., and Wu, H. Extended boolean information retrieval. Commun.
ACM, 26(11):1022-1036, Nov. 1983.

[73] Salton, G. and McGill, M. J. Introduction to Modern Information Retrieval. McGraw-
Hill, New York, 1983.

[74] Saxton, L. V. and Raghavan, V. V. Design of an integrated information re-
trieval/database management system. |EEE Trans. Know. Data Eng., 2(2):210-219,
June 1990.

[75] Schauble, P SPIDER: A multiuser information retrieval system for semistructured
and dynamic data. In Proc. of the 16th Inter. ACM S GIR Conf. on Research and
Development in Information Retrieval, pages 318-327, Pittsburgh, June 1993.

[76] Shoens, K., Tomasic, A., and Garcia=Molina, H. Synthetic workload performance
anaysis of incremental updates. In Proc. of the 17th Inter. ACM SGIR Conf. on
Research and Development in Information Retrieval, Dublin, July 1994.

[77] Singhal, V., Kakkad, S. V., and Wilson, P. R. Texas, an efficient, portable persistent
store. In Proc. of the 5th Inter. Workshop on Persistent Object Systems, pages 11-33,
San Miniato, Italy, Sept. 1992.

[78] Smeaton, A.F. andvan Rijsbergen, C. J. Thenearest neighbour problemininformation
retrieval. An algorithm using upperbounds. In Proc. of the 4th Inter. ACM S GIR Conf.
on Research and Development in Information Retrieval, pages 83-87, Oakland, CA,
1981.

[79] Smith, M. E. Aspects of the p-norm model of information retrieval: Syntactic query
generation, efficiency, and theoretical properties. Technical Report TR 90-1128 (Ph.D.
Thesis), Department of Computer Science, Cornell University, May 1990.

[80] Standard Performance Evaluation Corporation (SPEC). SPARCstation 10 model 51.
SPEC Newdletter, 5(2), June 1993.

[81] Standard Performance Evaluation Corporation (SPEC). DEC 3000 model 600. SPEC
Newdletter, 6(1), June 1994.

[82] Stanfill, C. Parallel computing for information retrieval: Recent devel opments. Tech-
nical Report TR-69 DR88-1, Thinking Machines Corporation, Cambridge, MA, Jan.
1988.

[83] Tomasic, A. and GarciaaMolina, H. Caching and database scaling in distributed
shared-nothing information retrieval systems. In Proc. of the ACM SGMOD Inter.
Conf. on Management of Data, pages 129138, Washington, D.C., May 1993.

178



[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

Tomasic, A., GarciaMolina, H., and Shoens, K. Incremental updates of inverted lists
for text document retrieval. In Proc. of the ACM S GMOD Inter. Conf. on Management
of Data, pages 289-300, Minneapolis, MN, May 1994.

Turtle, H. R. Natura language vs. boolean query evaluation: A comparison of
retrieval performance. In Proc. of the 17th Inter. ACM SIGIR Conf. on Research and
Development in Information Retrieval, pages 212—220, Dublin, July 1994.

Turtle, H. R. and Croft, W. B. Inference networks for document retrieval. In Proc.
of the 13th Inter. ACM SIGIR Conf. on Research and Development in Information
Retrieval, pages 1-24, Sept. 1990.

Turtle, H. R. and Croft, W. B. Efficent probabilistic inference for text retrieval. In
Proc. of RIAO 91 Conf., pages 644661, Barcelona, Apr. 1991.

Turtle, H. R. and Croft, W. B. Evauation of an inference network-based retrieval
model. ACM Trans. Inf. Syst., 9(3):187-222, July 1991.

Turtle, H. R. and Flood, J. Query evaluation: Strategies and optimizations. Inf.
Process. & Mgmnt., to appear.

Witten, 1. H., Moffat, A., and Bell, T. C. Managing Gigabytes. Compressing and
Indexing Documents and Images. Van Nostrand Reinhold, New York, 1994.

Wolfram, D. Applying informetric characteristicsof databasesto IR systemfiledesign,
Part I: informetric models. Inf. Process. & Mgmnt., 28(1):121-133, 1992.

Wolfram, D. Applying informetric characteristicsof databasesto IR systemfiledesign,
Part 11: simulation comparisons. Inf. Process. & Mgmnt., 28(1):135-151, 1992.

Wong, W. Y. P. and Lee, D. L. Implementations of partial document ranking using
inverted files. Inf. Process. & Mgmnt., 29(5):647-669, 1993.

Zipf, G. K. Human Behavior and the Principle of Least Effort. Addison-Wesley Press,
1949.

Zobel, J. and Moffat, A. Adding compression to afull-text retrieval system. In Proc.
15th Australian Computer Science Conf., pages 1077-1089, Hobart, Australia, Jan.
1992.

Zobdl, J., Moffat, A., and Ramamohanarao, K. Inverted files versus signature filesfor
text indexing. Technical Report CITRI/TR-95-5, Collaborative I nformation Technol -
ogy Research Ingtitute, Department of Computer Science, Royal Melbourne Institute
of Technology, Australia, July 1995.

Zobdl, J., Moffat, A., and Sacks-Davis, R. An efficient indexing techniquefor full-text
database systems. In Proc. of the 18th Inter. Conf. on \ery Large Databases (VLDB),
pages 352—362, Vancouver, 1992.

179



