
Supporting Full-Text Information Retrieval with a
Persistent Object Store

�

Eric W. Brown, James P. Callan, W. Bruce Croft, J. Eliot B. Moss

Department of Computer Science, University of Massachusetts, Amherst, MA 01003, USA

Abstract. The inverted file index common to many full-text information retrieval
systems presents unusual and challenging data management requirements. These
requirements are usually met with custom data management software. Rather
than build this custom software, we would prefer to use an existing database man-
agement system. Attempts to do this with traditional (e.g., relational) database
management systems have produced discouraging results. Instead, we have used
a persistent object store, Mneme, to support the inverted file of a full-text infor-
mation retrieval system, INQUERY. The result is an improvement in performance
along with opportunities for INQUERY to take advantage of the standard data
management services provided by Mneme. We describe our implementation,
present performance results on a variety of document collections, and discuss the
advantages of using a persistent object store to support information retrieval.

1 Introduction

The task of a full-text information retrieval (IR) system is to satisfy a user’s information
need by identifying the documents in a collection of documents that contain the desired
information. This identification process requires a means of locating documents based
on their content. A well known mechanism for providing such means is the inverted file
index [15].

An inverted file index consists of a record, or inverted list, for each term that appears
in the document collection. A term’s record contains an entry for every occurrence of
the term in the document collection, identifying the document and possibly giving the
location of the occurrence or a weight associated with the occurrence. Inverted file
indices can become quite large. Some commercial systems contain millions of full-
text documents, occupying gigabytes of disk space. An inverted file index for such a
collection will contain hundreds of thousands of records, ranging in size from just a few
bytes to millions of bytes.

Typically, an IR system that depends on an inverted file index will use custom
data management software built from scratch to support the index. An advantage of
this approach is that the software is designed specifically to meet the requirements
of the particular information retrieval strategy used in the system. A disadvantage
is that building such software is difficult and tedious, particularly if it must provide
sophisticated features such as concurrency control or recovery.
�

This work is supported by the NSF Center for Intelligent Information Retrieval at the University
of Massachusetts. Email: {brown, callan, croft, moss}@cs.umass.edu



Instead, we propose using an “off-the-shelf” data management facility, in the form
of a persistent object store, to provide the inverted file index service. We have taken
the INQUERY full-text retrieval system [20, 3], which originally used a custom B-tree
package to provide the inverted file index support, and replaced the B-tree package
with the Mneme persistent object store [14]. The result is a system that reaps the
benefits of using an existing data management facility without sacrificing performance or
functionality. The integrated system actually demonstrates a performance improvement,
and the features of the persistent object store offer potential solutions to some of the
difficult problems associated with inverted list management.

In the next section we take a closer look at the characteristics of inverted files that
make them difficult to support. Next, we describe our integrated software architecture,
including details of INQUERY and Mneme. Following that, we present a performance
evaluation of the integrated system and discuss the results. In the last two sections we
review previous and related work, and offer some concluding remarks. The principle
contribution of our work is a demonstration that data management facilities for IR sys-
tems need not be custom built in order to obtain superior performance. Additionally, we
show how the size distribution characteristics of records in an inverted file index, along
with the characteristics of inverted file record access during query processing, can be
used to guide decisions regarding persistent store organization and buffer management
policy selection.

2 Inverted File Indices

There are three basic operations performed on an inverted file index: creation, lookup,
and modification. The operation performed most often is lookup. As the IR system
processes queries a lookup is typically performed at least once for each term in the
query. Modifications occur less frequently as new documents are added to the collection
and old or irrelevant documents are retired from the collection. Creation occurs once
when a document collection is first indexed by the IR system, although it may be
considered a special case of modification where a number of document additions are
batched together.

If we optimize for the common case, lookup should be given the most careful
consideration. Efficient lookup requires knowing the size distribution of the records in
the file and a characterization of the record access patterns. The size of an inverted list
depends on the number of occurrences of the associated term in the document collection.
Zipf [23] observed that if the terms in a document collection are ranked by decreasing
number of occurrences (i.e., starting with the term that occurs most frequently), there
is a constant for the collection that is approximately equal to the product of any given
term’s frequency and rank order number. The implication is that nearly half of the terms
have only one or two occurrences, while a few terms occur very many times.

Figure 1 shows the distribution of inverted list sizes for the TIPSTER document
collection used in our performance evaluation below (see Table 1). For a given inverted
list size, the figure shows how many records in the inverted file are less than or equal
to that size, and how much those records contribute to the total file size. The figure also
shows the distribution of sizes for the inverted lists accessed by TIPSTER query set 1.



0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000 1e+06 1e+07

C
um

ul
at

iv
e 

%

Inverted List Record Size (bytes)

% of Recs in File
% of File Size

% of Recs in Query 1

Fig. 1. Cumulative distributions over inverted list size for TIPSTER

The majority of the records accessed are between 10 Kbytes and 1 Mbyte. This size
range represents a small percentage of the total number of records in the file, but a large
percentage of the total file size. Therefore, we must be prepared to provide efficient
access to the majority of the raw data in the file. The strong similarity between the
inverted file distribution as a percentage of file size and the query distribution indicates
that the former might be used to predict the latter. The same plots for the other collections
used in the performance evaluation (not shown here) have similar shapes.

We also observe that there is significant repetition of the terms used from query to
query. This can be expected for two reasons. First, a user of an IR system may iteratively
refine a query to obtain the desired set of documents. As the query is refined to more
precisely represent the user’s information need, terms from earlier queries will reappear
in later queries. Second, IR systems are often used on specialized collections where
every document is related to a particular subject. In this case, there will be terms that
are common to a large number of queries, even across multiple users.

Support for modification has traditionally been lacking in IR systems due to their
archival nature. The recent trend, however, is towards incremental and dynamic update
of document collections and associated index structures. Frequent additionof documents
to a collection and modification of existing documents in a collection pose challenging
problems for inverted list management. These operations require sophisticated database
management features such as concurrency control and versioning, lending further cre-
dence to the approach we take below.



3 Architecture

In this section we describe the software architecture that resulted when the B-tree pack-
age of INQUERY was replaced by Mneme. We begin with a description of INQUERY,
followed by a brief overview of Mneme, and conclude with a discussion of the issues
addressed during integration of the two systems.

3.1 INQUERY

INQUERY is a probabilistic information retrieval system based upon a Bayesian infer-
ence network model [20, 3]. The power of the inference network model is the consistent
formalism it provides for reasoning about evidence of differing types. Extensive testing
has shown INQUERY to be one of the best IR systems, as measured by the standard IR
metrics of recall and precision [10, 20]. INQUERY is fast, scales well to large document
collections, and can be embedded in specialized applications.

The bottlenecks in IR are retrieving and ranking the documents that match a query.
Retrieval identifies the (possibly large) subset of the collection that may be relevant
to the query. Document ranking orders the documents so that a user can examine first
those documents that are most likely to satisfy the information need. In INQUERY,
document ranking is a sorting problem, because the Bayesian method of combining
evidence assigns a numeric value to each document. Other functionality, for example
sophisticated query processing and presentation of results, generally does not affect the
speed of the system.

Two of INQUERY’s data storage facilities affect the speed of retrieval: a hash
dictionary and an inverted file index. INQUERY uses an open-chaining hash dictionary
to map text strings (words) to unique integers called term ids. The hash dictionary
also stores summary statistics for each string and resides entirely in main memory. The
inverted file index is organized as a keyed file, using term ids as keys and a B-tree index.
There is one record per term. A record has a header containing summary statistics about
the term, followed by a list of the documents, and the locations within each document,
where the term occurs. The record is stored as a vector of integers in a compressed
format. The average compression rate for the four collections in Table 1 is about 60%.

During retrieval, INQUERY performs “term-at-a-time” processing of evidence. That
is, it reads the complete record for one term and merges the evidence from that term
with the evidence it is accumulating for each document. Then it processes the next term.
This approach is fast because it minimizes I/O. However, it requires large amounts of
memory for large collections because several inverted lists must be kept in memory
simultaneously. A “document-at-a-time” approach, which gathered all of the evidence
for one document before proceeding to the next, might scale better to large collections.
However, it would be cumbersome with the current custom B-tree package.

3.2 Mneme

The Mneme persistent object store [14] was designed to be efficient and extensible. The
basic services provided by Mneme are storage and retrieval of objects, where an object
is a chunk of contiguous bytes that has been assigned a unique identifier. Mneme has no



notion of type or class for objects. The only structure Mneme is aware of is that objects
may contain the identifiers of other objects, resulting in inter-object references.

Objects are grouped into files supported by the operating system. An object’s iden-
tifier is unique only within the object’s file. Multiple files may be open simultaneously,
however, so object identifiers are mapped to globally unique identifiers when the objects
are accessed. This allows a potentially unlimited number of objects to be created by
allocating a new file when the previous file’s object identifiers have been exhausted.
The number of objects that may be accessed simultaneously is bounded by the number
of globally unique identifiers (currently

�����
).

Objects are physically grouped into physical segments within a file. A physical
segment is the unit of transfer between disk and main memory and is of arbitrary
size. Objects are also logically grouped into pools, where a pool defines a number
of management policies for the objects contained in the pool, such as how large the
physical segments are, how the objects are laid out in a physical segment, how objects
are located within a file, and how objects are created. Note that physical segments are
not shared between pools. Pools are also required to locate for Mneme any identifiers
stored in the objects managed by the pool. This would be necessary, for instance,
during garbage collection of the persistent store. Since the pool provides the interface
between Mneme and the contents of an object, object format is determined by the pool,
allowing objects to be stored in the format required by the application that uses the
objects (modulo any translation that may be required for persistent storage, such as
conversion of main memory pointers to object identifiers). Pools provide the primary
extensibility mechanism in Mneme. By implementing new pool routines, the system
can be significantly customized.

The base system provides a number of fundamental mechanisms and tools for
building pool routines, including a suite of standard pool routines for file and auxiliary
table management. Object lookup is facilitated by logical segments, which contain 255
objects logically grouped together to assist in identification, indexing, and location. A
hash table is provided that takes an object identifier and efficiently determines if the
object is resident in main memory. Support for sophisticated buffer management is
provided by an extensible buffering mechanism. Buffers may be defined by supplying
a number of standard buffer operations (e.g., allocate and free) in a system defined
format. How these operations are implemented determines the policies used to manage
the buffer. A pool attaches to a buffer in order to make use of the buffer. Mneme
then maps the standard buffer operation calls made by the pool to the specific routines
supplied by the attached buffer. Additionally, the pool is required to provide a number
of “call-back” routines, such as a modified segment save routine, which may be called
by a buffer routine.

3.3 The Integrated System

The Mneme version of the inverted index was created by allocating an object for each
inverted list in the B-tree file. The Mneme identifier assigned to the object was stored
in the INQUERY hash dictionary entry for the associated term. When the inverted list
for a term is needed by the query processor, the object identifier for the list is retrieved
from the hash dictionary and used to obtain the desired object.



Based on the analysis in Sect. 2 and the features of Mneme, we created three distinct
groups of inverted list objects. First, in all of the test collections, approximately 50% of
the inverted lists are 12 bytes or less. By allocating a 16 byte object (4 bytes for a size
field) for every inverted list less than or equal to 12 bytes, we can conveniently fit a whole
logical segment (255 objects) in one 4 Kbyte physical segment. This simplifies both
the indexing strategy used to locate these objects in the file and the buffer management
strategy for these segments. Inverted lists in this category were allocated in a small
object pool. Second, a number of inverted lists are so large it is not reasonable to cluster
them with other objects in the same physical segment. Instead, these lists are allocated
in their own physical segment. All inverted lists larger than 4 Kbytes were allocated in
this fashion in a large object pool. The remaining inverted lists form the third group
of objects and were allocated in a medium object pool. These objects are packed into
8 Kbyte physical segments. The physical segment size is based on the disk I/O block
size and a desire to keep the segments relatively small so as to reduce the number of
unused objects retrieved with each segment.

This partitioning of the objects allows the indexing and buffer management strategies
for each group to be customized. Each object pool was attached to a separate buffer,
allowing the global buffer space to be divided between the object pools based on
expected access patterns and memory requirements. The buffer replacement policy for
all of the pools is least recently used (LRU) with a slight optimization. As queries are
parsed by INQUERY, a tree is constructed that represents the query in an internal form.
Before the tree is processed, we scan it and “reserve” any objects required by the query
that are already resident, potentially avoiding a bad replacement choice.

With the above partitioning, the large object pool will still contain a huge range
of object sizes. We experimented with further partitioning the large object buffer, but
found the best hit rates were achieved with a single buffer of the same total size.

4 Performance Evaluation

We evaluated the persistent object store based INQUERY system by comparing it with
the original system. Traditionally, IR system performance has been measured in terms
of recall and precision. The portion of the system that determines those factors is fixed
across the two systems we are comparing. Instead, we are concerned with execution
time, which we measured on a variety of document collections and query sets. Below
we describe the execution environment, the experiments, and the results.

4.1 Platform

All of the experiments were run in single user mode on a DECstation 5000/240 (MIPS
R3000 CPU

�
clocked at 40 MHz) running ULTRIX

�

V4.2A. The machine was config-
ured with 64 Mbytes of main memory, a 426 Mbyte RZ25 SCSI disk, and a 1.35 Gbyte
RZ58 SCSI disk. The machine mounts many of its bin files from another host via NFS,
�

MIPS and R3000 are trademarks of MIPS Computer Systems.
	

DECstation and ULTRIX are registered trademarks of Digital Equipment Corporation.



Table 1. Document collection statistics and Mneme buffer sizes (all sizes are in Kbytes)

Collection # of Collec- # of Inverted File Size Object Buffer Sizes
Docs tion Size Terms B-Tree Mneme Small Med Large

CACM 3204 2136 5944 641 556 12.7 24.4 24
Legal 11953 290529 142721 65840 71296 12.7 97.7 1098
TIPSTER 1 510887 1225712 627078 460836 476904 12.7 341.8 4596
TIPSTER 742358 2103574 846331 768406 789344 12.7 702.5 7806

and so could not be isolated from the network. In fact, the INQUERY system executa-
bles were stored on a remote host, although all of the data files accessed during the
experiments were stored locally on the 1.35 Gbyte disk. The INQUERY system was
compiled with the GNU C compiler (gcc) version 2.3.2 at optimization level 2.

4.2 Experiments

We measured the execution time of both systems on a number of query sets using the
document collections described in Table 1. The documents in CACM [8] are abstracts
and titles of articles that appeared in Communications of the ACMfrom 1958 to 1979. The
three query sets used with CACM are different representations of the same 50 queries.
TIPSTER is volumes 1 and 2 of the TIPSTER document collection, containing full-text
news articles and abstracts on a variety of topics from news wire services, newspapers,
Federal Register announcements, and magazines. The query set was generated locally
from TIPSTER topics 51-100 using automatic and semi-automatic methods. TIPSTER 1
consists of volume 1 only and uses the same query set. Both TIPSTER and CACM are
standard test collections in the IR community. Legal is a privately obtained collection of
legal case descriptions. The first query set for the Legal collection was supplied with the
collection. The second query set was generated locally by supplementing the first query
set with dictionary terms, phrases, and weights. In all cases the query sets are designed
to evaluate an IR system’s recall and precision and are representative of queries that
would be asked by real users.

Each query set was processed by the two versions of INQUERY in batch mode,
using appropriate relevance and stop words files. A relevance file lists the documents
that should have been retrieved for each query and is required for determining recall
and precision. A stop words file lists words that are not worth indexing because they
occur so frequently or are not significantly meaningful.

Since the B-tree version of INQUERY does no user space main memory caching
of inverted lists across record accesses, we measured the Mneme based version of
INQUERY both with and without inverted list caching. For the version with caching,
the main memory buffer sizes are shown in Table 1 and were determined for each
collection as follows. The large object buffer size was 3 times the size of the largest
inverted list in the collection. This heuristic was meant to allocate a reasonable amount
of buffer space, in a somewhat regulated fashion, for each collection. Merely allocating
a percentage of the total inverted file size would be inappropriate given the range of



Table 2. Wall-clock times (all times are in seconds)

Collection Query B-Tree Mneme, Mneme, Improve-
Set No Cache Cache ment

CACM 1 6.49 6.02 5.93 9%
2 7.41 6.40 6.37 14%
3 11.73 9.34 8.32 29%

Legal 1 62.84 51.36 50.55 20%
2 65.82 53.46 52.01 21%

TIPSTER 1 1 2683.20 2568.24 2519.55 6%
TIPSTER 1 4132.34 3973.45 3894.74 6%

inverted file sizes. For the three larger collections, the medium object buffer size was
9% of the size of the large object buffer. This allocation was based on object access
behavior observed during query processing, where the number of accesses to medium
objects equaled roughly 9% of the number of accesses to large objects. For the CACM
collection, 9% of the large object buffer would not have been large enough to hold a
single medium object segment. Therefore, we made the CACM medium object buffer
large enough to hold 3 medium object segments. The small object buffer was made large
enough to hold 3 small object segments since small object access was insignificant.

Timings were made using the system clock via calls to ftime() and getrusage().
Timing was begun just before query processing started, after all files had been opened and
any initialization was complete. Timing ended when the query set had been processed,
before any files were closed. Each query set was run 6 times, and mean times from all
six runs are reported below. In all cases, the result of any particular run differed from
the mean by less than 1% of the mean. Before each query set was run, a 32 Mbyte “chill
file” was read to purge the operating system file buffers and guarantee that no inverted
file data was cached by the file system across runs. The measured I/O inputs for each
run indicate that this was accomplished.

4.3 Results

Table 2 shows the wall-clock time required by the different versions of INQUERY to
process each of the query sets. The Mneme version without caching achieves a noticeable
improvement in performance over the B-tree version. The addition of caching to the
Mneme version increases the performance further, yielding the improvements shown in
the final column of the table. Improvement is calculated as (B-tree time – Mneme with
cache time) / B-tree time.

A more precise measure of the portion of the system that varies across the different
versions is system CPU time plus time spent waiting for I/O to complete. This was
obtained by subtracting user CPU time from the wall-clock time. User CPU time ap-
proximates the time spent in the inference engine. This time should be comparable for
all versions, and in fact varies by less than 1% across the versions. System CPU plus



Table 3. System CPU plus I/O times (all times are in seconds)

Collection Query B-Tree Mneme, Mneme, Improve-
Set No Cache Cache ment

CACM 1 1.97 1.48 1.41 28%
2 2.56 1.53 1.52 41%
3 5.22 2.82 1.90 64%

Legal 1 24.59 13.67 12.77 48%
2 26.38 14.70 13.21 50%

TIPSTER 1 1 586.12 479.86 430.58 27%
TIPSTER 1 861.75 723.00 646.92 25%

I/O time is reported in Table 3. Again, the Mneme version without caching is faster than
the B-tree version, and the Mneme version with caching is fastest.

For the end user, the reduction in wall-clock time is most significant. However, our
goal was to demonstrate that the inverted file sub-system of an IR system could be
efficiently supported by an “off-the-shelf” data management system. The system plus
I/O times represent the time spent in the sub-system we have replaced, and the significant
improvement shows that we have met our goal. It is also apparent from Tables 2 and 3
that as the collection becomes larger, the time spent in the inference engine starts to
dominate the overall time, reducing the impact of improvements in system and I/O time.

To help explain the performance improvement of the Mneme versions, Table 4 gives
some I/O statistics for each query set and INQUERY version. “I” is the number of I/O
inputs measured with getrusage(), which counts the number of 8 Kbyte blocks actually
read from disk. “A” is the average number of file accesses per inverted list lookup. Note
that this does not represent actual disk activity since some file accesses are satisfied by
the Ultrix file system cache. “B” is the total number of Kbytes read from the inverted
list file during query processing. Again, this does not represent actual bytes read from
disk since some file accesses are satisfied by the Ultrix file system cache.

We can make a number of observations from this table. The Mneme version without
caching is faster than the B-tree version because it makes fewer accesses to the file
(therefore fewer system calls) and, more importantly, fewer accesses to the disk. The
B-tree version does limited and unsophisticated caching of index nodes, such that every
record lookup requires more than one disk access. This problem gets worse as the file
grows and the height of the index tree increases. Mneme, however, requires close to 1
file access per record lookup. Mneme locates objects based on their logical segments
using compact multi-level hash tables. This lookup mechanism requires slightly more
computation, but the reduced table size allows the auxiliary tables to remain permanently
cached after their first access




. It is interesting to note that the Mneme version reads
substantiallymore bytes from the file for the CACM queries than does the B-tree version.
This is because the CACM queries generate more activity in the small and medium object
pools, which have multiple objects clustered in physical segments. Accessing a given
�

The TIPSTER collection requires only 512 Kbytes to cache all of the auxiliary tables.



Table 4. I/O statistics: I = I/O inputs, A = ave. file accesses / record lookup, B = total
Kbytes read from file

Collection Query B-Tree Mneme, No Cache Mneme, Cache
Set I A B I A B I A B

CACM 1 82 1.89 585 63 1.02 1700 64 0.89 1496
2 82 1.89 940 64 1.01 2430 64 0.85 2056
3 83 1.44 2030 65 1.00 7890 65 0.45 3600

Legal 1 2747 2.92 20700 1626 1.07 20652 1625 0.96 17346
2 2776 2.61 24526 1626 1.06 24668 1626 0.80 18594

TIPSTER 1 1 68280 2.89 503546 61308 1.03 503520 59917 0.60 271272
TIPSTER 1 96352 3.09 841304 87876 1.04 841516 84568 0.61 456062

object will cause the entire physical segment to be read in. This is less expensive than it
appears because the physical segment size is tuned to the disk block transfer size. Each
disk access causes 8 Kbytes to be read from disk, so in fact, based on the number of I/O
inputs, the B-tree version transfers more raw bytes from disk even though it attempts to
read far fewer bytes in the file.

Caching of inverted lists increases the performance of the Mneme version by further
reducing the number of file and disk accesses. For CACM and Legal, the file system
cache is able to satisfy enough file accesses so that there is no difference in “I” between
the two Mneme versions. However, the reductions in “A” and “B” mean fewer system
calls, less data copying between system and user memory space, and a savings in
system CPU time. The TIPSTER collections are large enough that the Mneme version
with inverted list record caching requires fewer I/O inputs than the versions that have
file system caching only.

It is clear that caching of inverted lists to reduce disk accesses is advantageous,
whether provided by the file system cache or the data management subsystem. It is also
clear (and well known [17]) that caching provided by the file system is an inferior solu-
tion for data management problems. The buffer management requirements of inverted
list data are better satisfied by the custom, domain tailored mechanisms in Mneme. The
effectiveness of these caching mechanisms can be seen in Table 5, which shows the
hit rates achieved in each of the buffers for each of the queries. The hit rates are fairly
significant given that the buffer sizes allocated could be considered modest.

To further investigate the effects of buffer size, we measured the hit rates achieved
in the large object buffer over a range of buffer sizes for the TIPSTER query set (see
Fig. 2). The figure shows that increasing the buffer size gradually produces diminishing
returns, but the knee of the curve can be used to guide buffer allocation.

5 Related Work

A great deal of work has been done in the area of supporting IR with a relational database
management system (RDBMS). Some of the earliest work was done by Crawford and



Table 5. Buffer hit rates for the query sets

Collection Query Small Obj Buffer Medium Obj Buffer Large Obj Buffer
Set Refs Hits Rate Refs Hits Rate Refs Hits Rate

CACM 1 15 4 0.27 191 16 0.08 14 9 0.64
2 11 2 0.18 191 17 0.09 25 17 0.68
3 5 3 0.60 221 109 0.49 30 25 0.83

Legal 1 0 0 0.00 29 2 0.07 296 33 0.11
2 0 0 0.00 35 9 0.26 366 95 0.26

TIPSTER 1 1 1 0 0.00 158 36 0.23 2112 938 0.44
TIPSTER 1 0 0 0.00 106 25 0.24 2137 923 0.43

0.34

0.38

0.42

0.46

0.50

0.54

0 5 10 15 20 25 30 35 40 45 50 55

H
it 

R
at

e

Buffer Size (millions of bytes)

Fig. 2. Large object buffer hit rates for the TIPSTER query set

MacLeod [5, 12, 4, 13], who describe how to use the relational model to store document
data and construct information retrieval queries. Similar work was presented more
recently by Blair [1] and Grossman and Driscoll [9]. Others have chosen to extend the
relational model to allow better support for IR. Lynch and Stonebraker [11] show how
a relational model extended with abstract data types can be used to better support the
queries that are typical of an IR system.

In spite of evidence demonstrating the feasibility of using a standard or extended
RDBMS to support information retrieval, IR system builders have still chosen to build
production systems from scratch. This is due to the belief that superior performance can
be achieved with a custom system, a belief which is substantiated by a lack of results
proving otherwise and anecdotal evidence. Additionally, most of the work described
above deals only with document titles, author lists, and abstracts. Techniques used
to support this relatively constrained data collection may not scale to true full-text
retrieval systems. We desire to support full-text retrieval with high performance. Our



approach, while similar in spirit to the above work, differs in both the data management
technology chosen to support IR and the extent to which it is applied for that task. The
data management technology we use is a persistent object store, and currently it is only
used to manage an inverted file index.

Other work in this area has attempted to integrate information retrieval with database
management [6, 16]. The services provided by a database management system (DBMS)
and an IR system are distinct but complementary, making an integrated system very
attractive. The integrated architecture consists of a DBMS component and a custom IR
system component. There is a single user interface to both systems, and a preprocessor
is used to delegate user queries to the appropriate subsystem. Additionally, the DBMS
is used to support the low level file management requirements of the whole system.
This architecture is similar to ours in that a separate data management system is used to
support the file management requirements of the IR system. However, our data manage-
ment system is a persistent object store and we focus on supporting high performance
IR, with no support for traditional data management.

Efficient management of full-text database indices has received a fair amount of
attention. Faloutsos [7] gives an early survey of the common indexing techniques. The
two techniques that seem to predominate are signature files and inverted files, each
of which implies a different query processing algorithm. Since the INQUERY system
uses an inverted file index, and we are not interested in changing the query processing
algorithm, we do not discuss signature files. Zobel et al. [24] investigate the efficient
implementation of an inverted file index for a full-text database system. Their focus
is on compression techniques to limit the size of the inverted file index. They also
address updates to the inverted file and investigate the different inverted file index
record formats necessary to satisfy certain types of queries. In our work, the format of
the inverted file index records and the compression techniques applied to those records
are pre-determined by the existing INQUERY system. Our approach is to replace the
subsystem that manages these records, without changing the format of the records.

Tomasic and Garcia-Molina [19] study inverted file index performance in a dis-
tributed shared-nothing environment. Their simulation results show that caching in-
verted file index records in main memory can significantly improve performance. This
is consistent with our results obtained from measuring an actual system, where the per-
formance improvement of INQUERY integrated with Mneme is partly due to caching.
This result implies that there is significant repetition of terms from query to query. This
fact has severe implications for any IR study which assumes a uniform distribution over
the term vocabulary when selecting query terms, such as the study in [18].

Properly modeling the size distribution of inverted file index records and the fre-
quency of use of terms in queries is addressed by Wolfram in [21, 22]. He suggests that
the informetric characteristics of document databases should be taken into consideration
when designing the files used by an IR system. We have tried to take this advice to heart
by developing appropriate file organization and buffer management policies based on
the characteristics of the data and the data access patterns.

Buckley and Lewit [2] studied the effects of query optimization on an IR system
and found that it can reduce the amount of data read from the inverted file. Reduced I/O
could change the cache hit rates for the Mneme version of our IR system or alter the



size distribution of inverted lists read by the system. We believe that these effects might
require some adjustments in Mneme buffer sizes, but would not reduce the advantage
of Mneme over the B-tree package.

6 Conclusions

Information retrieval systems development is reaching a point where further progress
requires the use of more sophisticated data management services, such as concurrency
control, dynamic update, and a complex data model. IR system builders are faced with the
choice of developing these services themselves, or looking to “off-the-shelf” products
to provide these services. Previous attempts at using standard DBMSs to provide these
services have produced discouraging results due to poor performance. We have shown
here that with the proper data management technology, sophisticated data management
services can be supplied to an IR system by an “off-the-shelf” data management system
without a performance penalty. In fact, the performance measurement results presented
in Sect. 4 demonstrate that a performance improvement can be obtained.

Much of the performance improvement enjoyed by the Mneme version can be
attributed to careful file allocation sympathetic to the device transfer block size and
intelligent caching of auxiliary tables and inverted lists. While these features could be
added to the B-tree package to achieve a similar improvement, it is exactly this type of
effort we are trying to avoid by using an existing data management package.

Mneme offers other advantages besides data caching and smart file allocation. The
extensibility of Mneme allows customization based on the characteristics of the data
being stored. This capability is a clear advantage in an environment where the data
management requirements are non-traditional, and was mandatory for satisfying the
individual management needs of the different object groups in the inverted file. The
more standard data management services provided by Mneme include recovery and
support for a richer data model. Inter-object references allow structures such as linked
lists to be used to break large objects into more manageable pieces. This could provide
better support for inverted list updates and allow incremental retrieval of large lists.

The current version of Mneme is a prototype and does not provide all of the services
one might expect from a mature data management system, such as concurrency control
and transaction support. However, the nature of access to the data we are supporting
here is predominately read-only. We expect that the addition of these services would not
introduce excessive overhead or change the results reported above.

For future work we plan to implement some of the standard data management
services not currently provided by Mneme and verify the above claim. We will also
make use of the services that are currently provided by Mneme but not used to advantage
above, such as the richer data model. Furthermore, it would be worthwhile to investigate
other store and buffer organizations, looking for more opportunities to tune the system
to the unique data management requirements of information retrieval.

References

1. D. C. Blair. An extended relational document retrieval model. Inf. Process. & Mgmnt.,
24(3):349–371, 1988.



2. C. Buckley and A. F. Lewit. Optimization of inverted vector searches. In Proc. of the 8th
Inter. ACM SIGIR Conf. on Res. and Develop. in Infor. Retr., pages 97–110, June 1985.

3. J. P. Callan, W. B. Croft, and S. M. Harding. The INQUERY retrieval system. In Proc. of
the 3rd Inter. Conf. on Database and Expert Sys. Apps., Sept. 1992.

4. R. G. Crawford. The relational model in information retrieval. J. Amer. Soc. Inf. Sci.,
32(1):51–64, 1981.

5. R. G. Crawford and I. A. MacLeod. A relational approach to modular information retrieval
systems design. In Proc. of the 41st Conf. of the Amer. Soc. for Inf. Sci., 1978.

6. J. S. Deogun and V. V. Raghavan. Integration of information retrieval and database manage-
ment systems. Inf. Process. & Mgmnt., 24(3):303–313, 1988.

7. C. Faloutsos. Access methods for text. ACM Comput. Surv., 17:50–74, 1985.
8. E. A. Fox. Characterization of two new experimental collections in computer and information

science containing textual and bibliographic concepts. Technical Report 83-561, Cornell
University, Ithaca, NY, Sept. 1983.

9. D. A. Grossman and J. R. Driscoll. Structuring text within a relational system. In Proc. of
the 3rd Inter. Conf. on Database and Expert Sys. Apps., pages 72–77, Sept. 1992.

10. D. Harman, editor. The First Text REtrieval Conference (TREC1). National Institute of
Standards and Technology Special Publication 200-207, Gaithersburg, MD, 1992.

11. C. A. Lynch and M. Stonebraker. Extended user-defined indexing with application to textual
databases. In Proc. of the 14th Inter. Conf. on VLDB, pages 306–317, 1988.

12. I. A. MacLeod. SEQUEL as a language for document retrieval. J. Amer. Soc. Inf. Sci.,
30(5):243–249, 1979.

13. I. A. MacLeod and R. G. Crawford. Document retrieval as a databaseapplication. Inf. Tech.:
Res. Dev., 2(1):43–60, 1983.

14. J. E. B. Moss. Design of the Mneme persistent object store. ACM Trans. Inf. Syst., 8(2):103–
139, Apr. 1990.

15. G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill,
New York, 1983.

16. L. V. Saxton and V. V. Raghavan. Design of an integrated information retrieval/database
management system. IEEE Trans. Know. Data Eng., 2(2):210–219, June 1990.

17. M. Stonebraker. Operating system support for database management. Commun. ACM,
24(7):412–418, July 1981.

18. A. Tomasic and H. Garcia-Molina. Performance of inverted indices in distributed text doc-
ument retrieval systems. Technical Report STAN-CS-92-1434, Stanford University Depart-
ment of Computer Science, 1992.

19. A. Tomasic and H. Garcia-Molina. Caching and database scaling in distributed shared-
nothing information retrieval systems. In Proc. of the ACM SIGMOD Inter. Conf. on Man-
agement of Data, Washington, D.C., May 1993.

20. H. Turtle and W. B. Croft. Evaluation of an inference network-based retrieval model. ACM
Trans. Inf. Syst., 9(3):187–222, July 1991.

21. D. Wolfram. Applying informetric characteristics of databases to IR system file design, Part
I: informetric models. Inf. Process. & Mgmnt., 28(1):121–133, 1992.

22. D. Wolfram. Applying informetric characteristics of databases to IR system file design, Part
II: simulation comparisons. Inf. Process. & Mgmnt., 28(1):135–151, 1992.

23. G. K. Zipf. Human Behavior and the Principle of Least Effort. Addison-Wesley Press, 1949.
24. J. Zobel, A. Moffat, and R. Sacks-Davis. An efficient indexing technique for full-text

database systems. In Proc. of the 18th Inter. Conf. on VLDB, Vancouver, 1992.

This article was processed using the LATEX macro package with LLNCS style


