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Abstract. Theinverted fileindex commonto many full-text information retrieval
systems presents unusual and challenging data management requirements. These
requirements are usually met with custom data management software. Rather
than build this custom software, we would prefer to use an existing database man-
agement system. Attempts to do this with traditional (e.g., relational) database
management systems have produced discouraging results. Instead, we have used
a persistent object store, Mneme, to support the inverted file of a full-text infor-
mation retrieval system, INQUERY. Theresult is animprovementin performance
along with opportunities for INQUERY to take advantage of the standard data
management services provided by Mneme. We describe our implementation,
present performance results on avariety of document collections, and discussthe
advantagesof using a persistent object store to support information retrieval.

1 Introduction

Thetask of afull-textinformationretrieva (IR) system isto satisfy auser’sinformation
need by identifying the documentsin a collection of documents that contai n the desired
information. This identification process requires a means of locating documents based
ontheir content. A well known mechanism for providing such meansistheinverted file
index [15].

Aninvertedfileindex consistsof arecord, or invertedlist, for each term that appears
in the document collection. A term’s record contains an entry for every occurrence of
the term in the document collection, identifying the document and possibly giving the
location of the occurrence or a weight associated with the occurrence. Inverted file
indices can become quite large. Some commercial systems contain millions of full-
text documents, occupying gigabytes of disk space. An inverted file index for such a
collectionwill contain hundreds of thousands of records, ranging in sizefrom just afew
bytesto millions of bytes.

Typicdly, an IR system that depends on an inverted file index will use custom
data management software built from scratch to support the index. An advantage of
this approach is that the software is designed specifically to meet the requirements
of the particular information retrieval strategy used in the system. A disadvantage
is that building such software is difficult and tedious, particularly if it must provide
sophisticated features such as concurrency control or recovery.
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Instead, we propose using an “ off-the-shelf” data management facility, in the form
of a persistent object store, to provide the inverted file index service. We have taken
the INQUERY full-text retrieval system [20, 3], which originally used a custom B-tree
package to provide the inverted file index support, and replaced the B-tree package
with the Mneme persistent object store[14]. The result is a system that reaps the
benefits of using an existing datamanagement facility without sacrificing performance or
functionality. Theintegrated system actually demonstrates a performance improvement,
and the features of the persistent object store offer potential solutionsto some of the
difficult problems associated with inverted list management.

In the next section we take a closer 100k at the characteristics of inverted files that
make them difficult to support. Next, we describe our integrated software architecture,
including details of INQUERY and Mneme. Following that, we present a performance
evaluation of the integrated system and discuss the results. In the last two sections we
review previous and related work, and offer some concluding remarks. The principle
contribution of our work isa demonstration that data management facilitiesfor IR sys-
tems need not be custom built in order to obtain superior performance. Additionally, we
show how the size distribution characteristics of recordsin an inverted file index, aong
with the characteristics of inverted file record access during query processing, can be
used to guide decisions regarding persistent store organization and buffer management
policy selection.

2 Inverted FileIndices

There are three basic operations performed on an inverted file index: creation, lookup,
and modification. The operation performed most often is lookup. As the IR system
processes queries a lookup is typically performed at least once for each term in the
guery. Modificationsoccur less frequently as new documents are added to the collection
and old or irrelevant documents are retired from the collection. Creation occurs once
when a document collection is first indexed by the IR system, athough it may be
considered a specid case of modification where a number of document additions are
batched together.

If we optimize for the common case, lookup should be given the most careful
consideration. Efficient lookup requires knowing the size distribution of the records in
the file and a characterization of the record access patterns. The size of an inverted list
depends on the number of occurrences of theassociated termin the document collection.
Zipf [23] observed that if the terms in a document collection are ranked by decreasing
number of occurrences (i.e., starting with the term that occurs most frequently), there
is a constant for the collection that is approximately equal to the product of any given
term’sfrequency and rank order number. Theimplicationisthat nearly half of theterms
have only one or two occurrences, while afew terms occur very many times.

Figure 1 shows the distribution of inverted list sizes for the TIPSTER document
collection used in our performance eval uation below (see Table 1). For agiven inverted
list size, the figure shows how many records in the inverted file are less than or equal
to that size, and how much those records contributeto thetotal file size. The figure aso
shows the distribution of sizes for the inverted lists accessed by TIPSTER query set 1.
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Fig. 1. Cumulative distributionsover inverted list size for TIPSTER

The majority of the records accessed are between 10 Kbytes and 1 Mbyte. This size
range represents asmall percentage of the total number of recordsin thefile, but alarge
percentage of the total file size. Therefore, we must be prepared to provide efficient
access to the mgjority of the raw data in the file. The strong similarity between the
inverted file distribution as a percentage of file size and the query distribution indicates
that theformer might be used to predict thelatter. The same plotsfor the other collections
used in the performance evaluation (not shown here) have similar shapes.

We also observe that there is significant repetition of the terms used from query to
guery. Thiscan beexpected for two reasons. First, auser of an IR system may iteratively
refine a query to obtain the desired set of documents. As the query is refined to more
precisely represent the user’sinformation need, terms from earlier querieswill reappear
in later queries. Second, IR systems are often used on specialized collections where
every document isrelated to a particular subject. In this case, there will be terms that
are common to alarge number of queries, even across multiple users.

Support for modification has traditionally been lacking in IR systems due to their
archival nature. The recent trend, however, istowards incremental and dynamic update
of document collectionsand associated index structures. Frequent addition of documents
to a collection and modification of existing documentsin a collection pose challenging
problemsfor inverted list management. These operations require sophisticated database
management features such as concurrency control and versioning, lending further cre-
dence to the approach we take bel ow.



3 Architecture

In this section we describe the software architecture that resulted when the B-tree pack-
age of INQUERY was replaced by Mneme. We begin with a description of INQUERY,
followed by a brief overview of Mneme, and conclude with a discussion of the issues
addressed during integration of the two systems.

3.1 INQUERY

INQUERY isaprobabilisticinformation retrieval system based upon aBayesian infer-
ence network model [20, 3]. The power of theinference network model isthe consistent
formalism it providesfor reasoning about evidence of differing types. Extensivetesting
has shown INQUERY to be one of the best IR systems, as measured by the standard IR
metrics of recall and precision [10, 20]. INQUERY isfast, scaleswell tolarge document
collections, and can be embedded in specialized applications.

The bottlenecksin IR are retrieving and ranking the documents that match a query.
Retrieval identifies the (possibly large) subset of the collection that may be relevant
to the query. Document ranking orders the documents so that a user can examine first
those documents that are most likely to satisfy the information need. In INQUERY,
document ranking is a sorting problem, because the Bayesian method of combining
evidence assigns a numeric value to each document. Other functionality, for example
sophisticated query processing and presentation of results, generally does not affect the
speed of the system.

Two of INQUERY'’s data storage facilities affect the speed of retrieval: a hash
dictionary and an inverted file index. INQUERY uses an open-chaining hash dictionary
to map text strings (words) to unique integers called term ids. The hash dictionary
also stores summary statisticsfor each string and resides entirely in main memory. The
inverted fileindex isorganized as akeyed file, using term idsas keysand a B-treeindex.
Thereisonerecord per term. A record has a header containing summary stati stics about
the term, followed by alist of the documents, and the locations within each document,
where the term occurs. The record is stored as a vector of integers in a compressed
format. The average compression rate for the four collectionsin Table 1 is about 60%.

Duringretrieval, INQUERY performs*“term-at-a-time’ processing of evidence. That
is, it reads the complete record for one term and merges the evidence from that term
with theevidenceit isaccumulating for each document. Then it processes the next term.
This approach is fast because it minimizes 1/0O. However, it requires large amounts of
memory for large collections because several inverted lists must be kept in memory
simultaneously. A “document-at-a-time’ approach, which gathered al of the evidence
for one document before proceeding to the next, might scale better to large collections.
However, it would be cumbersome with the current custom B-tree package.

3.2 Mneme

The Mneme persistent object store [14] was designed to be efficient and extensible. The
basic services provided by Mneme are storage and retrieval of objects, where an object
isachunk of contiguousbytesthat has been assigned auniqueidentifier. Mneme has no



notion of typeor classfor objects. The only structure Mneme is aware of isthat objects
may contain the identifiers of other objects, resulting in inter-object references.

Objects are grouped into files supported by the operating system. An object’siden-
tifier is unique only within the object’sfile. Multiplefiles may be open simultaneously,
however, so abject identifiersare mapped to globally uniqueidentifierswhen the objects
are accessed. This alows a potentialy unlimited number of objects to be created by
allocating a new file when the previous file's object identifiers have been exhausted.
The number of objects that may be accessed simultaneously is bounded by the number
of globally uniqueidentifiers (currently 228).

Objects are physicaly grouped into physical segments within a file. A physical
segment is the unit of transfer between disk and main memory and is of arbitrary
size. Objects are aso logically grouped into pools, where a pool defines a number
of management policies for the objects contained in the pool, such as how large the
physical segments are, how the objects are laid out in a physical segment, how objects
are located within afile, and how objects are created. Note that physical segments are
not shared between pools. Pools are also required to locate for Mneme any identifiers
stored in the objects managed by the pool. This would be necessary, for instance,
during garbage collection of the persistent store. Since the pool provides the interface
between Mneme and the contents of an object, object format is determined by the pool,
allowing abjects to be stored in the format required by the application that uses the
objects (modulo any trandation that may be required for persistent storage, such as
conversion of main memory pointers to object identifiers). Pools provide the primary
extensibility mechanism in Mneme. By implementing new pool routines, the system
can be significantly customized.

The base system provides a number of fundamental mechanisms and tools for
building pool routines, including a suite of standard pool routines for file and auxiliary
table management. Object lookup isfacilitated by logical segments, which contain 255
objects logicaly grouped together to assist in identification, indexing, and location. A
hash table is provided that takes an object identifier and efficiently determines if the
object is resident in main memory. Support for sophisticated buffer management is
provided by an extensible buffering mechanism. Buffers may be defined by supplying
a number of standard buffer operations (e.g., alocate and free) in a system defined
format. How these operations are implemented determines the policies used to manage
the buffer. A pool attaches to a buffer in order to make use of the buffer. Mneme
then maps the standard buffer operation calls made by the pool to the specific routines
supplied by the attached buffer. Additionally, the pool is required to provide a number
of “call-back” routines, such as a modified segment save routine, which may be called
by a buffer routine.

3.3 Thelntegrated System

The Mneme version of the inverted index was created by alocating an object for each
inverted list in the B-tree file. The Mneme identifier assigned to the object was stored
in the INQUERY hash dictionary entry for the associated term. When the inverted list
for aterm is needed by the query processor, the object identifier for thelist isretrieved
from the hash dictionary and used to obtain the desired object.



Based ontheanaysisin Sect. 2 and thefeatures of Mneme, we created threedistinct
groups of inverted list objects. First, in al of thetest collections, approximately 50% of
theinverted lists are 12 bytes or less. By alocating a 16 byte object (4 bytesfor asize
field) for every inverted list lessthan or equal to 12 bytes, we can conveniently fit awhole
logical segment (255 objects) in one 4 Kbyte physical segment. This simplifies both
the indexing strategy used to |ocate these objects in the file and the buffer management
strategy for these segments. Inverted lists in this category were allocated in a small
object pool. Second, a number of inverted listsare so largeit isnot reasonableto cluster
them with other objects in the same physical segment. Instead, these lists are all ocated
in their own physical segment. All inverted listslarger than 4 Kbyteswere allocated in
this fashion in a large object pool. The remaining inverted lists form the third group
of objects and were allocated in a medium object pool. These objects are packed into
8 Kbyte physical segments. The physical segment size is based on the disk 1/0 block
size and a desire to keep the segments relatively small so as to reduce the number of
unused objects retrieved with each segment.

Thispartitioning of the objectsallowstheindexing and buffer management strategies
for each group to be customized. Each object pool was attached to a separate buffer,
allowing the global buffer space to be divided between the object pools based on
expected access patterns and memory reguirements. The buffer replacement policy for
all of the poolsisleast recently used (LRU) with a dight optimization. As queries are
parsed by INQUERY, atreeis constructed that represents the query in an internal form.
Beforethetreeis processed, we scan it and “reserve’ any objects required by the query
that are already resident, potentially avoiding a bad replacement choice.

With the above partitioning, the large object pool will still contain a huge range
of object sizes. We experimented with further partitioning the large object buffer, but
found the best hit rates were achieved with a single buffer of the same total size.

4 Performance Evaluation

We evaluated the persistent object store based INQUERY system by comparing it with
the original system. Traditionally, IR system performance has been measured in terms
of recall and precision. The portion of the system that determines those factorsisfixed
across the two systems we are comparing. Instead, we are concerned with execution
time, which we measured on a variety of document collections and query sets. Below
we describe the execution environment, the experiments, and the results.

4.1 Platform

All of the experiments were run in single user mode on a DECstation 5000/240 (MIPS
R3000 CPU? clocked at 40 MHZz) running ULTRIX3 V4.2A. The machine was config-
ured with 64 Mbytes of main memory, a426 Mbyte RZ25 SCS| disk, and a 1.35 Gbyte
RZz58 SCSI disk. The machine mounts many of its bin files from another host viaNFS,

2 MIPS and R3000 are trademarks of MIPS Computer Systems.
3 DECstation and ULTRIX are registered trademarks of Digital Equipment Corporation.



Table 1. Document collection statisticsand Mneme buffer sizes (all sizes arein Kbytes)

Collection || #of | Collec- | #of |Inverted File Size|Object Buffer Sizes
Docs |tion Size| Terms | B-Tree| Mneme [Small| Med |Large
CACM 3204| 2136| 5944| 641 556 | 12.7 | 24.4| 24
Legd 11953| 290529|142721| 65840 71296 | 12.7 | 97.7|1098
TIPSTER 1|{510887|1225712|627078|460836| 476904 | 12.7 |341.8| 4596
TIPSTER |[742358]2103574|846331|768406| 789344 | 12.7 |702.5| 7806

and so could not be isolated from the network. In fact, the INQUERY system executa
bles were stored on a remote host, although al of the data files accessed during the
experiments were stored locally on the 1.35 Ghyte disk. The INQUERY system was
compiled with the GNU C compiler (gcc) version 2.3.2 at optimization level 2.

4.2 Experiments

We measured the execution time of both systems on a number of query sets using the
document collections described in Table 1. The documentsin CACM [8] are abstracts
andtitlesof articlesthat appearedin Communi cationsof the ACM from 1958t01979. The
three query sets used with CACM are different representations of the same 50 queries.
TIPSTER isvolumes 1 and 2 of the TIPSTER document collection, containing full-text
news articles and abstracts on a variety of topics from news wire services, newspapers,
Federa Register announcements, and magazines. The query set was generated locally
from TIPSTER topi cs51-100 using automati c and semi-automatic methods. TIPSTER 1
consists of volume 1 only and uses the same query set. Both TIPSTER and CACM are
standard test collectionsin the IR community. Legal isaprivately obtained collection of
legal case descriptions. Thefirst query set for the Legal collectionwas supplied with the
collection. The second query set was generated locally by supplementing thefirst query
set with dictionary terms, phrases, and weights. In all cases the query sets are designed
to evaluate an IR system’s recall and precision and are representative of queries that
would be asked by redl users.

Each query set was processed by the two versions of INQUERY in batch mode,
using appropriate relevance and stop words files. A relevance file lists the documents
that should have been retrieved for each query and is required for determining recall
and precision. A stop words file lists words that are not worth indexing because they
occur so frequently or are not significantly meaningful.

Since the B-tree version of INQUERY does no user space main memory caching
of inverted lists across record accesses, we measured the Mneme based version of
INQUERY both with and without inverted list caching. For the version with caching,
the main memory buffer sizes are shown in Table 1 and were determined for each
collection as follows. The large object buffer size was 3 times the size of the largest
inverted list in the collection. This heuristic was meant to allocate a reasonable amount
of buffer space, in asomewhat regul ated fashion, for each collection. Merely alocating
a percentage of the total inverted file size would be inappropriate given the range of



Table 2. Wall-clock times (all times are in seconds)

Collection |Query|| B-Tree | Mneme, |Mneme, ||Improve-
Set No Cache| Cache ment
CACM 1 6.49 6.02 5.93 9%
2 7.41 6.40 6.37|| 14%
3 11.73 9.34 8.32|| 29%
Legal 1 62.84| 51.36 | 50.55| 20%
2 65.82| 5346 | 52.01| 21%
TIPSTER1| 1 |/2683.20| 2568.24 |2519.55 6%
TIPSTER 1 ||4132.34| 3973.45 |3894.74 6%

inverted file sizes. For the three larger collections, the medium object buffer size was
9% of the size of the large object buffer. This alocation was based on object access
behavior observed during query processing, where the number of accesses to medium
objects equal ed roughly 9% of the number of accesses to large objects. For the CACM
collection, 9% of the large object buffer would not have been large enough to hold a
single medium object segment. Therefore, we made the CACM medium object buffer
large enough to hol d 3 medium object segments. The small object buffer was made large
enough to hold 3 small object segments since small object access was insignificant.

Timings were made using the system clock via cals to ftime() and getrusage().
Timing wasbegunjust beforequery processing started, after all fil eshad been opened and
any initialization was complete. Timing ended when the query set had been processed,
before any files were closed. Each query set was run 6 times, and mean times from all
six runs are reported below. In al cases, the result of any particular run differed from
the mean by less than 1% of the mean. Before each query set wasrun, a32 Mbyte*“ chill
file” was read to purge the operating system file buffers and guarantee that no inverted
file data was cached by the file system across runs. The measured 1/O inputs for each
run indicate that thiswas accomplished.

4.3 Reaults

Table 2 shows the wall-clock time required by the different versions of INQUERY to
process each of the query sets. The Mnemeversion without caching achievesanoticeable
improvement in performance over the B-tree version. The addition of caching to the
Mneme version increases the performance further, yielding the improvements shown in
the fina column of the table. Improvement is calculated as (B-tree time — Mneme with
cache time) / B-treetime.

A more precise measure of the portion of the system that varies across the different
versions is system CPU time plus time spent waiting for 1/O to complete. This was
obtained by subtracting user CPU time from the wall-clock time. User CPU time ap-
proximates the time spent in the inference engine. This time should be comparable for
all versions, and in fact varies by less than 1% across the versions. System CPU plus



Table 3. System CPU plus 1/0 times (all times are in seconds)

Collection |Query||B-Tree| Mneme, |Mneme, ||Improve-
Set No Cache| Cache ment
CACM 1 197 148 141 28%
2 2.56 153 152( 41%
3 5.22 2.82 190 64%
Legal 1 2459| 1367 | 12.77| 48%
2 2638 1470 | 13.21|| 50%
TIPSTER1| 1 |/586.12| 479.86| 430.58|| 27%
TIPSTER 1 ||861.75| 723.00| 646.92|| 25%

I/Otimeisreported in Table 3. Again, the M neme version without caching isfaster than
the B-tree version, and the Mneme version with caching isfastest.

For the end user, the reduction in wall-clock time is most significant. However, our
goa was to demonstrate that the inverted file sub-system of an IR system could be
efficiently supported by an “off-the-shelf” data management system. The system plus
I/Otimesrepresent thetime spent in the sub-system we have replaced, and the significant
improvement shows that we have met our goal. It is aso apparent from Tables 2 and 3
that as the collection becomes larger, the time spent in the inference engine starts to
dominatethe overall time, reducing theimpact of improvementsin system and 1/Otime.

To help explain the performance improvement of the Mneme versions, Table 4 gives
some /O statistics for each query set and INQUERY version. “1” isthe number of I/O
inputsmeasured with getrusage(), which countsthe number of 8 Kbyte blocksactually
read fromdisk. “A” isthe average number of file accesses per inverted list lookup. Note
that this does not represent actual disk activity since some file accesses are satisfied by
the Ultrix file system cache. “B” isthe total number of Kbytes read from the inverted
list file during query processing. Again, this does not represent actual bytes read from
disk since some file accesses are satisfied by the Ultrix file system cache.

We can make a number of observationsfrom thistable. The Mneme version without
caching is faster than the B-tree version because it makes fewer accesses to the file
(therefore fewer system calls) and, more importantly, fewer accesses to the disk. The
B-treeversion does limited and unsophisticated caching of index nodes, such that every
record lookup requires more than one disk access. This problem gets worse as the file
grows and the height of the index tree increases. Mneme, however, requires close to 1
file access per record lookup. Mneme locates objects based on their logical segments
using compact multi-level hash tables. This lookup mechanism requires dightly more
computation, but thereduced tablesize allowsthe auxiliary tablesto remain permanently
cached after their first access?. It is interesting to note that the Mneme version reads
substantially morebytesfrom thefilefor the CACM queriesthan doestheB-treeversion.
Thisisbecausethe CACM queriesgeneratemoreactivity inthe small and medium object
pools, which have multiple objects clustered in physical segments. Accessing a given

* The TIPSTER collection requires only 512 Kbytesto cache all of the auxiliary tables.



Table 4. 1/O dtatistics: | = 1/O inputs, A = ave. file accesses / record lookup, B = tota
Kbytesread fromfile

Collection | Query B-Tree Mneme, No Cache Mneme, Cache
Set I [A] B | [A] B I JA] B
CACM 1 82|1.89 585 63|1.02| 1700 64|0.89| 1496
2 82|1.89 940 64|1.01| 2430 64|0.85| 2056
3 83|1.44| 2030 65/1.00f 7890 65/0.45| 3600
Legal 1 2747|2.92| 20700|| 1626|1.07| 20652| 1625|0.96| 17346
2 2776|2.61| 24526 1626|1.06| 24668| 1626|0.80| 18594
TIPSTER1| 1 |/68280|2.89|503546/61308|1.03|503520(|59917|0.60|271272
TIPSTER 1 |{96352|3.09|841304||87876|1.04|841516||84568 |0.61 | 456062

object will cause the entire physical segment to beread in. Thisisless expensivethan it
appears because the physical segment sizeistuned to the disk block transfer size. Each
disk access causes 8 Kbytesto beread from disk, so infact, based on the number of 1/0O
inputs, the B-tree version transfers more raw bytes from disk even though it attemptsto
read far fewer bytesinthefile.

Caching of inverted listsincreases the performance of the Mneme version by further
reducing the number of file and disk accesses. For CACM and Legal, the file system
cache is ableto satisfy enough file accesses so that thereisno differencein “I” between
the two Mneme versions. However, the reductionsin “A” and “B” mean fewer system
cals, less data copying between system and user memory space, and a savings in
system CPU time. The TIPSTER collections are large enough that the Mneme version
with inverted list record caching requires fewer 1/0 inputs than the versions that have
file system caching only.

It is clear that caching of inverted lists to reduce disk accesses is advantageous,
whether provided by thefile system cache or the data management subsystem. Itisalso
clear (and well known [17]) that caching provided by thefile systemisan inferior solu-
tion for data management problems. The buffer management requirements of inverted
list data are better satisfied by the custom, domain tailored mechanismsin Mneme. The
effectiveness of these caching mechanisms can be seen in Table 5, which shows the
hit rates achieved in each of the buffers for each of the queries. The hit rates are fairly
significant given that the buffer sizes allocated could be considered modest.

To further investigate the effects of buffer size, we measured the hit rates achieved
in the large object buffer over a range of buffer sizes for the TIPSTER query set (see
Fig. 2). Thefigure showsthat increasing the buffer size gradually produces diminishing
returns, but the knee of the curve can be used to guide buffer allocation.

5 Redated Work

A great deal of work hasbeen doneinthearea of supporting | R with arelational database
management system (RDBMYS). Some of the earliest work was done by Crawford and



Table 5. Buffer hit rates for the query sets

Collection | Query || Small Obj Buffer || Medium Obj Buffer || Large Obj Buffer
Set ||Refs|[Hits| Rate [|Refs[Hits| Rate || Refs|[Hits| Rate
CACM 1 15| 4 | 027 || 191 16| 0.08 14| 9| 064
2 11| 2 | 018 || 191] 17| 0.09 25| 17{ 0.68
3 5/ 3 | 060 || 221|109| 0.49 30| 25| 0.83
Legal 1 0| 0 |000 | 29 2 007 296, 33| 0.11
2 0Ol 0 |000]| 35 9 026 366| 95| 0.26
TIPSTER1| 1 1| 0 | 000 || 158 36| 0.23 |/2112|938| 0.44
TIPSTER 1 Ol O | 0.00 || 106| 25| 0.24 ||2137|923| 0.43
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Fig. 2. Large object buffer hit rates for the TIPSTER query set

MaclL eod [5, 12, 4, 13], who describe how to use therel ational model to store document
data and construct information retrieval queries. Similar work was presented more
recently by Blair [1] and Grossman and Driscoll [9]. Others have chosen to extend the
relational moddl to alow better support for IR. Lynch and Stonebraker [11] show how
arelational model extended with abstract data types can be used to better support the
gueriesthat are typica of an IR system.

In spite of evidence demonstrating the feasibility of using a standard or extended
RDBM S to support information retrieval, IR system builders have till chosen to build
production systems from scratch. Thisisdueto the belief that superior performance can
be achieved with a custom system, a belief which is substantiated by a lack of results
proving otherwise and anecdotal evidence. Additionally, most of the work described
above dedls only with document titles, author lists, and abstracts. Techniques used
to support this relatively constrained data collection may not scale to true full-text
retrieval systems. We desire to support full-text retrieval with high performance. Our



approach, while similar in spirit to the above work, differsin both the data management
technology chosen to support IR and the extent to which it is applied for that task. The
data management technology we use isa persistent object store, and currently it isonly
used to manage an inverted file index.

Other work inthisareahas attempted to integrateinformationretrieval with database
management [6, 16]. The services provided by adatabase management system (DBMYS)
and an IR system are distinct but complementary, making an integrated system very
attractive. The integrated architecture consists of a DBM S component and a custom IR
system component. There isa single user interface to both systems, and a preprocessor
isused to delegate user queries to the appropriate subsystem. Additionally, the DBMS
is used to support the low level file management requirements of the whole system.
Thisarchitectureissimilar to oursin that a separate data management system isused to
support thefile management requirementsof the IR system. However, our datamanage-
ment system is a persistent object store and we focus on supporting high performance
IR, with no support for traditional data management.

Efficient management of full-text database indices has received a fair amount of
attention. Faloutsos [7] gives an early survey of the common indexing techniques. The
two techniques that seem to predominate are signature files and inverted files, each
of which implies a different query processing agorithm. Since the INQUERY system
uses an inverted file index, and we are not interested in changing the query processing
algorithm, we do not discuss signature files. Zobel et al. [24] investigate the efficient
implementation of an inverted file index for a full-text database system. Their focus
is on compression techniques to limit the size of the inverted file index. They also
address updates to the inverted file and investigate the different inverted file index
record formats necessary to satisfy certain types of queries. In our work, the format of
the inverted fileindex records and the compression techniques applied to those records
are pre-determined by the existing INQUERY system. Our approach is to replace the
subsystem that manages these records, without changing the format of the records.

Tomasic and GarciaMolina[19] study inverted file index performance in a dis-
tributed shared-nothing environment. Their simulation results show that caching in-
verted file index records in main memory can significantly improve performance. This
is consistent with our results obtained from measuring an actua system, where the per-
formance improvement of INQUERY integrated with Mneme is partly due to caching.
Thisresult impliesthat thereis significant repetition of terms from query to query. This
fact has severe implicationsfor any IR study which assumes a uniform distribution over
the term vocabulary when sdlecting query terms, such as the study in [18].

Properly modeling the size distribution of inverted file index records and the fre-
guency of use of termsin queriesisaddressed by Wolframin [21, 22]. He suggests that
theinformetric characteristics of document databases should be taken into consideration
when designing thefiles used by an IR system. We have tried to take thisadvice to heart
by developing appropriate file organization and buffer management policies based on
the characteristics of the data and the data access patterns.

Buckley and Lewit [2] studied the effects of query optimization on an IR system
and found that it can reduce the amount of data read from theinverted file. Reduced 1/0
could change the cache hit rates for the Mneme version of our IR system or ater the



sizedistribution of inverted listsread by the system. We believe that these effects might
require some adjustments in Mneme buffer sizes, but would not reduce the advantage
of Mneme over the B-tree package.

6 Conclusions

Information retrieval systems development is reaching a point where further progress
requires the use of more sophisticated data management services, such as concurrency
control, dynamicupdate, and acomplex datamodel. IR system buildersarefaced with the
choice of devel oping these services themselves, or looking to “off-the-shelf” products
to providethese services. Previous attempts at using standard DBM Ssto provide these
services have produced discouraging results due to poor performance. We have shown
here that with the proper data management technol ogy, sophisticated data management
services can be supplied to an IR system by an “off-the-shelf” datamanagement system
without a performance penalty. In fact, the performance measurement results presented
in Sect. 4 demonstrate that a performance improvement can be obtained.

Much of the performance improvement enjoyed by the Mneme version can be
attributed to careful file allocation sympathetic to the device transfer block size and
intelligent caching of auxiliary tables and inverted lists. While these features could be
added to the B-tree package to achieve a similar improvement, it is exactly thistype of
effort we are trying to avoid by using an existing data management package.

Mneme offers other advantages besides data caching and smart file alocation. The
extensibility of Mneme allows customization based on the characteristics of the data
being stored. This capability is a clear advantage in an environment where the data
management requirements are non-traditional, and was mandatory for satisfying the
individua management needs of the different object groups in the inverted file. The
more standard data management services provided by Mneme include recovery and
support for aricher data model. Inter-object references alow structures such as linked
liststo be used to break large objects into more manageabl e pieces. This could provide
better support for inverted list updates and allow incremental retrieval of large lists.

The current version of Mnemeisaprototypeand doesnot provideall of the services
one might expect from a mature data management system, such as concurrency control
and transaction support. However, the nature of access to the data we are supporting
hereispredominately read-only. We expect that the addition of these services would not
introduce excessive overhead or change the results reported above.

For future work we plan to implement some of the standard data management
services not currently provided by Mneme and verify the above claim. We will also
make use of the servicesthat are currently provided by Mneme but not used to advantage
above, such asthericher datamodel. Furthermore, it would beworthwhileto investigate
other store and buffer organizations, looking for more opportunitiesto tune the system
to the unique data management requirements of information retrieval .
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