
Persistent Data Management for Visual Applications
�

Gökhan Kutlu, Bruce A. Draper, J. Eliot B. Moss, Edward M. Riseman, Allen R. Hanson

Department of Computer Science
University of Massachusetts

Amherst, MA 01003

Abstract

A visual application is an application that manipulates
visual data as part of its processing. Visual applications
need to represent, manipulate, store, and retrieve both
raw and processed visual data. Existing relational and
object-oriented database systems fail to offer satisfac-
tory visual data management support because they lack
the kinds of representations, storage structures, indices,
access methods, and query mechanisms needed for vi-
sual data. We argue that extensible visual object stores
offer feasible and effective means to address the data
management needs of visual applications. ISR4 is such
a visual object store under development at the Univer-
sity of Massachusetts for the management of persistent
visual information.

1 Introduction

A visual application is an application that manipulates
visual data as part of its processing. With advances
in image analysis, visualization, and video technolo-
gies, increasingly large amounts of digital visual data
are being generated by visual applications in a tremen-
dously diverse range of domains, such as geographic,
astronomical, and environmental information manage-
ment, engineering and scientific visualization, military
intelligence, computer aided design and manufacturing
(CAD/CAM), and medical imaging.

Visual data consumed in applications consist not only
of raw sensory data such as images, but also processed
data, such as the knowledge structures used in visual in-
terpretation systems, and associated model data (such as

�
This work was supported in part by the Advanced Research

Projects Agency (via U.S. Army TEC) under contract num-
ber DACA76-92-C-0041, (via TACOM) under contract number
DAAE07-91-C-R035, and by the National ScienceFoundationunder
grant number CDA-8922572.

CAD/CAM models). As the scale of visual applications
grows, the need to efficiently process, store, and access
the raw and processed data becomes more acute.

Typically, a large amount of the data generated in a vi-
sual application is needed for temporary use only. A line
extraction algorithm, for example, may produce hun-
dreds (or thousands) of line segments from an image.
Although not permanent, such data may be accessed re-
peatedly by other modules (e.g., line grouping or model
matching algorithms), so the efficiency of in-memory
data representation and retrieval is critical.

On the other hand, a priori knowledge such as maps
and models, make up a permanent data base of informa-
tion that visual algorithms access repeatedly and alter
only occasionally. Similarly, generated long-term data,
such as the set of extracted line segments that make up a
site model, have to be stored for future access. Although
less voluminous per image than the temporary data men-
tioned above, this data is persistent and grows to larger
total amounts over time. It therefore must be managed
by efficient storage and access mechanisms which are
geared to the nature (e.g., spatial, temporal, 3D) of the
data.

We addressed the management of temporary data in an
earlier visual data management and process integration
tool, called ISR3 [Draper, 1994]. In this paper, we first
discuss the issues related to the management of persis-
tent data in visual applications, and the shortcomings of
current relational and object-oriented systems in dealing
with these issues. We then argue that extensible visual
object stores offer a feasible and efficient means to ad-
dress the data management needs of visual applications,
and present ISR4, a visual object store under develop-
ment at the University of Massachusetts.



2 Persistent Data Management Issues

As described below, the efficient storage and retrieval of
large volumes of permanent visual data, such as aerial
images, site models, and MRI scans, imposes require-
ments that are vastly different from those found in con-
ventional data processing. As a result, existing relational
and object-oriented database systems fail to offer the
kinds of storage structures, indexing and access meth-
ods, and query mechanisms needed for visual data.

2.1 Efficient Storage Structures

Large, Multi-dimensional Objects. One issue is how
to manage the storage and retrieval of large, multi-
dimensional objects such as images. Space- and time-
efficient storage and access of large visual objects is
critical in projects such as The National Digital Library
program at the Library of Congress, which involves pro-
viding access to a major subset of approximately 105
million items, among which are large numbers of digi-
tized pictures.

Most applications store images in files, and leave the
management of memory (page swaps, etc.) to the oper-
ating system. This approach can result in a large number
of page swaps, especially when the physical clustering of
the image on disk does not match the access pattern of the
application [Stonebraker, 1994]. Traditional database
systems do not provide appropriate data types or built-
in support for images or similar 2D objects (e.g. maps).
Adaptive clustering techniques used for clusteringmulti-
dimensional data according to patterns of access are not
mature, and the ones suggested depend on complex ac-
cess pattern statistics [Dröge, 1993, Stonebraker, 1994].

Associative clustering. As discussed above, many vi-
sual applications need to store not only raw images, but
also symbolic data extracted from (or associated with)
images. In content-based image retrieval, for example,
commonly stored data include color histograms, invari-
ants of shape moments, and texture features. Moreover,
symbolic data often need to be associated with the im-
age region they came from so that they can be retrieved
with the sub-image. In the RADIUS [Mundy, 1992] pro-
gram, for example, site models reconstructed from sets
of aerial images need to be grouped, stored, and retrieved
according to their functional areas.

Most database systems provide little control over cluster-
ing of information in external storage so that a sub-image
and the related analysis results can be stored on the same
disk page, and retrieved together efficiently.

2.2 Multi-dimensional and Temporal Indexing

Visual data that are spatial in nature, such as geometric
image structures, often need to be accessed according to
their spatial properties in an image and/or 3D world po-
sitions. Therefore, spatial indices need to be maintained
for efficient access to such data. Also needed, especially
in military intelligence and medical imaging applica-
tions, are temporal indices defined over a time-sequence
of image data. A typical medical query example is to
find the first sign of a tumor in a history of MRI data.

Unfortunately, there is a lack of effective support for
multi-dimensional and temporal indexing techniques in
existingdatabase systems. Moreover, simply adding one
or two popular indexing methods, such as n-dimensional
R-trees, is only a limited solution awaiting situations
where a completely different index is needed. Instead,
the ability to incorporate one’s own indexing mechanism
into the data management system is clearly called for.

2.3 Query Mechanisms and Optimization

Spatial, temporal, and geometric representations.
Current relational and object-oriented query languages
do not express the necessary spatial, temporal, and geo-
metric concepts and operators effectively. For example,
one must usually build specific concrete representations
of n-dimensional points, lines, curves, regions, etc., and
most systems provide no appropriate treatment of geo-
metric anomalies that arise from, for example, numerical
roundoff errors. Although one can represent concepts
such as points and lines, attempting to express notions
such as “distance” and “collinearity” leads to very inef-
ficient query processing in traditional database systems.
Moreover, explicit coding of such data types sacrifices
representational independence. Likewise, one typically
does not have the most efficient algorithms available,
e.g., from computational geometry.

Approximate, ranked retrieval. A deeper problem
with existing query languages is that they are boolean.
A fact or record either definitely lies in the query result
set or it does not. Many queries in visual applications are
more likely to be concerned with approximate matches
and/or ranked retrieval, where the goal is to find the best
answers to a query and to rank them according to their
degree of quality. A simple example would be finding
objects “near” another object: we might return a list of
objects ranked according to their distance from the query
object, up to some maximum distance and/or maximum
number of objects.



Query Optimization. In addition to query languages
being limited in concepts and operators, existing query
optimizers are not prepared to take into account geomet-
ric algorithms, spatial/temporal indexing, and ranked
retrieval. This may become a critical issue when scaling
to large systems, since query optimization frequently has
orders of magnitude impact on performance.

3 Extensible Visual Object Stores

A visual object store is an object store and its associated
tools and facilities provided to support the representa-
tion, manipulation, storage and retrieval of visual data.
An extensible visual object store will have a number
of unique features, which help overcome the problems
discussed in Section 2:

� It provides a powerful core of functionalities to an-
swer the basic data management needs of an appli-
cation, including efficient built-in data types, basic
storage and retrieval ability, and efficient storage
structures, access methods, and query mechanisms
for complex visual objects.

� Applications will be provided the flexibility to add
new features as needed, at all levels of the system.

� Multiple policies and implementations will be
available for the database implementor to choose
from.

� Buffer management and data clustering policies
will be accessible for customization and fine tuning.

� Applications will be lighter-weight since the fea-
tures of the visual object store will be well in-
tegrated, and only those features needed will be
part of the application; unnecessary features will
be turned off.

4 ISR4

ISR4 [Kutlu, 1996] is an extensible visual object store
under development at the University of Massachusetts.
As shown in Figure 1, ISR4 is the integration of an ear-
lier visual data management and process integration tool
called ISR3

�
[Draper, 1994], with Mneme [Moss, 1990],

a persistent object store (also developed at the University
of Massachusetts).

�
ISR (Intermediate Symbolic Representation; [Brolio, 1989]) is

the name of a series of symbolic databases for visual information
developed at the University of Massachusetts; ISR4 is the most
recent version.

Visual data
management

Library routines

In-memory

persistent data

Buffer and file
management

Persistent

Data

on Disk

Server

Concurrency
and

Security

Visual Application
Address Space

Spatial &

Data Structures
Associative

code

data

service

Application

Software

Type info
and

Data model

transient data

In-memory

Mneme

IS
R

3 
- 

M
n

em
e 

In
te

rf
ac

e

Extensible Visual Object Store

ISR3

Visual data

ISR4

Figure 1: ISR4 System Architecture.

Spatial and geometric representations. Embedded in
its host language C++, ISR4 allows arbitrarily complex
objects to be defined and processed, and provides an
initial set of standard visual representations, including
single-band and multi-spectral images, 2D points, lines,
edges, and regions, and 3D points, lines, surfaces, and
volumes. Moreover, as the (object-oriented) data model
is uniform throughout ISR4, complex representations
such as spatially-indexed sets of line segments or his-
tograms of image features, can transparently move be-
tween ISR3 and Mneme.
Customizable data clustering. ISR4 offers more than
storage support; it provides methods for customizing
Mneme’s buffer management and clustering policies ac-
cording to an application’s needs. For example, the
database implementor can use Mneme’s basic capabil-
ities to introduce data clustering policies that reduce
data access delays for specific applications, such as stor-
ing an image region and its computed features in the
same physical segment. Similarly, features which are
multi-dimensional in nature, such as geometric image
structures, can be clustered on disk according to user-
specified access patterns for efficient access.

An example of customizing storage and access for visual
applications is the ISR4 tile-image format, where an im-
age is clustered on disk, and only required sub-images
are brought into memory (on-demand). This ability sig-
nificantly reduces the number of page swaps during com-
mon image processing operations [Kutlu, 1996].

Concurrent, Distributed Database Operations.
Mneme supports concurrent database operations on ar-
bitrarily complex objects within a distributed setting. It
also provides customizable transaction and concurrency
support, as well as extensible caching for use in client-
server modes of operation.



Spatial and temporal indexing and query methods.
ISR3 is equipped with a hierarchy of C++ classes that
provide representations and methods for associatively
and spatially organizing and accessing sets of memory-
resident objects [Draper, 1994]. In particular, 2D ge-
ometric objects in images can be spatially stored into
two-dimensional grids [Brolio, 1989] and retrieved ac-
cording to spatial position in the image.

We are currently developing persistent versions of these
access methods. When manipulating persistent data,
these techniques can significantly reduce data access
times because only the index data structures need to be
kept in-memory when indexing persistent objects. Vi-
sual data reside on disk and are brought into memory
only when accessed, on-demand. The access data struc-
tures are stored on disk at program termination for later
use.

Mneme already provides one such standard indexing
mechanism: the B+ tree. Moreover, Mneme provides
the database programmer with a flexible and powerful
interface for building different types of indices, includ-
ing spatial indices, such as quad-trees and R-trees, and
other multi-dimensional indices.

We are also adding 3-D access mechanisms, and spa-
tial and temporal query languages and techniques to this
framework. A temporal index based on the Time In-
dex [Elmasri, 1990], and optional versioning will also
be provided to support historical queries. Once indices
are built, query languages and techniques will also be
implemented within this framework.

Extensibility. ISR4 offers generic solutions that lend
themselves to immediate use by the visual database
implementor, such as concurrent and distributed stor-
age and retrieval ability for arbitrarily complex objects.
However, a single generic solution is not suitable for
more specific needs, such as application-dependent data
structures, query methods, and indexing mechanisms.
In such cases, ISR4 provides an initial set of powerful
tools, and leaves it to the database implementor to gen-
erate representations, operators, indices, and query fa-
cilities tailored to the application. As an example, ISR4
allows—and encourages—the user to extend its initial
set of representations by adding new ones [Kutlu, 1996].
Visual data types can be easily defined and integrated
with the system using ISR4’s data definition language
(DDL). Likewise, Mneme is fully accessible for building
multi-dimensional indices, or for tuning the buffer man-
agement and data clustering policies to the application-
specific data requirements.

5 Motivating Examples

5.1 Content-based Image Retrieval

A number of current application areas exist that
would immediately benefit from using ISR4. One
is content-based image retrieval, for example, the
QBIC [Niblack, 1993] project. In QBIC, color, tex-
ture, shape and sketch features are computed for image
areas outlined by the user, and used at query time for
image retrieval. The features, which consist of objects
as complex as histograms and reduced resolution edge
maps, are currently stored in an extensible relational
database called Starburst [Lohman, 1991]. The images
themselves, on the other hand, are stored in flat files.

One can achieve better data clustering and faster data ac-
cess if the images and related features are stored using the
strategies of ISR4. First, ISR4 will directly support the
storage of QBIC objects, so there is no need for disk-to-
memory data format transformations, as in the current
transformation from tuples to objects. Second, image
features can be associated with the image region they
came from and stored and retrieved with the sub-image.
This is useful in QBIC, especially when one wants to
see which features (if any) were selected from an image
region. Accessing the region will retrieve the corre-
sponding features as well, which can then be displayed.
Feature indexing capability is also critical in QBIC. The
current B+ tree index can be used for fast object retrieval,
and different types of multi-dimensional indices can be
built and incorporated into ISR4. Along with indices,
query mechanisms can also be implemented.

5.2 Site Models for Photo-interpretation

Intelligence gathering operations provide other ap-
plications. As an example, the RADIUS project
[Mundy, 1992] is developing Image Understanding (IU)
tools for image-analysts to support automated 3D cite
model acquisition, model extension, and change detec-
tion. In a typical scenario, analysts build up a folder of
image data and other intelligence about a site. Based on
this information, analysts form a 2D map of the func-
tional areas of the site, including abstract features such
as the typical number of cars found in each parking lot.
Finally, 3D models of the permanent structures in each
area are built. Once a site model has been developed,
future images and intelligence reports can be compared
to it in a set of processes called “change detection,” in
which analysts search for any temporal change in the
functional areas, features, and/or structures in a site.



Here, 3D geometric site models plus collateral infor-
mation, such as text, maps, and representative imagery,
need to be stored in a fashion that allows efficient data
retrieval for change detection programs, as well as in-
teractive query support for photo-analysts and military
planners. Currently, the RADIUS Testbed Database
(RTDB)[Hoogs, 1994] stores complex objects such as
geometric models, collateral data, and imagery informa-
tion in a relational DBMS (Sybase), while image pixel
data are stored in flat files.

ISR4 would allow RADIUS features to be grouped,
stored, and retrieved according to their functional ar-
eas. Images would be partitioned according to func-
tional areas, and the sub-images would be clustered on
disk with their associated features. In addition to fast
access to image objects, this approach leads to better
buffer management, especially with large aerial site im-
ages, since it restricts data movement to only a small,
relevant portion of the image. Since RADIUS images
are typically 10K � 10K pixels or larger, such efficient
buffering mechanisms are required. As with QBIC, spa-
tial indices, as well as query languages, can be built
using ISR4 to answer interactive queries from analysts
and planners such as ‘Give me the image (folder) of this
site in which this building appears for the first time.’ To
support historical (time-based) queries, the functional
areas can be linked over time to form a spatio-temporal
sequence, over which site structures are indexed.

In a similar manner, ISR4 can support other applica-
tions with visual representations, operators, and stor-
age management, including astronomy (sky survey)
databases, geographic and environmental information
management, CAD tools, and medical imaging.

6 Conclusion

Visual applications need to efficiently represent, ma-
nipulate, store, and retrieve both raw and processed
persistent visual data. Extensible visual object stores
offer effective means to address the data management
needs of visual applications. ISR4 is an extensible vi-
sual object object store that will offer extensive storage
and retrieval support for complex and large visual data,
customizable buffering and clustering, and spatial and
temporal indexing. In doing so, it will provide a vari-
ety of multi-dimensional access methods and query lan-
guages. Query optimization, along with approximate,
ranked query methods, are among planned future addi-
tions.

References

[Brolio, 1989] J. Brolio, B. Draper, R. Beveridge, and
A. Hanson. ISR: A Database for Symbolic Pro-
cessing in Computer Vision. IEEE Computer,
22(12):22–30, 1989.

[Draper, 1994] B. A. Draper, G. Kutlu, E. Riseman, and
A. Hanson. ISR3: Communication and Data Storage
for an Unmanned Ground Vehicle. In IEEE Inter-
national Conference on Pattern Recognition, pages
833–836, 1994.

[Dröge, 1993] G. Dröge and H.-J. Schek. Query-
Adaptive Data Space Partitioning Using Variable-
Sized Storage Clusters. In Advances in Spatial
Databases: Proceedings of the 3rd International
Symposium SSD, pages 337–356, 1993.

[Elmasri, 1990] R. Elmasri, G. Wuu, and Y. Kim. The
Time Index: An Access Structure for Temporal
Data. In Proceedings of the Conference on Very
Large Databases, Brisbane, Australia, August 1990.

[Hoogs, 1994] A. Hoogs and B. Kniffin. The RADIUS
Testbed Database: Issues and Design. In IUW, Mon-
terey, CA, volume 1, pages 269–276, Nov. 1994.

[Kutlu, 1996] G. Kutlu, B. A. Draper, J. E. B. Moss, and
E. Riseman. Support Tools for Visual Information
Management. To appear in SDAIR, 1996.

[Lohman, 1991] G. M. Lohman, B. Lindsay, H. Pira-
hesh, and K. B. Schiefer. Extensions to Starburst:
Objects, types, functions, and rules. Communica-
tions of the ACM, 34(10):94–109, 1991.

[Moss, 1990] J. Eliot B. Moss. Design of the Mneme
Persistent Object Store. ACM Transactions on In-
formation Systems, 8(2):103–139, April 1990.

[Mundy, 1992] J. L. Mundy, R. Welty, L. Quam,
T. Strat, W. Bremmer, M. Horwedel, D. Hackett,
and A. Hoogs. The RADIUS Common Develop-
ment Environment. In IUW, San Diego, CA, pages
215–228, Jan. 1992.

[Niblack, 1993] W. Niblack et. al. The QBIC Project:
Querying Images By Content Using Color, Texture,
and Shape. In SPIE, Storage and Retrieval for Image
and Video Databases, volume 1908, pages 173–187,
1993.

[Stonebraker, 1994] S. Sarawagi and M. Stonebraker.
Efficient Organization of Large Multidimensional
Arrays. In International Conference on Data Engi-
neering, volume 10, pages 328–336, 1994.


