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Abstract

As vast quantities of on-line text become avail-
able, there is an increasing need for systems
that automatically analyze the conceptual con-
tent of natural language text. Systems that
operate on narrowly de�ned domains show
promise, but require a di�erent set of domain-
speci�c rules for each application.

This paper describes CRYSTAL, a system that
learns text analysis rules automatically from
examples. Rules induced by CRYSTAL achieve
performance approaching that of hand-crafted
rules. CRYSTAL has a particularly e�cient
learning algorithm that is not improved by
more extensive search. This o�ers a practical
alternative to time-consuming manual knowl-
edge engineering for each new domain.

1 Domain-speci�c Text Analysis

With the increasing amounts of on-line text available,
the need is growing for automated text analysis systems
that go beyond keywords to extract the conceptual con-
tent of the text. This requires a system that can reliably
extract both explicitly stated information and informa-
tion that can be reasonably inferred. General purpose
text understanding is still beyond the reach of current
technology, but considerable progress has been made by
restricting the problem to a prede�ned set of concepts in
a narrowly de�ned domain.
A text analysis system with the appropriate domain-

speci�c knowledge sources can identify references to in-
formation that is of interest to a particular domain,
which consists of a corpus of texts together with a set of
concepts to be identi�ed in those texts.
The target concepts in a medical domainmight be ref-

erences to symptoms and diagnoses in patient records.
In a collection of Wall Street Journal articles, the target

�This material is based on work supported in part by the
National Science Foundation, Library of Congress and De-
partment of Commerce under cooperative agreement num-
ber EEC-9209623 and in part by NRaD Contract Number
N66001-94-D-6054.

concept might be management succession events: per-
sons moving into top management positions in corpora-
tions and persons moving out of those positions. The
ARPA-sponsored Sixth Message Understanding Confer-
ence [MUC-6 1995] used such a \Management Succes-
sion" domain. This domain is illustrated by Figure 1.

Input Text:

Who's News: Topologix Inc.

Donald E. Martella, formerly vice president,
operations, was named president and chief
executive o�cer of this maker of parallel
processing subsystems. He succeeds Jack Harper,
a company founder who was named chairman. ...

Succession Event:
Person In: Donald E. Martella
Person Out: Jack Harper
Position: president and chief executive o�cer
Organization: Topologix Inc.

Succession Event:
Person Out: Donald E. Martella
Position: vice president, operations
Organization: Topologix Inc.

Succession Event:
Person In: Jack Harper
Position: chairman
Organization: Topologix Inc.

Figure 1: Output from a \Management Succession" text

This text has three succession events. Donald Martella
is moving into a position that Jack Harper is leaving;
Martella is moving out of his old job as vice president;
Harper is moving in as chairman. These succession
events can be represented as three case frames, each case
frame having up to four slots: Person In, Person Out,
Position, and Organization.1

1We are using a somewhat simpler output representation
than that used in MUC-6, for the sake of clarity.



How can an automated system start from the raw text
in Figure 1 and produce the desired output representa-
tion? A key knowledge source is a set of text analysis
rules that identify references to management succession
events, based on local linguistic context. These rules
will be speci�c to the way such events are typically de-
scribed and are sensitive to the vocabulary, word senses,
and writing style of the domain.
Rules that apply to the text in Figure 1 might look

for patterns such as the following.

1. \<Person> WAS NAMED <Corporate Post>
OF <Organization>"

2. \<Person> SUCCEEDS <Person>"
3. \<Person> FORMERLY <Corporate Post>"
4. \<Person> WHO WAS NAMED <Corporate Post>"

Another domain-speci�c knowledge source needed is
a semantic lexicon used to tag individual words with
semantic classes appropriate to the domain. Semantic
tagging of individual words enables rules of greater gen-
erality than rules based exclusively on exact words.
Rules based on patterns such as these are highly spe-

ci�c to a particular domain and can be di�cult and
time-consuming to write by hand. Writing such rules
manually requires both domain expertise and a detailed
knowledge of the text analysis system.
An attractive alternative is to use machine learning to

acquire the necessary rules. This paper describes CRYS-
TAL, a system that learns domain-speci�c text analysis
rules from training examples. An earlier implementation
of CRYSTAL was presented in [Soderland et al. 1995].
A fuller treatment may be found in [Soderland 1996].
With CRYSTAL, a domain expert's responsibility is

to de�ne the target concepts for a domain and to cre-
ate training data by marking each reference to the tar-
get concept in a set of representative texts. This does
not require any background in linguistics or computer
science. CRYSTAL automatically derives a set of rules
that, in e�ect, imitate the domain expert's annotations
on previously unseen texts.

2 Concept De�nitions

The rules that CRYSTAL learns, called concept de�ni-
tions, apply a combination of lexical, semantic, and syn-
tactic constraints on an input instance. If all the con-
straints are satis�ed, a case frame is created with the
extracted information.
Before concept de�nitions are applied, a sentence an-

alyzer identi�es major syntactic constituents such as
subject, verb, direct object, and prepositional phrases.
We used the BADGER sentence analyzer2 [Fisher et al.

2The BADGER and CRYSTAL software were provided
by the Natural Language Processing Laboratory, University
of Massachusetts Computer Science Department, Amherst,
Massachusetts. Copyright 1990-1996 by the Applied Com-
puting Systems Institute of Massachusetts, Inc. (ACSIOM).
All rights reserved.

Concept type: Succession Event
Constraints:

SUBJ::
Classes include: <Person>
Extract: Person In

VERB::
Terms include: NAMED
Mode: passive

OBJ::
Terms include: OF
Classes include: <Corporate Post>,

<Organization>
Extract: Position, Organization

Figure 2: A concept de�nition that applies to \Donald
E. Martella ... was named president ... of this maker of
parallel processing subsystems."

1995] for experiments reported here. Semantic tagging
for the Management Succession domain was based on a
semantic lexicon that was tailored to the domain and
was supplemented by a module that recognizes person
names and company names.
Figure 2 shows a concept de�nition that applies to the

�rst sentence in Figure 1. This concept de�nition has a
constraint that requires the semantic class <Person> in
the subject, which is satis�ed since BADGER's name
recognizer has labeled \Donald E. Martella" as the se-
mantic class <Person Name>, a subclass of <Person>.
This concept de�nition also has constraints requiring

the verb phrase to include the word \named" in the pas-
sive voice. Constraints on the direct object require the
semantic class <Corporate Post>, the word \of", and
the class <Organization>. Each of these constraints is
met by the direct object \president and chief executive
o�cer of this maker of parallel processing subsystems".
Both \president" and \chief executive o�cer" are tagged
as <Corporate Post> in this domain. The word \maker"
has the semantic class <Generic Organization>, which
is an <Organization>.
Since all these constraints are satis�ed, CRYSTAL cre-

ates a case frame with the Person In slot �lled by the
subject and the Position slot and Organization slot �lled
by the direct object. Later processing in a full text analy-
sis system is needed to trim away extraneous words from
the extracted slot �lls and to replace generic references
such as \maker of parallel processing subsystems" with
an actual company name.
Figure 3 shows another concept de�nition. This one

applies to the second sentence in Figure 1, \He succeeds
Jack Harper ..." This extracts a Person In from the
subject and a Person Out from the direct object. Later
processing will replace \he" with the actual name and
merge this output with the case frame from the de�nition
in Figure 2.
As the preceding examples illustrate, a concept def-

inition applies constraints to syntactic constituents of
an instance (e.g. to the subject, verb, direct object, or



Concept type: Succession Event
Constraints:

SUBJ::
Classes include: <Person>
Extract: Person In

VERB::
Root: SUCCEED
Mode: active

OBJ::
Classes include: <Person>
Extract: Person Out

Figure 3: A concept de�nition that applies to \He suc-
ceeds Jack Harper, a company founder ..."

prepositional phrases). CRYSTAL does not depend on a
particular syntactic analysis and uses whatever syntactic
labels are found in the training instances. The only re-
quirement is that the instances are presented as a at list
of syntactic constituents with no embedded constituents.
The terms constraint is an unordered list of words

that must be included in the syntactic constituent. The
classes constraint is an unordered list of semantic classes
that must be present, either directly or through an IS-
A relationship. Lexical and semantic constraints may
also make a distinction between head terms or classes
and modi�er terms or classes. Terms found as the last
term of the phrase, or just before punctuation, before
a preposition, or before an adverb are considered to be
head terms. All others are considered modi�ers. The
root constraint is used if the sentence analyzer provides
morphological analysis (i.e. verb roots). The mode con-
straint is used if the sentence analyzer labels phrases as
a�rmative/negative or as active/passive.

Constraints on syntactic constituents:
Terms
Head terms
Modi�er terms
Classes
Head classes
Modi�er classes
Root
Preposition
Mode (a�rmative/negative, active/passive)

Figure 4: Constraints in a concept de�nition

3 The CRYSTAL Algorithm

CRYSTAL is a supervised learning algorithm, and as
such needs training instances that have been annotated
by a human expert. CRYSTAL is given a training set
of texts in which every instance of the concept being
learned (e.g. management succession event) has been
explicitly marked in the text. Any phrases not marked

The CRYSTAL Algorithm:

Rules = NULL
Derive an initial de�nition from each positive instance
Do for each initial de�nition D not covered by Rules

Loop:
D' = the most similar initial de�nition to D
If D' = NULL, exit loop
U = the uni�cation of D and D'
Test U on the training set
If the error rate of U > error tolerance

Exit loop
Set D = U

Add D to the Rules
Return the Rules

as positive instances of the target concept are considered
to be negative instances.
The goal of CRYSTAL is to �nd a set of concept de�-

nitions that are generalized enough to have good cover-
age on previously unseen texts, yet constrained tightly
enough to operate reliably. CRYSTAL's approach is to
begin with highly speci�c concept de�nitions and grad-
ually relax the constraints. Each proposed generaliza-
tion is tested for extraction errors on the training set,
which has been hand-tagged with the desired phrases
to be extracted. Generalization continues until further
relaxation would lead to a de�nition that exceeds a user-
speci�ed error tolerance.
CRYSTAL begins by selecting a positive instance of

the target concept as a seed. CRYSTAL then takes the
most speci�c concept de�nition that covers this instance
and generalizes it. The most general de�nition within
error tolerance is added to the rule base and another
seed is selected from positive instances not yet covered
by the rule base. This is repeated until all positive in-
stances have been covered or have been selected as seed.
This machine learning methodology is called a covering
algorithm [Michalski 1983] [Clark and Niblett 1989].
An e�cient search control for generalizing concept def-

initions is vital for CRYSTAL because of the expressive
representation of its rules. CRYSTAL is able to learn
rules that retain or drop any combination of term con-
straints or semantic constraints on any syntactic con-
stituent of an instance. A typical initial de�nition has
dozens of constraints on the terms and semantic classes
found in an instance, resulting in an extremely large
space of possible generalizations.
Previous systems [Rilo� 1993] [Kim and Moldovan

1992] [Hu�man 1996] that learn text analysis rules avoid
this problem by restricting the rule representation or
by restricting representation of stored training instances
[Krupka 1995]. In each of these systems, the text analysis
rules (or stored instances) require an anchor word, typi-
cally the verb, but allow no other term constraints. Sen-
tence elements that contain information to be extracted
have semantic class constraints, but other sentence ele-
ments are ignored. This restricted representation makes
the search space more manageable, but limits the rules



that can be learned.
CRYSTAL can handle an expressive rule representa-

tion because of its e�cient search control. Generaliza-
tion of a concept de�nition is guided by �nding the most
similar initial concept de�nition. CRYSTAL creates a
proposed generalization by dropping constraints that are
not shared by this most similar de�nition. This is equiv-
alent to relaxing constraints just enough to cover the
most similar positive instance, since each initial concept
de�nition corresponds to a positive training instance.
This strategy has several bene�cial results. Features

that are merely accidental properties of a particular in-
stance are dropped quickly. Features that are retained
are those shared with a similar positive instance, which
tend to include essential characteristics of the target con-
cept. The intractable problem of �nding an optimal
generalization is thus reduced to the simpler problem
of �nding a similar initial concept de�nition.
The similarity metric used by CRYSTAL counts the

number of relaxations that would be needed to unify
the current concept de�nition with an initial de�nition.
Dropping one word from a term constraint counts as
a single relaxation, as does dropping a constraint on
the verb root or the mode (a�rmative/negative, ac-
tive/passive). Moving up one level in the semantic hi-
erarchy counts as one relaxation. Entirely dropping a
class constraint is equivalent to the number of relax-
ations needed to reach the root class.

4 Empirical Results

CRYSTAL has been applied successfully to several do-
mains. We will present results from the Management
Succession domain and from a \Hospital Discharge" do-
main. In this second domain, the relevant information is
references to symptoms and diagnoses in patients' hospi-
tal records. These are further broken down to distinguish
present symptoms from absent symptoms and to distin-
guish con�rmed diagnoses from ruled out diagnoses.
Performance is measured in terms of recall and preci-

sion. Recall is the percentage of positive instances of the
target concept that were correctly identi�ed3. Precision
is the percentage of extractions made that were correct4.
Recall and precision are more useful metrics than ac-

curacy when there is an extremely unbalanced distribu-
tion of positive and negative instances. Suppose there
are 10,000 instances of which 100 are positive and the
remaining 99% are negative. A system that identi�es 60
out of the 100 positive instances has recall of 60%. If
the system reports an additional 20 negative instances
as positive, the precision is 75% (60 right out of 80 ex-
tractions). The accuracy of this system is 99.4%, since
it correctly identi�es 9,880 negative instances as well as

3Recall = TP / (TP + FN), where TP is the number
of true positives, and FN is the number of false negatives
(actually positive, but missed by the system).

4Precision = TP / (TP + FP), where TP is the number
of true positives and FP is the number of false positives.

60 true positives. Even a totally useless system that
extracts nothing has accuracy of 99%.
As a point of comparison, the best system performance

for participants in the ARPA-sponsored Message Under-
standing Conferences has been recall and precision be-
tween 50% and 60% [MUC-4 1992] [MUC-5 1993] [MUC-
6 1995]. CRYSTAL, which is a component of a full infor-
mation extraction system, can expect somewhat higher
performance than a full system.
Figure 5 shows CRYSTAL'S performance for Manage-

ment Succession as the amount of training increases5. A
corpus of 599 annotated texts with 16,325 instances was
randomly partitioned with 20%, with 40%, and with 80%
of the texts as training and the remainder as a blind test
set. These results are the averages of ten partitions at
each training level. The number of positive training in-
stances is shown beneath each set of recall and precision.
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Figure 5: Learning curves for the Management Succes-
sion domain

Recall increases with each doubling of the training size
with no signi�cant di�erence in precision6. Precision re-
mains fairly level as an artifact of the error tolerance
parameter. The error tolerance was kept at 0.20, which
would result in precision of about 80 if error rates on the
test set exactly mirrored error rates on the training.
The error tolerance parameter can be used to manip-

ulate a trade-o� between recall and precision. Raising
the error tolerance causes CRYSTAL to accept high cov-
erage concept de�nitions, even if they make extraction
errors. This increases recall at the expense of precision.
The concept Person In shown in Figure 5 trained on
40% of the corpus at error tolerance 0.20 has recall 62.6
and precision 69.8. At error tolerance 0.0, recall is 49.1
and precision 81.9. When the error tolerance is raised to
0.40,recall is 71.3 and precision 53.4.

5 Handling Extremely Noisy Input
Data

Perfect recall and precision is beyond the reach of CRYS-
TAL, or any system that takes its input from the results

5CRYSTAL learned concept de�nitions for each combina-
tion of the four slots for succesion event case frames.

6Two-tailed paired t-test with p < 0.05



of previous automatic text processing. Noisy input is in-
evitable. Syntactic analysis may be inadequate or con-
tain errors. Mistaking a verb for a noun, for example,
will lead to bad clausal bracketing. Semantic tagging
may fail to support distinctions needed for the domain.
The wrong word sense may be assigned to a word, or
none at all if it is not covered by the semantic lexicon.
Human annotators also make errors in marking the train-
ing texts and produce inconsistent training data.
Even if the input contains no errors, a single instance

may not contain su�cient context to distinguish the tar-
get concept. There is no way to be certain that the
sentence \He succeeds Mr. Adams" is a corporate man-
agement succession. It may refer to a political appoint-
ment, which is considered irrelevant to the Management
Succession domain.
Another limitation comes from the variability of free

text. A �nite set of training texts will never contain
all possible ways to refer to the target concept. Low-
frequency terms or combinations of terms that occur
only in a blind test set will not be covered by the rules.

6 A Comparison with Hand-coded
Rules

Experiments were conducted to see how close CRYSTAL
comes to the performance of hand-coded rules. Table 1
compares CRYSTAL to hand-coded rules in the Man-
agement Succession domain. Each used the same input,
a single partition with 359 texts as training and the re-
maining 240 texts as a blind test set. CRYSTAL achieves
over 90% of the performance of hand-coded rules, with
performance equal to hand-coded for one of the concepts.

                           
              
Person_In
Person_In,Person_Out
Person_In,Position
Person_In,Organization

  R
70.6
79.1
61.7
47.9

  P
75.0
80.3
86.0
72.0

  R
67.2
77.6
60.0
52.1

  P
66.9
75.4
71.5
69.5

Concept

  92.0
  96.0
  91.6
101.3

CRYSTAL Hand-coded Ratio of
Avg. R,PAvg

67.0
76.5
65.8
60.8

Avg
72.8
79.7
71.8
60.0

Table 1: Management Succession: a comparison with
hand-coded rules

CRYSTAL comes close to the performance of hand-
coded rules in the Hospital Discharge domain, as well.
Table 2 compares the performance of CRYSTAL with
hand-coded rules for this domain. 251 Hospital Dis-
charge texts were used as training with another 251 kept
as a blind test set. CRYSTAL achieves 93% the perfor-
mance of hand-coded rules for three of the concepts and
88% for a fourth.
CRYSTAL can achieve nearly the performance of

hand-crafted rules when the human is given exactly
the same training input as CRYSTAL. A human expert
brings to bear knowledge beyond that contained in the
training data, but manual engineering also faces a ceil-
ing on performance given imperfect input and limited
training examples.

  R
64.9
79.6
76.8
81.2

  P
79.3
91.9
77.5
87.2

  R
61.9
80.0
74.8
73.5

  P
65.6
78.9
69.1
83.1

88.4
92.6
93.3
93.0

                           
              
Symptom,Present    
Symptom,Absent 
Diagnosis,Confirmed
Diagnosis,Ruled_Out

Concept
CRYSTAL Hand-coded Ratio of

Avg. R,PAvg
63.8
79.4
72.0
78.3

Avg
72.1
85.8
77.2
84.2

Table 2: Hospital Discharge: a comparison with hand-
coded rules

7 A Nearly Optimal Search Strategy

Another way to evaluate how close CRYSTAL comes to
optimal rules is to increase the amount of search ex-
pended in generalizing concept de�nitions. CRYSTAL is
able to navigate e�ciently through a large space of pos-
sible concept de�nitions because of the \greedy" nature
of the algorithm. At every step in generalizing a con-
cept de�nition, CRYSTAL is faced with several choices
of constraints to relax. CRYSTAL makes the choice that
seem to be the best at the time, even though a di�erent
choice may turn out later to have been better.
We tried an alternate approach that is more compu-

tationally expensive, but has a greater chance of making
optimal choices. A beam search tries several paths in a
search space in parallel. The amount of search e�ort is
controlled by two parameters, the beam width w and
branching factor b. When CRYSTAL generalizes from a
seed instance, a beam set of size w is maintained. These
are the best w generalized concept de�nitions found so
far.
For each de�nition in the beam set, CRYSTAL �nds

b distinct relaxations by unifying with the most similar
initial de�nition, the next most similar, and so forth.
This produces a list of wb generalized de�nitions, which
is sorted to keep the best w distinct de�nitions. The
metric used to choose the best de�nitions is to count the
number of positive training instances covered. If two
de�nitions cover the same number of positive instances,
the de�nition that covers fewer negative is considered
better.
The CRYSTAL algorithm is equivalent to a beam

search with w = 1. We ran experiments for the Man-
agement Succession domain and the Hospital Discharge
domain at a range of beam sizes. Beam width was set to
1, 2, 5, and 10, with branching factor equal to the beam
width.
Figure 6 shows results at beam width 1, 2, 5, and

10 for four representative Management Succession con-
cepts. The shaded dot indicates the average of recall and
precision.
Increasing the beam width results in a gain in recall

that is almost exactly o�set by a drop in precision. The
greatest change in recall and precision comes in moving
from beam width 1 to beam width 2. There is little
e�ect from moving from beam width 5 to 10. This holds
generally across concepts in both domains7.

7Most of the changes in recall and precision are statisti-
cally signi�cant, but none of the changes in average recall
and precision.
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Figure 6: Management Succession results at beam width
1, 2, 5, and 10

Why should precision go down as recall goes up? This
is a case of a well known phenomenon in machine learn-
ing called over�tting [Quinlan and Cameron-Jones 1995].
A machine learning algorithm may create a concept de-
scription that �ts accidental characteristics of the train-
ing. Increased search for an optimal generalization turns
out to increase the likelihood of �nding rules that over-
�t the training data. This appears to increase accuracy
when measured on the training data, but will actually
reduce accuracy on the test set.

8 Conclusions

Automated text understanding requires an enormous
amount of knowledge, even when the problem is nar-
rowly focused on a limited domain. Rules must be cre-
ated for each domain that identify concepts of interest
based on domain-speci�c linguistic context. CRYSTAL
helps overcome a knowledge engineering bottleneck by
deriving these rules automatically from training exam-
ples.
CRYSTAL derives rules with performance nearly

equal to that of hand-coded rules. Its learning algorithm
navigates an extremely large space of possible rules e�-
ciently. There is no bene�t on the average from increas-
ing the search e�ort to �nd optimal rules.
The range of information extraction tasks to which

CRYSTAL can be applied is limited only be the ability
of a user to identify target concepts that are grounded
clearly in the text. A domain expert must mark each
reference to the target concept in a set of representative
texts. Developing a set of rules by hand also requires a
set of annotated examples to guide development for all
but the simplest of information extraction tasks. This
means that CRYSTAL's training corpus is not an addi-
tional expense over a manual engineering approach.
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