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Abstract

Providing timely access to text collections both locally and across the Internet is instrumental in
making information retrieval (IR) truly useful. In this paper, we investigate how to exploit a symmet-
rical multiprocessor architecture to build high performance IR servers. We start by implementing a
multithreaded IR server and a multitasking IR server to investigate that how best to execute multiple IR
commandsin parallel. We use InQuery, an inference network, full-text IR retrieval engine, to providethe
basic IR services [5, 6, 20]. To expedite our investigation of possible system configurations, character-
istics of IR collections, and the basic IR system performance, we implement a simulator with numerous
system parameters, such asthe number of CPUSs, threads, disks, collection size, and query characteristics.
We then validate the simulator against our implementation. By using multiplethreads, CPUs, and disks,
we demonstrate scalable performance for a variety of system configurations. We aso find bottlenecks
where additional threads, CPUs, and disks either degrade or have no impact on performance. Our results
suggest that information retrieval is easily paralelized, but because it performs significant amounts of
both 1/0 and CPU processing, to produce scalable performance requires a careful balance of hardware

resources.



1 Introduction
Asinformation explodes acrossthe Internet and el sewhere, providing fast and effective information retrieval
isbecomingincreasingly important. Inthis paper, weinvestigatehow to expl oit asymmetrical multi processor
(SMP) architecture to achieve high performance for information retrieval servers. Information retrieval (IR)
isanideal applicationto parallelize. Queriesand other IR commands are independent. IR systemscan easily
divide collections across multiple disks, search the resulting sub-collectionsindependently, and then merge
the results. However, because the IR workload is heterogeneous, i.e., it consists of significant amounts of
both 1/0 and CPU processing, simply adding more disks or CPUs does not necessarily produce scalable
performance. We investigate how best to execute multiple IR commands in parallel using multithreading,
multitasking, and multiple disks on a SMP. We explore a wide range of system parameters to balance CPU
and 1/0O across our application. We also investigatethe performance effects of partitioningasingle collection
across multiple disks. We find bottlenecks and in many instances, show scalable performance for small
numbers of processors.

Our IR server is based on InQuery, a full-text inference network based information retrieval engine [5,
6, 20]. Our work isnovel becauseit investigatesareal, proven effective system under avariety of redlistic
workloads and hardware configurations on SMP architecture. The previous work either investigatesthe IR
system on massively paralel processing(MPP) architecture[1, 9, 11, 15, 17, 18, 19] or it investigates only
a subset of the system on SMP architecture such as the disk system [14] or it compare the cost factors of
SMP architecturewith other architectures[8]. (Section 4 compares our work to previousresearch on parallel
information retrieval in more detail .)

We started by building aparallel IR server for an SMP architecture, where all CPUs, disks, and memory
are shared and communicate on a shared bus (see Figure 1). We implemented both a multitasking version,
and a multithreaded version. We aso use a simulator to expedite our investigation of possible system

configurations, characteristics of the IR collections, and the basic IR system performance. For example, our
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simulator can vary the number of CPUs, threads, disks, the collection size, query frequencies, query lengths,
and workloads. We validate the simulator with the prototype for severa interesting system configurations.
We describe our IR system, the simulator and its validation in Section 2.

Section 3 presents results that demonstrate the performance improvements and limitations due to mul-
tithreading, multitasking, collection size, adding CPUs, and adding disks. We use a response time of 10
seconds as an upper bound on acceptable response time. We begin by investigating the benefits of multi-
threading verses multitasking using the IR server implementations. We find their performance is similar,
althoughthe multithreaded versionisawaysslightly faster than multitasking (90% of the measured response
times fall within 10% of each other). The performance benefit of multithreading is thus enough to warrant
itsinclusion in any new parallel IR system developed from scratch, but it may not be worth the recoding
effort in alarge legacy system with pervasive global variables.

In Section 3.2.1, we use the simulator to show that for a basic system with one CPU and one disk,
multithreading yiel ds performance improvements until the disk becomes overwhelmed. For example, going
from 1 to 4 threadsincreases the number of requests with responsetime under 10 secondsfrom 60 to 90 per
minute, afactor of 1.5 improvement. Disk utilization simultaneously increases from 70.8% to 88.6% which

prevents additional improvements with more than 4 threads.



To relieve the disk bottleneck, we add disks, and then add CPUs as they become the bottleneck. Our
results show that if the CPUs and disks are not balanced, the additional hardware can actually degrade
performance. For example, for 1 CPU with 16 threads, using the round-robin strategy to partition a 1 GB
collection over 4 disks performs worse than over 2 disks, because the CPU cannot keep up with the disks.
Increasing the number of CPUsfrom 2to 4 for a1 GB collection on one disk does not improve performance
either, but in this case it is because the disks are the bottleneck. The right balance for our system seems to
be 2 diskswith 1 GB or less data a piece per CPU with 4 threads.

In Section 3.3, we examine system scalability as the collection size increases from 1 GB to 16 GB. We
show in several cases that our system can search more data with no loss in performance. For example,
using a round-robin collection partition over 16 disks and enables us to increase the collection size from 4
GB to 8 GB with virtually no impact on performance for 4 CPUs with 16 threads and an arrival rate of up
to 90 requests per minute. Although performance eventually degrades as the collection size increases, we
demonstrate system configurations for which the performance degrades very gracefully.

The remainder of this paper is organized as follows. The next section describes our implementation,
simulator, and the validation. Section 3 presents experiments that measure the performance and scalability
of our system. Section 4 compares thiswork to previous work, and Section 5 summarizes our results and
concludes.

2 A Parallel Information Retrieval Server

This section describes the implementation of our parallel IR server, and simulator. We begin with a brief
description of the InQuery retrieval engine [5, 6, 13], the features we model, and a validation of our
simulation of thisbasic functionality. We then describe the multithreaded and multitaskingimplementations,

and validate our simulator against the multithreaded implementation.



2.1 InQuery Retrieval Engine
211 InQuery

InQuery is one of the most powerful and advanced full-text information retrieval enginesin commercial or
government usetoday [13]. It usesan inference network model, which applies Bayesian inference networks
to represent documents and queries, and views information retrieval as an inference or evidential reasoning
process[5, 6, 20].

An InQuery database consists of original document files, an inverted file of terms, an inverted file of
field-based terms, a stopword dictionary, afile storing processing information, afile of the most frequently
occurring terms, and a viewing database which store offsets of documentsin the origina document files.
An inverted file contains term keys, their corresponding lists of documents, and frequency and position
information in the original document files. Either a custom B* tree package with concurrency control or
the Mneme persistent object store [2] manages the inverted files. The indexing overhead for a collection of
documentsis 30% to 40% of its original data size. For example, a1.2 GB Tipster 1 collection [5] needs 0.5
GB extra disk space to store indexes. InQuery accepts both natural language and structured queries.

The InQuery server supports a wide range of IR commands, such as query, document, and relevance
feedback. The three basic IR commands are query, summary and document commands. A query
command requests documents that match a set of terms. A query response consists of alist of top ranked
document identifiers. A summary command consistsof aset of document identifiers. A summary response
includes the document titles and thefirst few sentences of the documents. A document command requests

a document using its document identifier. The response includes the compl ete text of the document.

2.1.2 Simulation Mode

We use a simulation model we previously built for InQuery work [3, 4]. Because we use a more recent
version of InQuery on a DEC AlphaServer 2100 5/250 clocked at 250 MHz instead of an MIPS R3000

clocked at 40 MHz, we validated query responsetime of our simulator again. We model query responsetime



as a function of query length and term frequency. Our validation demonstrated that all queries fall within
40% of the actual system, and of the queries we do not accurately simulate, we usually over estimate rather
than under estimate. We are more accurate on long queries. We describe this validation in more detail in

Appendix A.

2.2 TheParalld IR server

In this section, we describe the multithreaded and multitasking IR server implementations. We present the
simulator for these systems, and the system parameters we use through out the rest of the paper. We then
validatethe simulator of the paralel IR server. The paralld IR servers exploitsparallelism as follows: (1) It
executes multiple IR commands in parallel, by either multitasking or multithreading; or (2) It executes one

command against multiple partitions of a collectionin parallel.

221 Multithreading vs. Multitasking

Since we aready have distributed servers [3, 4] where each server is single-thread process built on a
uniprocessor machine, we implemented a parallel server via multitasking. This version simply executes a
light-weight broker and multipl e executables of the single-thread server on the same machine, communicating
by message passing [3, 4].

Another natural implementation of the parallel InQuery server is to use a thread package to build a
shared-everything version, i.e., a multithreaded version. We use the POSI X thread package [16]. Because
threads within a process share the same virtua address space, context switching between threads is less
expensive than that between processes. In addition, the cooperating threads communicate by simply
accessing synchronized global or static variables; thus, we expect the multithreading to be more efficient than
the multitasking. Because multithreaded programming has only recently become common, many existing
programsare not easy to thread dueto pervasiveglobal and static variables. All previousversionsof InQuery
have this problem, and we spent almost a month eliminating these variables from a subset of the InQuery

system.



I Parameters | Abbreviation || Values |

Query Number ON 50 1000

Terms per Query (average) 2

shifted neg. binomial dist. (n,p,s) TPQ (4,0.8,1)

Query Term Frequency

dist. from queries QTF Observed Distribution
Client Arrival Pattern

Poisson process (requests per minute) A 6 30 60 90 120 150 180 240 300
Collection Size (GB) CSIZE 1 2 4 8 16

Disk Number DISK 1 2 4 8 16

CPU Number CPU 1 2 3 4

Thread Number TH 1 2 4 8 16 32

Table 1: Experimental Parameters

We compare the performance of the multithreaded version and the multitasking versionin Section 3.1.

2.2.2 Smulator

This section describesthe additional features and their parametersthat we useto model the parallel IR server,
anditsvalidation. To model aparalld IR server, we extended the simulator to model threads, multiple CPUs,
and multiple disks. The system parameters also include the original parameters: query length, query term
frequency, client arrival rate, and collection size. Table 1 presents all the parameters and the values we use
in our experiments and validation.

We assumetheclient arrival rate as a Poisson process. Each client issuesaquery and waitsfor response.
For each query, the server performs two operations: query evaluation and retrieving the corresponding
summaries. Since users typically enter short queries [10], we experiment with a query set that consists of
1000 short queries, with an average length of 2 that mimic those found in the 103rd Congressional Record
query sets [10], and use an observed query term frequency distribution obtained from their distribution in
the Tipster query sets[5].

We vary the arrival rate and the size of collection in order to examine the scalability of the server as
the number of clients and the size of the collection increases. We aso vary the number of CPUs, disks,

and threads in order to investigate the effects of changing system configurations. All experiments measure



Arrival
Query Rate A Number of Threads
Type (per min.) 1 2 3 4 8 16
6 2.2% 31% | -28% | 28% | 3.0% | 22%
30 1.5% 05% | -25% | 25% | -08% | 1.5%
Short 60 13.7% | 3.0% 19% | -1.5% | 1.0% | -0.3%
300 272% | 176% | 3.8% | -04% | 21% | 1.0%
6 5.7% 3.9% 6.0% | -1.1% | -05% | 1.3%
30 198% | 9.0% | 44% | 19% | 1.2% | 0.5%
Medium 60 26.0% | 12.0% | 25% | -3.9% | 1.9% | -0.4%
300 215% | 157% | 72% | 88% | 50% | 41%
6 1.3% 80% | 08% | 1.0% | 12% | 0.1%
30 158% | 6.6% | -3.8% | -04% | 04% | -05%
Long 60 101% | 18% | -21% | 18% | 1.0% | 1.7%
300 127% | 103% | 1.7% | 24% | 3.9% | 3.1%
All 131% | 7.6% 23% | 12% | 16% | 1.2%

Table 2: Percentage Difference of Average Response Times between the Implementation and Simulator

response time, and CPU and disk utilization, and determine the largest arrival rate at which the system

supportsa response time under 10 seconds.

Validation of Query Operation

This section validates query operations on a multithreaded server with a configuration of a single CPU and
disk asthe query arrival rate and the number of threads increase. Each thread executes one query. Since we
assume that queries arrive as a Poisson process, we assume the inverted file isin memory. We call thisa
warm start. A cold start is when we assume the inverted fileis not initially in memory.

Table 2 lists the percentage difference of average response time between the actual system and the
simulator for each query set asthearrival rate and the number of threadsincrease. Positive numbersindicate
the simulator overestimates the actual system. On average, the simulator is 4.5% slower than the actual
system. The difference between the actual system and the simulator tends to decrease as the number of
threads increases and the query arrival rate decreases. The difference between the simulator and the actual
systemincreases as afunction of the number of querieswaiting in the queue. Overall, the simulator matches

the actual system closely.



Arrival Number of Threads or Processes
Rate 1 2 3
(per min.) thr proc diff thr proc diff
6 2.78 2.20 221 -0.4% 2.10 2.30 -9.0%
30 8.12 3.72 4.02 -7.2% 313 343 -9.0%
60 46.50 20.14 | 22.08 -9.6% || 1849 | 21.62 | -16.9%
300 72.50 52.85 | 59.24 | -12.0% || 46.80 | 49.97 -6.7%
Arrival Number of Threads or Processes
Rate 6 9 12
(per min.) thr proc diff thr proc diff thr proc diff
6 2.20 237 | -1.7% 2.33 2.37 -1.7% 2.35 2.36 -0.4%
30 3.50 372 | -6.2% 3.62 3.68 -1.6% 358 405 | -13.1%
60 1745 | 1772 | -1.5% || 15.60 | 16.10 -3.2% || 16.19 | 16.20 -0.6%
300 38.73 | 40.16 | -3.6% || 40.99 | 41.32 -0.8% || 41.67 | 4532 -8.8%

Table 3: Actual Measured Average Response Time on a Cold Start (seconds)

3 Experimentsand Results

This section explores how best to use multithreading, multitasking, and collection partitioning on a SMP
with multiple disks to improve the performance of a paralle IR server. We use our implementations to
investigatethe benefits of the multithreading versus multitasking. We usethesimulator to investigate system
performance and scal ability under a variety of workloads and hardware configurations.
3.1 Multithreadingvs. Multitasking
This section compares the performance of the multithreaded version and the multitasking version of the IR
server on a Alpha Server 2100 5/250 with 1 GB of memory and 3 CPUs. We use 1.2 GB Tipster 1 text
collection built as a single database and on a single disk. The inverted file (.5 GB) thus fits in memory (1
GB). The query set is 50 queries generated from the description fields of TIPSTER topics 51-100. Each
guery is simply a sum of the terms in the corresponding description field, with an average of 8 terms per
guery. We simulate the query arrival as a Poisson process. |n the multithreaded version, the server startsa
set of threads and then assigns each query to asinglethread. In the multitasking version, the server startsa
set of processes and then assigns each query to a single process. We measure the average response time of
guery evaluation and the corresponding summary response information for the relevant documents.

In Table 3, we measure response time with a cold start such that all term and document accesses cause

I/O operations. If aterm or document occurs more than once in the queries, only the first access involves



Arrival Number of Threads or Processes
Rate 1 2 3
(per min.) thr proc diff thr proc diff
6 1.23 1.15 116 | -0.8% 1.16 1.16 0.0%
30 1.68 1.20 130 | -83% 117 1.26 -7.6%
60 2.83 1.46 151 | -3.4% 1.26 140 | -11.1%
300 27.74 1243 | 1316 | -7.6% 7.45 7.93 -6.4%
Arrival Number of Threads or Processes
Rate 6 9 12
(per min.) thr proc diff thr proc diff thr proc diff
6 1.16 115 0.8% 115 116 | -0.8% 1.15 1.16 -0.8%
30 115 124 | -6.1% 1.15 120 | -4.3% 1.16 121 -4.1%
60 1.23 130 | -5.6% 122 129 | -5.7% 123 1.29 -4.8%
300 6.59 6.77 | -27% 6.75 6.76 | -0.2% 6.77 6.80 -0.4%

Table4: Actual Measured Average Response Time on a Warm Start (seconds)

the I/O, sincethe memory islarge enough to cache theinverted filefor a1l GB collection. (1 GB of memory,
for a .4 GB inverted file) Table 4 demonstrates a warm system in which we assume the inverted file is
in memory during query and summary evaluation. The measured response timesin Tables 3 and 4 are an
average of threeruns.

In both cases, the multithreaded version is slightly faster than the multitasking version. The differences
range from 0.4% to 16.9% depending on the the client arrival rate and the number of threads and processes,
with 90% of the measured response time falling within 10% of each other. An experiment with aquery set
with an average of 27 terms per query shows the same trend.

Both multitasking and multithreading require more memory than a single instance of the system. In
InQuery version 3.1, a query with 2 terms assigned to a thread needs roughly 3 MB of additional memory.
For example with 16 threads, the system needs at least 48 MB of additional memory. We assume there is
enough memory in our experiments.

The multithreaded version is faster than the multitasking version, which suggests we should use multi-
threading. However, multithreading a large legacy system with pervasive globa variables is a non trivial
task. To implement multitasking requiresthe addition of acoordinator process and message passing between

the coordinator process and InQuery servers. Multitasking may be preferable, sinceit isonly slightly slower

10
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Figure 2: Performance as the number of threads increases (Simulated)

and requires significantly less programming. We implement both versions in their simplest form where
only onethread or processis used to evaluate each command. Increasing the granularity of parallelism by

partitioning a query or collection may increase the performance advantage of multithreading, since it has
less communi cation overhead than multitasking.

3.2 System Scalability
In this section, we use the simulator to explore system scalability with respect to multiple threads, CPUSs,

and disksfor a1 GB collection. We assume clients arrive as a Poisson process. For each client, the server

performs two operations. query evauation and retrieving the corresponding summaries. We start with a
base system that consists of one thread, CPU, and disk.

3.21 Threading
Figure 2 illustrates how the average response time and the resource utilization change as the number of

threads increases using 1 CPU for a 1 GB collection on 1 disk. The average response time improves
significantly as the number of threads increases from 1 to 4. For example, at an arrival rate of 60 requests

per minute, the average response time improves by afactor of 3. Thelargest arrival rate at which the system

11
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supports a response time under 10 seconds increases from 60 to 90 requests per minute, a factor of 1.5
improvement.

Performance improves because threading overlapsthe CPU and 1/0O processing, whichincreases resource
utilization (the classic advantage of multiprogramming). The table in Figure 2 presents the CPU and disk
utilization for an arrival rate of A = 90 requests per minute. The disk becomes saturated when number
of threads reaches 4 and before the CPU is saturated. More threads do not yield further performance

improvements.

3.2.2 Adding Disks

To eliminate the disk bottleneck, we distribute a collection over severa disks to introduce paralel disk
accesses, and thus improve disk access time since there is less to search on each disk. When searching a
partitioned collection in parallel, we achieve the best performance by evenly distributing the workload over
all sub-collections. We adopt a round-robin strategy to partition a collection and build a database for each

partition. All database componentsfor each partition resides on one disk.

12



Figure 3 illustrates the average response time and resource utilization as the number of disksincreases
using one CPU and around-robin strategy to partitional GB collection. Theaverageresponsetimeimproves
significantly when we partition the collection over two disks. Increasing the arrival rate up to 90 requests
per minute has amost no impact on average response time. The largest arrival rate at which the server
supports a response time under 10 seconds increases from 90 to 150 requests per minute, a factor of 1.46.
Performance degrades however when we partition the collection over four disks.

By examining the utilization of the CPU and disksin the tablein Figure 3 for A = 150, we see that the
computation changes from the 1/0 to CPU bound as the number of disksincreases. The CPU utilization
increasesfrom 36.1% t091.4%. Asthe number of disksincreases, thereisadditional CPU overhead to access
each disk and combine responses. For example, the overhead is doubled for queries when we distribute
a collection over two disks. Partitioning over two disks improves performance because querying smaller
collectionsis quicker although not twice as fast, and the searches are in paralel. For summary commands,
wegain additional parallelism becausetheretrieving summariesistypically twiceasfast, sincethe requested
documents are usually split between collectionsand thereisminimal overhead. For four disks, the overhead

overwhelms the CPU and negates the benefits of the additional parallelism.

3.23 Adding CPUs

Figure 4 illustratesthe average response time and the resource utilization as the number of CPUs increases
when we partition the collection over 4 disks with 16 threads. Recall that for 1 CPU, partitioning over 4
disks causes the CPU to be a bottleneck. The average response time improves significantly, when we add
one CPU. At an arrival rate of 90 requests per minute, the average response time improves by a factor of
2; at aarrival rate of 120 requests per minute, the average response time improves by a factor of 2.9. The
largest arrival rate at which the server supports a response time under 10 seconds increases by a factor of
1.46, from 130 requests per minute to 190. When A = 180 and the number of CPUs varies from 2 to 4,

utilization of CPU drops with the number of CPUs, and disk utilization is almost fixed at 79%. Once we

13



relieve the CPU bottleneck going from 1 to 2 CPUs, adding CPUs does not bring significant improvements.

3.24 Summary

We improve the performance of our IR server through better software: multithreading; and with additiona
hardware: CPUs and disks. In our base system with a singlethread, disk, and CPU, the server is /O bound.
Since the threads are independent in this system, threading improves performance of the base system by
gaining well known multiprogramming benefits - increasing the hardware resource utilization because |/O
and computation overlap. For short queriesonal GB collection, threadingimprovesthearrival rateat which
the system supports a response time under 10 seconds from 60 requests per minuteto 90. Adding hardware
improves performance, because the IR server can exploit the paralelism of the IR commands. Partitioning
the collection across multipledisksintroduces afiner-grain execution of IR commands and shiftsthe balance
of the computation from /O to CPU bound. Adding CPUs also improves performance to a point. For
example, using 16 threads, 4 disks and 2 CPUs improves the arrival rate at which the system supports a
response time under 10 seconds by a factor of 3.2 over 1 thread, CPU, and disk. However if the hardware
components are not balanced, additional hardware can degrade performance. With 16 threads and 1 CPU,
partitioningal GB collection over 4 disks performsworse than 2 disks, becausethe CPU is overloaded; with
16 threads and 1 disk, increasing the number of CPUs from 2 to 4 does not improve performance because

the disk is a bottleneck.

3.3 Scalability with Increasing Collection Size

This section examines system scalability as the collection size increases from 1 GB to 16 GB. We assume
that each disk stores all database componentsfor at most 1 GB of data. We consider two disk configurations.
In the first configuration, we fix the number of disksat N and use the round-robin strategy to partition the
collection (M GB) over N disks, where each disk storesall database componentsfor M/N GB of data. Inthe

second configuration, the number of disks increases with the size of the collection. We use a round-robin

14



strategy to partition the collection (M GB) over M disks, where each disk stores all database componentsfor

1 GB of data.

3.3.1 Distributing the collection over afixed number of disks

Figure 5 and Table 6 illustrate the average response time and resource utilization when the collection size
varies from 1 GB to 16 GB and each disk stores a database for 1/16 of the collection. Table 5 reports the
largest arrival rates under different configurations at which the system supports a response time under 10
seconds.

Partitioning thecollection over 16 disksillustrateswhen the systemis CPU bound. Although performance
degrades asthe collection sizeincreases, the degradationis closely related to the CPU utilization. In the case
of 1 CPU wherethe CPU isover utilized for 1 GB and 60 requests per minute, increasing the collection size
from 1 GB to 16 GB decreasesthelargest arrival rate at which the system supports aresponse time under 10
seconds by a factor of 10. In the case of 4 CPUs, where CPUs are over utilized for 1 GB and 180 requests
per minute, the performance degrades much more gracefully. For example, increasing the collection size
from 1 GB to 4 GB has ho impact on average responsetimefor an arrival rate of up to 90 requests per minute
(see Figure 5(c)). Increasing the collection sizefrom 1 GB to 16 GB only decreases the arrival rate at which
the system supports a response time under 10 seconds by a factor of 3. This set of experiments illustrates
dramatic improvements due to additional CPUs. For a1 GB collection, 4 CPUs improvesthe arrival rate at
which the system supports a response time under 10 seconds by a factor of 3 compared with 1 CPU. For a
16 GB collection, 4 CPUs improve the arrival rate by afactor of 10 compared with 1 CPU.

We also find instances where the system supportsthe same arrival rates under different system configu-
rations. At these data points, we can support the same performance by doubling the number of CPUs when
the collection sizeincreases by afactor of 4. For example, the system supportsan arrival rate of 60 requests

per minutes, when using 1 CPU for 1 GB, using 2 CPUsfor 4 GB, and using 4 CPUs for 16 GB; the system

15



Number of Size of Collection (size/16 GB per disk)
CPUs 1GB | 2GB | 4GB | 8GB | 16GB
1 60 35 30 10 6
2 120 90 60 35 25
4 180 150 120 90 60

Table 5: Requests per minute with a response time under 10 seconds for a collection
distributed over 16 disks

QN TPQ QTF CPU DISK TH A
1000 2 Obs. Varied 16 16 120
Number of Size of Collection (size/16 GB per disk)

CPUs | Resources [ 1GB | 2GB | 4GB | 8GB | 16GB

CPU 96.6% | 97.4% | 98.1% | 98.6% | 99.0%
1 DISK 216% | 184% | 14.7% | 11.9% | 9.8%
CPU 78.1% | 91.8% | 94.2% | 95.9% | 97.0%
2 DISK 351% | 34.9% | 28.6% | 23.0% | 19.4%
CPU 38.9% | 49.7% | 68.0% | 88.0% | 93.5%
4 DISK 349% | 37.8% | 41.1% | 42.6% | 37.4%

Table 6: Resource utilizationfor a collection distributed over 16 disks (Simulated)

supportsthe arrival rate of 90 requests per minutes, when using 2 CPUs for 2 GB, and using 4 CPUs for 8

GB.

3.3.2 Distributing the collection over avariablenumber of disks

Figure 6 and Table 8 illustrate the average response time and the resource utilization when the collection
sizevariesfrom 1 GB to 16 GB and each disk stores a databasefor 1 GB of data. Table 7 reportsthe largest
arriva rates under different configurations at which the system supports a response time of 10 seconds.
The results show that the system scalesup to 2 GB using 1 CPU, up to 4 GB using 2 CPUs and 8 GB
using 4 CPUs. An even moreinteresting phenomenon isthat asingle CPU system handlesa 2 GB collection
faster than a 1 GB collection, and a4 CPU system handles a 2, 4, or 8 GB collection faster than a 1 GB
collection in our configuration. The performance improves because work related to retrieving summariesis
distributed over disks such that each disk handles less work, relieving the disk bottleneck. By examining
the utilization of CPU and disk in Table 8, we see that the performance improves until the CPUs are over

utilized. In the example of the single CPU system, the CPU is over utilized for a4 GB collection. For a2
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Number of Size of Collection (1 GB per disk)
CPUs 1GB [ 2GB | 4GB | 8GB | 16GB
1 90 115 65 30 6
2 90 125 125 60 30
4 90 125 150 120 60

Table 7: Requests per minute with a responsetime under 10 seconds when the number
of disksvaries with the size of the collection

QN TPQ QTF CPU DISK TH A
1000 2 Obs. Varied Varied 16 120
Number of Size of Collection (1 GB per disk)

CPUs | Resources | 1GB | 2GB | 4GB | 8GB | 16GB

CPU 36.2% | 75.3% | 94.3% | 98.1% | 99.0%
1 DISK 97.4% | 82.2% | 43.5% | 20.6% | 9.8%
CPU 18.1% | 38.1% | 71.2% | 95.0% | 97.0%
2 DISK 97.4% | 82.9% | 66.2% | 40.5% | 19.4%
CPU 9.0% | 19.0% | 35.7% | 67.5% | 93.5%
4 DISK 97.4% | 82.9% | 66.7% | 57.1% | 37.4%

Table 8: Resource utilization when the number of disks varies with the size of the
collection

GB collection distributed over 2 disks, the system handles 27.8% more requests than for a 1 GB collection
on 1disk.

Under thisdisk configuration, if we want to support the same level of performance, the number of CPUs
should be doubled when theamount of datais doubled. For example, if wewant the system to support arrival
rate of about 60 requests per minute, we need 1 CPU for a4 GB collection, 2 CPUs for a 8 GB collection,

and 4 CPUs for a 16 GB collection.

3.33 Summary

In paralelizing our IR server, we find instances when increasing the collection size has no impact in
performance. We can even find instances where increasing the collection size improves performance,
because each disk handles less work. Although the performance eventualy degrades as collection size
increases, the degradation is very graceful until the CPU becomes over utilized.

We find that the CPU utilization is more closely related to the number of disksrather than the collection

size. For the same amount of data, e.g., 2 GB, partitioning over 2 disk using 2 CPUs resultsin 38.1% CPU
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utilization (see Table 8), while partitioning over 16 disksresultsin 91.8% CPU utilization (see Table 6), due
to the addition overhead to access each disk. Inthiscase, the CPU over utilization causes 16 disksto perform
worse than 2 disks. However when CPU is not over utilized, the performance improves as we partition the
collection over more disks. For example, using 4 CPUSs, partitioning 2 GB over 16 disksimproves a factor
of 1.2 compared with partitioning 2 GB over 2 disks. Theseresultssuggest that we need to balance hardware

resources carefully in order to achieve scalable performance.

4 Related Work

There have been anumber of papers regarding to using multiprocessor machinesfor information retrieval [1,
8,9, 11, 14, 15, 17, 18, 19]. Most of them use a distributed memory, massively parallel processing (MPP)
architecture[1, 9, 11, 15, 17, 18, 19].

Couvreur et al. analyze thetradeoff between performance and cost when searching largetext collections.
They use simulation models to investigate three different hardware architectures: a mainframe, a collection
of RISC processors connected by a network and a specia purpose machine [8]. They use different search
algorithms on different hardware architectures. The experiments using a mainframe are most related to our
work. They measure the response time under different query arrival rates and identify the query arrival rate
the system can support within 30-40 seconds. By using a4-CPU IBM 3090/400E mainframe, they achieve
45 searches per minute when searching a 14 GB collection. In our system, we can achieve 70 searches per
minute with a responsetime under 10 seconds using 4 CPUs when searching a 16 GB collection. Our mgjor
contribution is not that we can build a faster system. Since we do not have the figures such as clock speed,
memory size of their machines, we cannot compare the numbers directly. Our contributionis that we focus
on asingle system and analyze how different parameters affect the system performance. Besides measuring
response time, we a so measure the system utilization and identify bottlenecks.

Jeong and Omiecinski investigate two inverted file partitioning schemes in a shared-everything multi-

processor system [14]. One scheme partitions the posting file by term identifiers while the other scheme
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partitions the posting file by document identifiers. They focus on the effect of adding disks on system per-
formance. They show that response time decreases as the number of disks increases up to some threshold.
Partitioning based on term i dentifiers performs the best when the term distributionisless skewed or when the
term distributionin the query is uniformly distributed. Partitioning based on document identifiers performs
the best when term distribution is highly skewed. We address thisissue in Section 3.2.2 and Appendix A.
Although we only consider one partitioning scheme without much skew in our experiments, we measure the
effects of threads, CPUs, and disks.

The other related studies use MPPs and focus on how to speed up single query processing. Stanfill et
al. implement their IR system on the connection machine (CM), which isafine-grained, massively parallel
distributed-memory SIMD architecture with up to 65,536 processing elements [17, 18, 19]. Bailey and
Hwaking report their IR system on Fujitsu AP1000, whichisa128-nodedistributed-memory multicomputers
and each node hasa25 MHZ CPU and 16 MB memory [1]. Cringean et al. and Efraimidiset al. implement
their IR systems on a transputer network, which belongs to the MIMD class of parallel computers [9, 11].

Our work uses a SMP and investigates the system performance when processing multiple queries.

5 Conclusion
In this paper, we investigate building a parallel information retrieval server using a symmetrical multipro-
cessors to improve the system performance. We measure the actua systems to compare the performance
of multithreading and multitasking. We build a flexible simulation model to study performance by varying
numerous parameters, such as the number of threads, disks, CPUs and the collection size. We present a
series of experimentsthat measure system response time, utilization, and identify system configurationsand
workloads at which the system supports a response time under 10 seconds.

Theresultson multithreading versus multitasking show that the performance of the multithreaded version

and the multitasking version is similar in our implementation, although the multithreaded version is aways
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dightly faster than the multitasking version (90% of measured responsetimesfall within 10% of each other).
The performance benefit of multithreading is enough to warrant itsinclusion in any new paralel IR system
developed from scratch, but it may not be worth the recoding effort in alarge legacy system with pervasive
global variables.

By using the simulator, we first explore system scalability with respect to multiple threads,CPUs, and
disks for a1 GB collection. Our results show that we need threading to increase the hardware resource
utilization. We aso show that adding hardware components can improve the performance, but these
components must be well balanced. 1n some cases, additiona hardware actually degrades performance.

We also investigate the scalability of the server by increasing the collection size from 1 GB to 16 GB.
Our results show that we can search more datawith no lossin performance in many instances. Althoughthe
performance eventually degradesas the coll ection sizeincreases, the performance degradesvery gracefully if
we keep the hardware utilization balanced. Our results also show that system performanceismorerelated to
the number of disks, rather than the collection size. Our resultssuggest that system designersfor information

retrieval should carefully balance their hardware resources in order to achieve good performance.
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Appendix A: Validation of Basic IR Functionality

The simulation model isdriven by empirical timing measurements from the actual system. We model three
basic IR operations. query evaluation, obtaining summary information, and retrieving documents. We
measure CPU and disk usage for each operation, but do not measure the memory and cache effects. We
model the collection by obtaining term and document statistics from 1.2 GB Tipster 1 text collection, a
standard test collection of full-text articlesand abstracts[5, 12]. Thesimulator only accepts natural language
gueries. Two parameters, query length and query term frequency, determine the characteristics of a query.

(See[3, 4] for more details.) Below, we present new system measurements and their validation.

System Measurements

The system measurements include query evaluation time, and document/summary retrieval time. We

obtained the measurements using InQuery version 3.1 running on DEC AlphaServer 2100 5/250 with 3
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CPUs (clocked at 250 MHZz), 1024 MB main memory and 2007 MB of swap space, running Digital UNIX
V3.2D-1 (Rev 41).

We model the query evaluation time as a sum of evaluation time for each termin the query plusa small
overhead that represents the time to combine theresults of each term [4]. Thetimeto evaluate aterm ranges
from 0.06 secondsfor aterm that appears only once in theinverted fileto 1.2 seconds for aterm that appears
995,008 times (the maximum term frequency of Tipster 1). The evaluation time is divided into CPU and
disk accesstime. The disk access time accountsfor 32% to 90% of the total evaluation timewith an average
of 73%, assuming the index fileis on disk.

Since the document sizes of the Tipster 1 collection is not very large (2.3 KB on average) and thus
retrieval occurs very quickly, there is no strong correlation between document size and document retrieval
time [4]. We thus represent the document retrieval time as a constant value: 0.027 seconds, which is the
average document retrieval time for 2000 randomly selected documents from the Tipster 1 collection. The
document retrieval timeis also divided into CPU and disk access time. The disk access time accounts for
87% of thetotal retrieval time. We represent the summary retrieval time as a sum of the document retrieval

times for each document in the summary request [4].

Validation of Query Evaluation M odel

In this section, we validatethe accuracy of the query simulation model against the sequentia implementation
of InQuery version 3.1, by creating artificial queries and comparing the performance of each query on the
implementation and simulator. We randomly generate three sets of queries: 50 short querieswith an average
length of 2, 50 medium queries with an average length of 12, and 50 long queries with an average length
of 27. We do not generate queries with multiple occurrences of the same term since our model does not
account for these types of queries.

Before processing each query, we chill the system by reading a large file that fills the memory such that

every term in the query is read from disk. Table 9 shows the validation results. Column 2 and 3 show
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Query Difference Ave. Eval.
Type Ave. Std. +10% +20% £30% +40% || Time (sec)
Short 20% 16.2% 42% 72% 96% 100% 0.7
Medium || 42% 10.1% 68% 90% 100%  100% 46
Long 23% 85% 78% 96% 100%  100% 10.1
All 28% 11.6% 63% 86% 99% 100% 51

Table9: Query Model Validation

Query Total Distribution

Type Number | Percentage || 0% to —10% | —10% to —20% | —20% to —30% ||
Short 22 44% 11 7 4

Medium 17 34% 14 3 0

Long 19 38% 18 1 0

All 58 39% 43 11 4

Table 10: Distribution of Underestimated Queries

the average percentage difference of evaluation time between the simulator and the actua system, and its
standard deviation. A positive value means that the simulator overestimates the actual system; a negative
value means that the simulator underestimates the actual system. Columns 4 thru 7 show the percentage of
queries running on the simulator that fall within £10%, +20%, +£30% and +40% of the actual system. The
last column liststhe average evaluation query time for each set of queriesin the actual system. On average
the simulator is 2.8% slower than the actual system with the standard deviation of 11.6%. The variation of
short queriesistwicethat for long queries. All queriesfall within 40% of the actual system.

Table 10 details the underestimated queries. Columns 2 and 3 show the total number of underestimated
gueries and the corresponding percentage in al query sets. Columns 4 thru 6 shows the number of the
underestimated queries that fall within —10%, —10% to —20% and —20% to —30% of the actual system.
Although we underestimate 58 queries out of 150 queries, 43 queries fall within 10% and only four short
queries fall outside of 20%. Thus, we usually overestimate queries. Our validation results show that our

guery evaluation model matches the actual system very closely, athough we do not accurately model every

query.

25



