On-Line New Event Detection using Single Pass Clustering

Ron Papka and James Allan

Center for Intelligent Information Retrieval
Department of Computer Science
University of Massachusetts
Ambherst, MA 01003

{papka,allan}@cs.umass.edu

Abstract

This paper discusses the implementation and evalua-
tion of a new-event detection system. We focus on
a strict on-line setting, in that the system must indi-
cate whether the current document contains or does
not contain discussion of a new event before looking
at the next document. Our approach to the prob-
lem uses a single pass clustering algorithm and a novel
thresholding model that incorporates the properties
of events as a major component. A corpus contain-
ing newswire and transcribed broadcast news was an-
alyzed using our system, and our results compared fa-
vorably to those of other systems. We develop an eval-
uation methodology based on a combination of tech-
niques that allows us to infer the expected performance
of our approach in the field, and to suggest avenues for
future research that may lead to better performance.

1 Introduction

On-line event detection is the classification of a time-
ordered stream of documents that discuss events. The
task of mew-event detection is to identify documents
discussing an instance of a new event, that is, one
which has not already appeared on the stream of in-
coming text.

The environment we envision for on-line event de-
tection is depicted in Figure 1. Broadcast news from
various sources is monitored by the system that op-
erates on text documents. When the source is radio
or television, a speech transcription and segmentation
process first converts the data to text documents, each
containing a complete news story [17, 2]. If a document
discusses a new event, it is fed to a tracking process
that classifies the document stream based on existing
news stories in an on-line unsupervised setting. The
new-event detection system has two modes of opera-
tion: In on-line mode, a strict real-time application is
assumed, and the system indicates whether the cur-

rent document contains or does not contain discussion
of a new event before looking at the next document.
In delayed mode, the system can base its decision on
information in “future” documents.

There are several practical applications that would
benefit from a good solution to new-event detection.
This task is currently performed manually by equity
traders, media analysts, and on-line digital news ed-
itors that focus on collecting, interpreting, and pre-
senting news from multiple news sources. A system
that could organize events automatically would be use-
ful for financial and world news applications where
decision-making processes are based on new events and
the evolution of existing events.

In the following section, previous work related to
on-line event detection is discussed. Our algorithm
for new-event detection is presented in Section 3. An
implementation of the algorithm was tested using the
experiments described in Section 4. In Section 5, we
discuss these results and those obtained from two other
systems.

2 Related Work

The primary motivation for this work arose out of a
project called Topic Detection and Tracking (TDT).
This project (joint with DARPA, CMU, and Dragon
Systems) set out to explore issues related to detecting
and tracking events in broadcast news. The results of
the first year’s efforts were reported at a workshop in
October, 1997 [20].

One of the issues explored in the pilot study was
the meaning of event, which was defined as some
unique thing that happens at some point in time. The
property of time is what distinguishes an event from
the more general topic. For example, “The Eruption
of Mt. Pinatubo on June 15th, 1991” is considered
an event and “volcanic eruptions” is a more general
topic. This definition can be extended to include the
obvious spatial component of an event, namely loca-

¢

Vg

D}%}}%}}«m EU———

' \

Speech .| Document
Transcription | | Segmentation

| NewEvent || Event
Detection Tracking

Retrospective Document Stream

@ - New event
O - Existing event

v

v

I TeTererer Tererereores Yo Terveres

Delayed

Red-Time

Figure 1: On-line event detection and operation modes for new-event detection.

tion. For example, The “Earthquake in Kobe, Japan”
is a description of an event that uses this property.

Though it is difficult to determine the accurate
definition of an event, it is easier to define the proper-
ties that specify when two events are the same. These
properties define event identity. They are important
to model, because a system that has the capability of
representing these properties in order to detect event
identity is trivially capable of performing new-event
detection: Using an event identity process, the sys-
tem determines for the current document whether it
contains an event identical to one appearing in a previ-
ously processed document. If so, the system does not
detect a new event; otherwise it does.

From a journalist’s perspective, a news story
about an event will typically specify 1) when the event
occurred; 2) who was involved; 3) where it took place;
4) how it happened; and 5) the impact, significance,
or consequence of the event on the intended audience
[15]. However, as an event evolves, many of these prop-
erties are either not initially known, or are assumed
to be known by the audience and are therefore not
referenced within the text of documents relating to
the same event. The lack of certain event properties
within documents relating to the same event should be
expected as the event evolves.

At a certain level of abstraction, the task of new-
event detection is a classification task where docu-
ments are either members of the set of documents con-
taining a new event or not. Previous work related to
on-line document classification has often focused on

supervised-training algorithms that use labeled docu-
ments [18, 3, 13, 16], a resource not available during
new-event detection.

Most experimental Information Retrieval (IR) lit-
erature discusses evaluation using topics and not
events. In [10], for example, a knowledge-based ap-
proach to text pattern-matching was used to categorize
news stories into general topics. In addition, almost all
TREC [9] information requests for the routing and fil-
tering experiments are about topics even though the
testing and training corpora are mostly from newsprint
sources.

Some event-related work has been reported prior
to the TDT workshop, but new-event detection has not
been a focus. A frame-based system that attempted
to detect events on a UPI newswire was constructed
by DeJong in the late 1970s. He used pre-specified
software objects called sketchy scripts [8]. Frames as-
sociated with 50 general events were constructed by
hand. The goal of his system was to predict which
frame needed to be populated, and then to produce a
short summary of the event. DeJong’s system was pri-
marily a natural language parser that detected when
a document contained an event. It chose the correct
script with a classification accuracy of 38% for the doc-
uments for which it had a sketchy script.

Recent work by Carrick and Watters discussed an
application that matches news stories to photo cap-
tions using a frame-based approach modelling some of
the properties of events [6]. They concluded that using
the extracted lexical features in a word-cooccurrence

retrieval model was nearly as effective as using the
same features in their frame-based approach.

The frame-based approaches are perhaps useful for
a specific domain; however, the number of frames and
the details of their contents would quickly become dif-
ficult to maintain as new types of events emerge and
existing events evolve in a news environment. We be-
lieve a better approach to new-event detection is to use
general word-cooccurrence retrieval in a process that
specifically models event-level features in addition to
topic-level features.

3 New-Event Detection
Algorithm

If new events were to be sought from a time-ordered
static collection, one solution would be to use docu-
ment clustering techniques [22, 19] to cluster the col-
lection, and then to return the document from each
cluster containing the earliest timestamp. However,
we are interested in the strict on-line case, which has
real-time constraints and imposes a single pass restric-
tion over the incoming stream of documents.

We have developed a solution to new-event detec-
tion using a modification of the single pass clustering
algorithm described in [21]. Our algorithm processes
each new document on the stream sequentially, as fol-
lows:

1. Use feature extraction and selection techniques to
build a query representation for the document’s
content.

2. Determine the query’s initial threshold by evalu-
ating the new document with the query.

3. Compare the new document against previous
queries in memory.

4. If the document does not trigger any previous
query by exceeding its threshold, flag the docu-
ment as containing a new event.

5. If the document triggers an existing query, flag
the document as not containing a new event.

6. (Optional) Add the document to the agglomera-
tion list of queries it triggered.

7. (Optional) Rebuild existing queries using the doc-
ument.

8. Add new query to memory.

We represent the content of each document (which
we assume discusses some event) as a query. If a new
document triggers an existing query, the document is
assumed to discuss the event represented in the query,
otherwise it contains a new event.

4 Experiments

4.1 Implementation

The new-event detection algorithm was implemented
by combining the ranked-retrieval mechanisms of In-
query [4], a feature extraction and selection process
based on relevance feedback [1], and the routing archi-
tecture of InRoute [5].

For any comparison of document d to query q we
used the evaluation function of the #WSUM operator
of Inquery:

N
N w; - d;
eval(q,d) = 7Z§£\;1 0 (1)

where w; is the relative weight of a query feature g¢;,
and d; is the belief that the feature’s appearance in
the document indicates relevance to the query.

The document representation used in the system
is a set of belief values corresponding to each feature
specified in a query. Belief values are produced by In-
query’s belief function, which is composed of a term
frequency component, tf, and an inverse document
frequency component, idf. For any instance of doc-
ument d and collection c:

d; = belief(qi,d,c) =04+ 0.6xtf xidf (2)

lel+.5
wheretf = t/(t+0.5+1.5% %), idf = %, tis
the number of times feature ¢; occurs in the document,
df is the number of documents in which the feature
appears in the collection, dl is the document’s length,
avg_dl is the average document length in the collection,
and |c| is the number of documents in the collection.

In our system, c is an auxiliary collection, indepen-
dent of the stream. Since future feature occurrences
are unknown in the strict on-line case, the number of
times a feature appears in the collection cannot be de-
termined. Therefore, one could estimate idf using ret-
rospective statistics from the current stream or from
an auxiliary corpus with a similar domain. The idf
component incorporated here utilizes several volumes
from the TREC collection as an auxiliary corpus [9].

A feature selection process was used to build and
rebuild queries. In the experiments that follow, a
query was built using the n most frequent single word
features found in the document(s). The query feature
weight was the average value using the #f component
calculation described above.

4.2 Thresholding Model

One of our hypotheses regarding new-event detection
is that exploiting time will lead to improved perfor-
mance. A side-effect of broadcast news is that docu-
ments closer together on the stream are more likely to
discuss related events than documents further apart

on the stream. When a significant new event occurs
there are usually several documents per day pertaining
to it; over time, coverage of old events is displaced by
more recent events.

One place to incorporate time is in the threshold-
ing model. Our thresholding technique uses an initial
threshold for each query based on the evaluation of the
query against the document from which it was created
using Equations 1 and 2 above. The final threshold 6
for a query is calculated as a constant percentage p of
the initial threshold from the default evaluation value
of 0.4 used by Inquery.

The second factor of the model is a time penalty
tp that increases the threshold for a query based on
its separation in time from the document being eval-
uated. If the jth document is compared to the query
resulting from the ith document, for ¢ < j we have:

0(q',d’) = 0.4+ p* (eval(q®,d’) — 0.4) + tp* (j — i)

We used this model with different values for p to
determine a similarity threshold indicating the lowest
evaluation score that could trigger a query, as well as
a consolidation threshold that determined whether a
document was included when rebuilding an existing
query.

Our general approach to new-event detection is to
build successive event classifiers from the contents of
the documents from the stream. The classifiers in our
implementation are queries and their thresholds.

4.3 Data

The following experiments use the TDT corpus and
relevance judgements which have been published by
the Linguistic Data Consortium !. The text comprises
15863 documents evenly distributed between CNN
transcribed broadcast news and Reuters newswire dat-
ing from July 1, 1994 to June 30, 1995. The average
document contains 460 (210 unique) single-word fea-
tures after stemming and removing stopwords.

Relevance judgements were assessed for docu-
ments pertaining to the 25 events listed in Figure 2.
The judgements were obtained by two independent
groups of assessors and then reconciled to form a set of
final judgements. Documents were judged on a ternary
scale to be non-relevant, to have content relevant to the
event, or to contain only a brief mention of the event
in a generally non-relevant document. 1132 documents
were judged relevant, 250 documents were judged to
contain brief mentions, and 10 documents overlapped
between the set of relevant documents and the set of
brief mentions. Overlaps and brief mentions were re-
moved from the corpus before processing, leaving 1124
relevant documents for evaluation.

lwww.ldc.upenn.edu

. Aldrich Ames spy case
. The arrest of ’Carlos the Jackal’
. Carter in Bosnia
. Cessna crash on White House lawn
. Salvi clinic murders
. Comet collision with Jupiter
. Cuban refugees riot in Panama
. Death of Kim Jong II
9. DNA evidence in OJ trial
10. Haiti ousts human rights observers
11. Hall’s helicopter down in N. Korea
12. Flooding in Humble, Texas
13. Breyer’s Supreme Court nomination
14. Nancy Kerrigan assault
15. Kobe Japan earthquake
16. Detained U.S. citizens in Iraq
17. New York City subway bombing
18. Oklahoma City bombing
19. Pentium chip flaw
20. Quayle’s lung clot
21. Serbians down F-16
22. Serb’s violation of Bihac safe area
23. Faulkner’s admission into the Citadel
24. Crash of US Air flight 427
25. World Trade Center bombing

00 ~J O U i W N

Figure 2: 25 judged events in TDT corpus.

The document frequency for features was obtained
from an auxiliary corpus. The corpus comprises Tip-
ster volumes 1, 2, 3, and the TREC-4 Routing vol-
ume. The volumes contain 1,246,925 documents from
the Associated Press(1988-90), Department of Energy
abstracts, Federal Register(1988-9), San Jose Mercury
News(1991), Wall Street Journal(1987-91), and Ziff-
Davis Computer-select articles. The average docu-
ment contained 421 single-word features after stem-
ming and removing stopwords.

4.4 Evaluation Methodology

The task being evaluated is the detection of new events
without the use of relevance judgements. Evaluation
is based only on system performance for the 25 events
listed in Figure 2. The performance metrics that are
meaningful for new-event detection are system miss
and false alarm rates. They measure performance er-
ror. Misses occur when the system does not detect
a new event, and false alarms occur when the system
indicates a document contains a new event, when in
truth, it does not. When the user has an equal aversion
to misses and false alarms, the Euclidean distance be-
tween a performance point and the origin can be used
as a single-value metric that combines both misses and

false alarms. In addition to these performance metrics
we calculated the traditional recall and precision met-
rics, and F1-Measure [12]. More specifically, assume
a system returns a set of documents S it flags as dis-
cussing new events, and

a = number in S discussing new events,
b = number in S not discussing new events,
¢ = number in S discussing new events,
d = number in S not discussing new events;

then,
Recall = R = a%_c,
Precision = P = 25,
_ 2PR
F1-Measure = PR’
Miss Rate =1 — Recall = M = a—j_c,
False Alarm Rate = Fallout = F = - and

b+d?

Distance from Origin = /M? + F2.

Since only 25 events in the corpus were judged, an
evaluation methodology developed for the TDT study
was used to expand the number of trials. The method-
ology uses 11 passes through the stream. The goal of
the first pass is to detect a new event in the 25 doc-
uments in which one of the 25 known events first oc-
curs. The second pass excluded these documents, and
the goal was to detect the second document for each
of the 25 known events: the second document artifi-
cially becomes the first document in the stream. The
process iterates to skip up to 10 documents for each
event. If an event contained fewer documents than the
number of documents to be skipped in the pass, the
event was excluded from evaluation in that pass.

Separate training and testing phases were not per-
formed due to the unavailability of more judged events.
In order to avoid overfitting our threshold parameters
p and tp, we selected parameters based on k-fold cross-
validation [11]. The general algorithm is to randomly
partition the data into k sets, and to leave one set out
while finding parameters that best fit the remaining
k — 1 sets. The process repeats for k iterations. The
parameters that give rise to the smallest overall per-
formance error are used. Because the TDT data con-
tains only 25 instances, we chose k = 25, effectively
performing leave-one-out cross-validation.

Once the threshold parameters are obtained, we
infer their expected performance using a simple boot-
strap process [7]. The process randomly selects 25 in-
stances (with replacement) from the data to form a
bootstrap sample. Performance is calculated on the
sample. The process repeats for many iterations, effec-
tively producing a distribution of performance based
on the threshold parameters obtained from the cross-
validation procedure.

4.5 Results

The results for the new-event detection system using
queries containing between 5 and 400 single-word fea-
tures are listed in Figure 3. Performance in this graph
is based on the Euclidean distance average miss rate
and false alarm rate are from the origin. In general,
detection performance increases by using more single-
word features in the event representation; however, the
gains afforded by greater dimensionality (more single-
word features) were offset by much slower running
times in our system. The best parameters found across
dimensionality were similar, and identical for dimen-
sionality greater than 75. The parameters of p = 0.225
and tp = 0.000008 were determined by leave-one-out
cross-validation, and yielded the best performance for
high dimensionality.

Performance at 400 features represents processing
at full dimensionality, in that each query contains al-
most all the single-word features available in its cor-
responding document. Table 1 lists the results at 400
single-word features across the 11 passes through the
corpus as described above. In these experiments, a
skip value of n implies that documents 1..n were re-
moved from the stream, and the goal was to detect
the (1 + n)-th document for each event. Hence, a skip
value of 1 implies that the second document was the
goal, and so on. Averages are based on pooling all
system responses across the 25 events. Performance is
stable for the first few skip values, but becomes worse
at higher values because fewer events are included in
the pass.

of | Miss F/A

skip | Docs | Rate Rate | Recall | Prec F1
0| 1124 | 36% | 1.46% 64% | 50% | 0.56

1] 1099 | 36% | 1.40% 64% | 52% | 0.57

2 | 1074 | 39% | 1.24% 61% | 52% | 0.56

3] 1051 | 48% | 1.56% 52% | 43% | 0.47

4] 1028 | 36% | 1.49%% 64% | 48% | 0.55

51 1006 | 45% | 1.63% 55% | 43% | 0.48

6 984 | 41% | 1.66% 59% | 45% | 0.51

7 962 | 40% | 1.59% 60% | 44% | 0.51

8 942 | 53% | 1.41% 47% | 41% | 0.44

9 923 | 63% | 1.33% 3% | 37% | 0.37

10 904 | 78% | 1.35% 22% | 25% | 0.24
Avg | 1008 | 46% | 1.46% 54% | 45% | 0.49

Table 1: New-Event Detection with n = 400 features.

The effects of the time penalty in the threshold
model are illustrated in Figure 4. Each point repre-
sents average performance at a particular combination
of p and tp from our parameter optimization process.
The points in the graph that are connected by a line
represent performance for various values of p using no
time penalty (i.e., tp = 0). The data suggest that
better overall performance is realized by using time

Performance

60

50 +

40 +

30 +

20 +

10 +

25 50 75 100

Dimensionality

150

200 400

Figure 3: (Performance = 100 — Distance from Origin) vs. maximum number of query features.

Miss Rate

100
90
80
70
60
50
40
30
20
10

H) \
X
"..
--..-. R
$ ot e,
L)
0 10 20

False Alarm Rate

30

e 0<tp <.000032
- tp=0

Figure 4: Effects of varying threshold parameters p and tp. (Axes have different scales.)

Count

Miss Rate

Figure 5: Performance distribution based on bootstrap procedure.

penalties. On average, for any value of p, performance
is better when tp > 0.

We ran the bootstrap process for 10,000 iterations
to produce the 3D-histogram of performance in Fig-
ure 5. The process yielded samples having a mean
miss rate of 40.5% with a standard deviation of £7.6%,
and a mean false alarm rate of 7.8% with a standard
deviation of +4.0% .

The consolidation threshold was used to build lists
of documents that were assumed to be related to each
query. We tested various methods of combining doc-
uments that exceeded this threshold into one query.
One of the methods for agglomerating queries used av-
erage link clustering [22, 19]. We found that agglom-
erating using low values for p had worse performance
than agglomerating at higher values, but in general,
agglomeration with good parameters had no effect on
detection performance.

In terms of real-time performance, our system ran
at 1300 documents per hour while agglomerating 10%
of the incoming queries into previously created queries.
It was tested on a 300 MHz DEC-Alpha running Unix.

4.6 Failure Analysis

Misses occur when stories containing new events are la-
beled as “not new”. At low dimensionality, misses were
mostly attributed to the inability of the feature ex-
traction process, and thus the query representation, to
weight event-level features more heavily than the more
general topic-level features. For example, document
3057 is about the “Crash of US Air flight 427” (Event
24). But the query using 10 words created from docu-
ment 104 (shown in Figure 6) contains many features
pertaining to the more general topic of plane crashes.

The system misses Event 24 on 90% of the passes, be-
cause the first documents for the event triggered the
query already created from document 104, which is
about the “Crash of US Air flight 1016”. Query 104
becomes a general query for US Air crashes. The clas-
sification of the “Oklahoma City bombing” (Event 18)
had a similar problem stemming from a query created
from a document about the earlier bombing at the
World Trade Center (Event 25). At higher dimension-
ality, the two bombing events were separable, but the
airline crashes were not. However, the use of phrases,
such as “flight 427", may help with these problems.

ql04 = #WSUM(1.0
1.175688 accident
1.125646 crash
1.070033 plane
0.935901 cause
0.935901 investigate
0.935901 look
0.852374 air
0.852374 aircraft
0.852374 survivor
0.752039 usair);

Figure 6: General “US Air plane crash”
query.

At higher dimensionality and using the best pa-
rameters, the system could not distinguish between
documents from the “O.J. Simpson trial” (Event 9)
and documents pertaining to other court cases. In ad-
dition, the corpus contained a heavy coverage of the

events related to the problems in Bosnia, which caused
our system to miss “Carter’s visit to Bosnia” (Event
3). These examples indicate that the system was un-
able to detect certain events that are discussed in the
news at different levels of granularity. However, we
hypothesize that several of the problems revealed in
the failure analysis could be resolved with a different
weight assignment strategy for query features.

5 TDT System Comparison

5.1 CMU and Dragon Approaches

The TDT workshop included an evaluation of three
new-event detection systems. Each research group
used an approach based on single pass clustering. Our
system is described above.

The CMU system used SMART for query and doc-
ument representations. CMU used a clustering strat-
egy with a detection threshold that governed the min-
imum document-cluster similarity score required for
the system to label the current document as contain-
ing a new event. They also used a combining thresh-
old, which was the minimum similarity score required
for adding a document to an existing cluster. Time
was incorporated in the detection decision by limit-
ing comparison to documents which appeared within
a constant window size of time from the document be-
ing processed. They reported that experiments using a
cluster representation between dimensionality 50 and
100 yielded the best results. They also reported that
experiments using no agglomeration yielded better re-
sults than those using agglomeration.

The Dragon system used single word (unigram)
frequencies for cluster and document representations:
their document representation did not use tf.idf
scores, which were used by the other systems. Their
document-cluster comparison function is a modifica-
tion of the Kullback-Leibler distance measure. The
modification included a decay term which decreased
the similarity measure for clusters containing docu-
ments closer in sequence to the current document on
the stream. In addition, they used a pre-processing
step in which an iterative k-means clustering algorithm
was used to build 100 background models (clusters)
from an auxiliary corpus. In their model, a document
is considered to contain a new event when it is closer to
a background model than to an existing story-cluster.

5.2 Cross-Systemm Comparisons

The detection results using the data and the sys-
tems described above are presented in Figure 7. The
UMASS and CMU systems are using representations of
dimensionality 100, and the Dragon system is using full
dimensionality. The figure is a Detection Error Trade-
off (DET) graph that illustrates the estimated perfor-

mance error tradeoff between miss rate and false alarm
rate [14]. The graph is scaled based on a normal distri-
bution of the performance metrics. Each curve can be
viewed as an analogue to a recall-precision curve which
is used to depict the retrieval performance tradeoff be-
tween recall and precision. The points on the curve
are determined by varying an external threshold pa-
rameter applied to the ranked list of decision scores
a system produces for each document. Points closer
to the origin indicate better overall performance. The
graph also contains the evaluation point corresponding
to pooled average performance.

The UMASS system has miss rates that are lower
than the other systems between false alarm rates of 1%
and 10%. Below the 1% false alarm rate, the UMASS
and CMU systems outperform the Dragon system. At
the 10% level of false alarms the systems converge,
and at 30%, the UMASS system experiences higher
miss rates than the CMU and Dragon systems.

A comparison of average performance using vari-
ous metrics is also listed in Figure 7. The UMASS sys-
tem has a miss rate that is 18% lower than the other
systems at similar false alarm levels. The difference in
performance indicates that the UMASS system, on av-
erage, correctly detects 2 additional new events. This
improvement is not significant based on a sign test
across event level performance.

6 Conclusion and Future Work

New-event detection is an abstract document classifi-
cation task that we have shown has reasonable solu-
tions using a single pass clustering approach. We have
presented an evaluation methodology based on miss
and false alarm rates, measures that are more closely
related to the task than recall and precision. System
misses and false alarms were used to measure perfor-
mance error in a cross-validation approach that found
stable system parameters for our implementation. We
describe overall system performance using a bootstrap
method that produced performance distributions for
the TDT corpus.

In retrospect, the comparison of the TDT systems
indicated that different views of the task lead to dif-
ferent text representations resulting in similar perfor-
mance. In addition to performance, the common el-
ement among the systems is an underlying model of
word-cooccurrence that is used to determine when two
documents discuss the same event. This model has
been previously used to classify documents into more
general topics, which suggests that performance im-
provements will come from modelling the properties of
events, more so than modifying the existing retrieval
mechanisms.

New-event detection shares some characteristics of
on-line information filtering. The emphasis on time

DET Graph Comparisen of Mew-Evenl Deleclion Syslems

w0

H it
80 - i

f T,
I .
! .
Thy \"\
&0 1

UnMass: —
Evalaied =i; &
SMU-T

+

Evalmied =i &

40 SN

10 2
Fale ARrm Rale

40 w0

F/A
Rate

1.34%

1.43%

ﬁ
!
2
Miss
System | Rate
UMASS | 50%
CMU | 59%
DRAGON | 58%

3.47%

Recall | Precision F1
50% 45% | 0.45
41% 38% | 0.39
42% 21% | 0.28

Figure 7: Comparison of systems presented at the first TDT workshop.

and “event” rather than general “topic” should lead
to different methods for processing the arriving text.
Which approaches can be leveraged and how well they
work remain open questions. Other questions include:
How can we describe the relationship between two
events, or between an event and a sub-event? Will
we need user models to capture preferred notions of
event, granularity, or are there broadly acceptable def-
initions? Is there a way to select only “interesting”
events from the stream of news and exclude entirely
uninteresting stories? Is this an application where nat-
ural language processing could help identify features
related to who, what, where, and when?

Our future work for the strict on-line case of new-
event detection will focus on the aspects of the imple-
mentation that caused detection errors. These prob-
lems included aspects of :

1. Parameter value estimation.
2. Feature extraction and selection.

3. Feature weight assignments.

The current implementation uses constant dimen-
sionality and threshold parameters. Our experiments

indicated that a good set of values existed for these
parameters in 80% of the events tested. We expect
significant performance improvements if good values
are determined automatically for each query. The fea-
ture extraction process that builds queries should be
extended to include multiword features. Preliminary
experiments which tested features comprising constant
sized windows of pairs of words appeared to provide
performance improvements at low dimensionality. An-
other problem involved the feature weights, which are
based only on a feature frequency component. We plan
to conduct tests that adjust feature weights in an unsu-
pervised setting, based on the document labels implied
by the threshold model. We expect that this additional
step is needed to get detection performance improve-
ments through agglomeration. The goal of the weight
learning process will be to weight event level features
more heavily than general topic level features. With
these issues resolved, we foresee an extended frame-
work that can solve other abstract event classification
problems in an unsupervised setting. One example is
whether a document contains good news or bad news.

Acknowledgments

We thank Charles Wayne, George Doddington, Yim-
ing Yang, Jaime Carbonell, and Jon Yamron with
whom we worked to define the Topic Detection and
Tracking tasks. We are also grateful to David Jenson
and Warren Greiff for their comments on our param-
eter estimation technique, Mike Scudder for help with
the evaluation software, and Jay Ponte for valuable
comments on an earlier draft of this study.

The TDT initiative is a DARPA-sponsored project
that supported this work. This material is also based
on work supported in part by the National Science
Foundation, Library of Congress and Department of
Commerce under cooperative agreement number EEC-
9209623. Any opinions, findings and conclusions or
recommendations expressed in this material are the
authors’ and do not necessarily reflect those of the
Sponsor.

References

[1] J. Allan, L. Ballesteros, J. Callan, W.B. Croft,
and Z. Lu, “Recent Experiments with Inquery,”
Proceedings of TREC-4, 49-63, 1995.

[2] D. Beeferman, A. Berger, and J. Lafferty, “Text
Segmentation Using Exponential Models,” Pro-
ceedings for Empirical Methods in NLP, 1997.

[3] C. Buckley and G. Salton, “Optimization of
Relevance Feedback Weights,” Proceedings of
SIGIR, 351-357, 1995.

[4] J. P. Callan, W.B. Croft, and S.M. Harding,
“The INQUERY Retrieval System,” Database
and Expert Systems Applications: Proceedings
of the International Conference in Valencia
Spain. A.M. Tjoa and I. Ramos eds., Springer
Verlag, New York, 1992.

[5] J.P. Callan, “Document Filtering With Infer-
ence Networks,” Proceedings of SIGIR, 262-
269, 1996.

[6] C. Carrick, and C. Watters, “Automatic Asso-
ciation of News Items,” Information Processing
& Management, 33(5):615-632, 1997.

[7] P.R. Cohen, Empirical Methods for Artificial
Intelligence, The MIT Press, Cambridge, Mas-
sachusetts, 1995.

[8] G. DeJong, “Prediction and Substantiation: A
New Approach to Natural Language Process-
ing,” Cognitive Science, 3: 251-273, 1979.

[9] D.K. Harman, Proceedings of Text REtrieval
Conferences (TREC), NIST Special Publica-
tion, 1993-7.

10

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

P.J. Hayes, L.E. Knecht, and M.J. Cellio, “A
News Story Categorization System,” Proceed-
ings of the 2nd Conference on Applied Natural
Language Processing (1988), reprinted in Read-
ings in Information Retrieval, K. Sparck Jones
and P. Willet editors, Morgan Kaufmann Pub-
lishing, San Francisco, CA, 518-526, 1997.

R. Kohavi, “A Study of Cross-Validation and
Bootstrap for Accuracy Estimation and Model
Selection,” Proceedings of International Joint
Conference on Artificial Intelligence, 1995.

D.D. Lewis, and W.A. Gale, “A Sequential Al-
gorithm for Training Text Classifiers,” Proceed-
ings of SIGIR, 3-13, 1994.

D. Lewis, R. Schapire, J. Callan, and R. Papka,
“Training Algorithms for Linear Text Classi-
fiers,” Proceeding of SIGIR, 298-306, 1996.

A. Martin, G. Doddington, T. Kamm, M. Or-
dowski, and M. Przybocki, “The DET Curve
in Assessment of Detection Task Performance,”
in Proceedings of EuroSpeech’97, 4:1895-1898,
1997.

P. E. Mayeux, Broadcast News: Writing € Re-
porting, 2ed, Brown & Benchmark Publishers,
Guilford CT, 1996, p. 79.

R. Papka, J.P. Callan, and A.G. Barto, “Text-
Based Information Retrieval Using Exponenti-
ated Gradient Descent,” Proceedings of the 10th
Annual Conference of Advances in Neural In-
formation Processing Systems, 3-9, 1996.

J.M. Ponte and W. B. Croft. “Text Segmen-
tation by Topic,” Proceedings of the First Eu-
ropean Conference on Research and Advanced
Technology for Digital Libraries, 113-125, 1997.

J.J. Rocchio, “Relevance Feedback in Informa-
tion Retrieval,” in The Smart System - Experi-
ments in Automatic Document Processing, 313-
323, Englewood Cliffs, NJ: Prentice Hall Inc.
1971.

G. Salton, Automatic Text Processing,
Addison-Wesley Publishing Co, Massachusetts,
1989.

Proceedings of the TDT Workshop, University
of Maryland, College Park, MD, October 1997.
(Unpublished)

C.J. van Rijsbergen, Information Retrieval,
2ed., Butterworths, Massachusetts, 1979.

P. Willett, “Recent Trends in Hierarchic Docu-
ment Clustering: A Critical Review,” Informa-
tion Processing & Management, 24(5): 577-597,
1988.

