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Abstract

Web search engines, such as AltaVista and Infoseek, han-
dle tremendous loads by exploiting the parallelism im-
plicit in their tasks and using symmetric multiprocessors
to support their services. The web searching problem that
they solve is a special case of the more general informa-
tion retrieval (IR) problem of locating documents relevant
to the information need of users.

In this paper, we investigate how to exploit a symmet-
ric multiprocessor to build high performance IR servers.
Although the problem can be solved by throwing lots of
CPU and disk resources at it, the important questions are
how much of which hardware and what software structure
is needed to effectively exploit hardware resources. We
have found, to our surprise, that in some cases adding
hardware degrades performance rather than improves it.
We compare the performance of multithreading and multi-
tasking and show that multiple threads are needed to fully
utilize hardware resources. Our investigation is based on
InQuery, a state-of-the-art full-text information retrieval
engine, that is widely used in Web search engines, large
libraries, companies, and government agencies such as In-
foseek, Library of Congress, White House, West Publish-
ing, and Lotus.

1 Introduction

As information explodes across the Web and elsewhere,
people increasingly depend on search engines to help them
to find information. Web searching is a special case of
the more general information retrieval (IR) problem of
locating documents relevant to the information need of
users.

Until recently, parallel computers were an expensive
and special-purpose tool. Today, most hardware ven-
dors offer affordable symmetric multiprocessors (SMP).
Web searching engines, such as AltaVista [1] and Infos-
eek [15], handle tremendous loads by exploiting the par-
allelism implicit in their tasks and use SMPs to support
their services. Although it is clear that the more CPUs
and disks you have the more load the system can handle,

the important questions are how much of which hardware
and what software structure is needed to exploit these
Unfortunately, commercial systems have not
published the hardware and software configurations they
use to achieve high performance. The previous research
investigates either the IR system on massively parallel
processing (MPP) architecture [3, 11, 13, 18, 20, 21, 22],
or it investigates only a subset of the system on SMP
architecture such as the disk system [17] or it compares
the cost factors of SMP architecture with other architec-
tures [10].

In this paper, we investigate how to balance hardware
and software resources to exploit a symmetric multipro-
cessor (SMP) architecture to build high performance IR
Our IR server is based on InQuery [7, 8, 23],
a state-of-the-art full-text information retrieval engine
that is widely used in Web search engines, large libraries,
companies, and governments such as Infoseek, Library of
Congress, White House, West Publishing, and Lotus [16].
Our work is novel because it investigates a real, proven
effective system under a variety of realistic workloads
and hardware configurations on an SMP architecture with
multithreading. Our results provide insights for building
high performance IR servers for searching the Web and
other environments using a symmetric multiprocessor.

Information retrieval is an ideal application to paral-
lelize. Queries and other IR commands are independent.
IR systems can easily divide collections across multiple
disks, search the resulting sub-collections independently,
and then merge the results. However, because the IR
workload is heterogeneous, i.e., it consists of significant
amounts of both I/O and CPU processing, simply adding
more disks or CPUs does not necessarily produce scal-
able performance. We investigate how best to execute
multiple IR commands in parallel using better software:
multithreading or multitasking, and additional hardware:
multiple disks and CPUs on a SMP. We compare the per-
formance of multithreaded and multitasking implementa-
tions of a parallel IR server. We explore a wide range
of system parameters to balance CPU and I/O utiliza-

resources.
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tion across our application. We also investigate the per-
formance effects of partitioning a single collection across
multiple disks. We show scalable performance for small
numbers of processors in many cases. We find, to our sur-
prise, that in some cases adding hardware degrades per-
formance rather than improves it due to heterogeneous
workloads.

2 Overview

To investigate the balance between hardware and soft-
ware in a IR system, we built a parallel IR server for an
SMP architecture, where all CPUs, disks, and memory are
shared and communicate on a shared bus (see Figure 1).
We implemented both a multitasking and multithreaded
version. The server assigns an IR command to one or
multiple available processes (or threads), depending on
the IR command type and the collection partitioning. We
also use a simulator to expedite our investigation of pos-
sible system configurations, characteristics of the IR col-
lections, and the basic IR system performance. For exam-
ple, our simulator can vary the number of CPUs, threads,
disks, the collection size, query frequencies, query lengths,
and workloads. We validate the simulator with the pro-
totype for several interesting system configurations. We
describe our IR system, the simulator and its validation
in Section 3.

Section 4 presents results that demonstrate the per-
formance improvements and limitations due to multi-
threading, multitasking, collection size, adding CPUs, and
adding disks. We use 10 seconds arbitrarily as our cutoff
for a reasonable response time.! We begin by investi-
gating the benefits of multithreading verses multitasking
using the IR server implementations. We find their per-
formance is similar, although the multithreaded version is
always slightly faster than multitasking (90% of the mea-
sured response times fall within 10% of each other). The

1 Commercial systems achieve better response time because they
include optimizations such as query result caching that we have not
implemented.

performance benefit of multithreading is enough to war-
rant its inclusion in any new parallel IR system developed
from scratch, but it may not be worth the recoding effort
in a large legacy system with pervasive global variables.

In Section 4.2, we examine system scalability and hard-
ware /software balancing with respect to multiple threads,
CPUs, and disks as the collection size increases from 1
GB to 16 GB. We show that the system needs multiple
threads to fully utilize hardware resources even for the
single CPU and disk configuration. We also demonstrate
several configurations in which our system can search in-
creasing amount of data with no loss in performance. Al-
though performance eventually degrades as the collection
size increases, we demonstrate system configurations for
which the performance degrades very gracefully. If the
CPUs and disks are not balanced, we find that the addi-
tional hardware can actually degrade performance. Sec-
tion 5 compares this work to previous work, and Section 6
summarizes our results and concludes.

3 A Parallel
trieval Server

This section describes the implementation of our parallel
IR server and simulator. We begin with a brief descrip-
tion of the InQuery retrieval engine [7, 8, 16], the features
we model, and a validation of our simulation of this ba-
sic functionality. We also describe the multithreaded and
multitasking implementations, and validate our simulator
against the multithreaded implementation.

Information Re-

3.1
3.1.1

InQuery is one of the most powerful and advanced full-
text information retrieval engines in commercial or gov-
ernment use today [16]. Infoseek, one of most popular
Web search engines, is based on the InQuery technology.
Large libraries such as the Library of Congress and Na-
tional Library of Medicine, government agencies such as
White House and Internal Revenue Service, and compa-
nies such as West Publishing and Lotus also use InQuery
to provide different services.

InQuery uses an inference network model, which applies
Bayesian inference networks to represent documents and
queries, and views information retrieval as an inference
or evidential reasoning process [7, 8, 23]. In this paper,
we use “collection” to refer to a set of documents, and
“database” to refer to an indexed collection. An InQuery
database consists of original document files, an inverted
file of terms, an inverted file of field-based terms, a stop-
word dictionary, a file storing processing information, a
file of the most frequently occurring terms, and a viewing
database which store offsets of documents in the original
document files. An inverted file contains term keys, their
corresponding lists of documents, and frequency and po-

InQuery Retrieval Engine
InQuery



sition information in the original document files. Either
a custom B* tree [9] package with concurrency control
or the Mneme persistent object store [4] manages the in-
verted files. The indexing overhead for a collection of
documents is 30% to 40% of its original data size. For
example, a 1.2 GB Tipster 1 collection [7] needs 0.5 GB
extra disk space to store indexes.

The InQuery server supports a wide range of IR com-
mands such as query, document, and relevance feedback.
The three basic IR commands we model are query, sum-
mary, and document commands. InQuery accepts both
natural language and structured queries. A query com-
mand requests documents that match a set of terms. A
query response consists of a list of top ranked document
identifiers. A summary command consists of a set of
document identifiers. A summary response includes the
document titles and the first few sentences of the docu-
A document command requests a document
using its document identifier. The response includes the
complete text of the document.

ments.

3.1.2 Simulation Model and Validation

We use a simulation model we previously built for In-
Query work [5, 6]. The simulation model is driven by em-
pirical timing measurements from the actual system. We
model three basic IR operations: query evaluation, ob-
taining summary information, and retrieving documents.
We measure CPU, I/O bus, and disk usage for each op-
eration, but do not measure the memory and cache ef-
fects. We model the collection by obtaining term and
document statistics from 1.2 GB Tipster 1 text collec-
tion, a well known and used standard test collection dis-
tributed by National Institute of Standards and Technol-
ogy for testing and comparing the current text retrieval
techniques [14]. The Tipster 1 collection consists of full-
text articles coming from Associate Press Newswire, Wall
Street Journal, and Computer Selects (Ziff-Davis Publish-
ing), and abstracts from DOE publications. The average
document size of the Tipster 1 collection is 2.3 KB, which
is very close to the average Web page size (around 2 KB
according to the figures published by AltaVista [2] 2). The
simulator only accepts natural language queries. Two pa-
rameters, query length and query term frequency, deter-
mine the characteristics of a query. (See [5, 6] for more
details.) Because we use a more recent version of InQuery
on a DEC AlphaServer 2100 5/250 clocked at 250 MHz in-
stead of an MIPS R3000 clocked at 40 MHz, we validate
query response time of our simulator again. We model
query response time as a function of query length and
term frequency. We model document retrieval time as a
fixed time on a first-come-first-serve disk. Our validation
demonstrates that all queries fall within 40% of the actual
system, and of the queries we do not accurately simulate,

2 AltaVista claims that its entire Web space is 60 GB and it
indexes 30 million Web pages [2].

we usually over estimate rather than under estimate. We
are more accurate on long queries. We describe this vali-
dation in more detail in Appendix A.

3.2 The Parallel IR server

In this section, we describe the multithreaded and multi-
tasking IR server implementations. We next present the
simulator for these systems, and the system parameters
we use throughout the rest of the paper. We then vali-
date the parallel IR server simulator (as opposed to the
base, single thread simulator validated in Appendix A).
The parallel IR server exploits parallelism as follows: (1)
It executes multiple IR commands in parallel by either
multitasking or multithreading; and (2) It executes one
command against multiple partitions of a collection in
parallel.

3.2.1 Multithreading vs. Multitasking

Since we already had single-threaded servers for unipro-
cessor machines [5, 6], we implemented a parallel server
via multitasking. This version simply uses a light-weight
broker and multiple executables of the single-threaded
server on the same machine, communicating by message
passing [5, 6]. The broker assigns an IR command to one
or multiple available processes, depending on the IR com-
mand type and the collection partitioning.

Another natural implementation of a parallel InQuery
server is to use a thread package to build a shared-
everything version, i.e., a multithreaded version. We use
the POSIX thread libraries [19]. Because threads within
a process share the same virtual address space, context
switching between threads is less expensive than between
processes. In addition, the cooperating threads commu-
nicate by simply accessing synchronized global or static
variables; thus, we expect the multithreading to be more
efficient than the multitasking. Because multithreaded
programming has only recently become common, many
existing programs are not easy to thread due to perva-
sive global and static variables. All previous versions
of InQuery have this problem and we spent almost a
month eliminating these variables from a subset of the
InQuery system. We compare the performance of the
multithreaded version and the multitasking version in Sec-
tion 4.1.

3.2.2 Simulator and Validation

This section describes the features and their parameters
specific to modeling a parallel IR server and its valida-
tion. We extend the simulator to model threads, multi-
ple CPUs, and multiple disks. The system parameters
also include the original parameters for a single-threaded
system [5, 6]: query length, query term frequency, client
arrival rate, and collection size. Table 1 presents all the
parameters and the values we use in our experiments and
validation. We validate our simulator against the mul-



|| Parameters

| Abbreviation ||

Values

Query Number 50 1000
Terms per Query (average) 2

shifted neg. binomial dist. (n,p,s) TPQ (4,0.8,1)

Query Term Frequency

dist. from queries QTF Observed Distribution

Client Arrival Pattern

Poisson process (requests per minute) 6 30 60 90 120 150 180 240 300
Collection Size (GB) CSIZE 1 2 4 8 16
Disk Number DISK 1 2 4 8 16
CPU Number CPU 1 2 3 4
Thread Number 1 2 4 8 16 32
Table 1: Experimental Parameters
Arrival
Query Rate A Number of Threads
Type per min. 1 2 3 4 8 16
6 2.2% 3.1% -2.8% 2.8% 3.0% 2.2%
30 1.5% 0.5% -2.5% 2.5% -0.8% 1.5%
Short 60 13.7% 3.0% 1.9% -1.5% 1.0% -0.3%
300 27.2% 17.6% 3.8% -0.4% 2.1% 1.0%
6 5.7% 3.9% 6.0% | -1.1% | -0.5% 1.3%
30 19.8% 9.0% 4.4% 1.9% 1.2% 0.5%
Medium 60 26.0% 12.0% 2.5% -3.9% 1.9% -0.4%
300 21.5% 15.7% 7.2% 8.8% 5.0% 4.1%
6 1.3% 8.0% 0.8% 1.0% 1.2% 0.1%
30 15.8% 6.6% -3.8% -0.4% 0.4% -0.5%
Long 60 10.1% 1.8% -2.1% 1.8% 1.0% 1.7%
300 12.7% 10.3% 1.7% 2.4% 3.9% 3.1%
Average 13.1% 7.6% 2.3% 1.2% 1.6% 1.2%

Table 2: Percentage Difference of Average Response Times between the Implementation and Simulator

tithreaded implementation of a parallel server using In-
Query version 3.1.

We assume the client arrival rate as a Poisson process.
For
each query, the server performs two operations: query

Each client issues a query and waits for response.

evaluation and retrieving the corresponding summaries.
Since users typically enter short queries [12], we experi-
ment with a query set that consists of 1000 short queries,
with an average of 2 terms per query that mimic those
found in the query set down loaded from the Web server
for searching the 103rd Congressional Record [12], and
use an observed query term frequency distribution ob-
tained from their distribution in the Tipster 1 collection
and query sets [7].

We vary the arrival rate and the collection size in order
to examine the scalability of the server as the number of
clients and the size of the collection increases. We also
vary the number of CPUs, disks, and threads in order
to investigate the effects of changing system configura-
tions. All experiments measure response time, CPU and
disk utilization, and determine the largest arrival rate at
which the system supports a response time under 10 sec-
onds. We chose 10 seconds arbitrarily as our cutoff point
for a reasonable response time. Previous work [10] uses a
larger value, up to 40 seconds. Commercial web searchers
support response times faster than 10 seconds, but use
optimization not implemented in InQuery such as caching
query results for frequently executed queries. Unless oth-

erwise stated, we assume the system begins with a cold
start where all term and document accesses cause I/O op-
erations. A warm start is when the inverted file is initially
in memory.

Validating Query Operation

This section validates query operations for searching a 1
GB database on a multithreaded server with a configu-
ration of a single CPU and disk as the query arrival rate
and the number of threads increase on a AlphaServer 2100
5/250. Each thread executes one query.

Table 2 lists the percentage difference of average re-
sponse time between the actual system and the simula-
tor for each query set as the arrival rate and the number
of threads increase. We assume the system begins with
a warm start. Positive numbers indicate the simulator
overestimates the actual system. The simulator reports
response times that are 4.5% slower than the actual sys-
tem on the average, and range from 3.9% faster to 27.2%
slower than the actual system. The difference between
the actual system and the simulator tends to decrease as
the number of threads increases and the query arrival rate
decreases. For example, for a system with 16 threads, the
simulator is from 0.3% faster to 4.1% slower than the ac-
tual system. The difference between the simulator and
the actual system increases as a function of the number
of queries waiting in the queue, because our query model
overestimate the query evaluation time for most of queries
(see Appendix A). Overall, the simulator matches the ac-



tual system closely.

4 Experiments and Results

This section explores how best to use multithreading, mul-
titasking, and collection partitioning on a SMP with mul-
tiple disks to improve the performance of a parallel IR
We use our implementations to investigate the
benefits of the multithreading versus multitasking. We
use the simulator to investigate system performance and
explore how threading and additional hardware affect sys-
tem scalability under a variety of workloads and hardware
configurations.

SCIVET.

4.1 Multithreading vs. Multitasking

This section compares the performance of the mul-
tithreaded and multitasking implementations of the IR
server on a Alpha Server 2100 5/250 with 1 GB of mem-
ory and 3 CPUs. We use 1.2 GB Tipster 1 text collection
built as a single database and on a single disk. The in-
verted file (.5 GB) thus fits in memory (1 GB). The query
set is 50 queries generated from the description fields of
Tipster topics 51-100 [14]. Each query is simply a sum
of the terms, with an average of 8 terms per query. We
simulate the query arrival as a Poisson process. In the
multithreaded version, the server starts a set of threads
and then assigns each query to a single thread. In the
multitasking version, the server starts a set of processes
and then assigns each query to a single process. We mea-
sure the average response time of query evaluation and
the corresponding summary response information for the
relevant documents.

In Table 3, we measure response time with a cold start
such that all term and document accesses cause I/O op-
erations. If a term or document occurs more than once
in the queries, only the first access involves the I/O, since
the memory is large enough to cache the inverted file for
a 1 GB collection. (1 GB of memory, for a .4 GB inverted
file.) Table 4 demonstrates a warm system in which we
assume the inverted file is in memory during query and
summary evaluation. The measured response times in Ta-
bles 3 and 4 are an average of three runs.

In both cases, the multithreaded version is slightly
faster than the multitasking version. The differences
range from no change (0.0%) to 16.9% depending on the
the client arrival rate and the number of threads and pro-
cesses, with 90% of the measured response time falling
within 10% of each other. An experiment with a Tipster
query set with an average of 27 terms per query shows the
same trend.

The multithreaded version is faster than the multitask-
ing version, which suggests we should use multithreading.
However, multithreading a large legacy system with per-
vasive global variables is a non-trivial task. To implement
multitasking requires the addition of a coordinator process

and message passing between the coordinator process and
InQuery servers. Multitasking may be preferable, since it
is only slightly slower and requires significantly less pro-
gramming. We implement both versions in their simplest
form where only one thread or process is used to evalu-
ate each command. Decreasing the granularity of paral-
lelism by partitioning a query or collection may increase
the performance advantage of multithreading, since it has
less communication overhead than multitasking.

4.2 Hardware/Software
System Scalability

Balancing and

In this section, we change from using our implementation
to using our simulator to explore system scalability with
respect to multiple threads, CPUs, and disks as the collec-
tion size increases from 1 GB to 16 GB, and thus explore
how software and hardware configurations affect system
scalability.

We start with a base system that consists of one thread,
CPU, and disk. Our base system is disk bound where
the disk is a bottleneck. We improve the performance
of our IR server through better software: multithreading;
and with additional hardware: CPUs and disks. Since
the threads are independent in this system, threading im-
proves performance of the base system by gaining well-
known multiprogramming benefits - increasing the hard-
ware resource utilization because I/O and computation
overlap. Adding disks improves performance because par-
titioning the collection across multiple disks introduces a
finer-grain execution of IR commands and shifts the bal-
ance of the computation from disk to CPU bound. Adding
CPUs also improves performance when CPUs are the bot-
tleneck. However if the hardware components are not bal-
anced, additional hardware can degrade performance. In
this section, we demonstrate the system scalability using
two sets of experiments. In the first set of experiments,
we explore the effects of threading on system scalability.
In the second set of experiments, we explore the system
scalability with increasing the collection size under two
disk configurations. When multiple disks exist, we use a
round-robin strategy to distribute the collection and its
index over disks.

We assume clients arrive as a Poisson process. For each
client, the server performs two operations: query evalua-
tion and retrieving the corresponding summaries.

4.2.1 Threading

This section examines how the software structure, i.e.,
number of threads, affects system scalability.

Figure 2 illustrates how the average response time
changes as the number of threads increases. Figure 2(a)
illustrates the configuration using 1 CPU for a 1 GB col-
lection on 1 disk, where the disk is a bottleneck. Fig-
ure 2(b) illustrates the configuration using 1 CPU for a 1
GB collection distributed on 4 disks, where the CPU is a



Arrival Number of Threads or Processes
Rate 1 2 3
(per min.) thr proc diff thr proc diff
2.78 2.20 2.21 -0.4% 2.10 2.30 -9.0%
30 8.12 3.72 4.02 -7.2% 3.13 3.43 -9.0%
60 46.50 20.14 22.08 -9.6% 18.49 21.62 -16.9%
300 72.50 52.85 59.24 -12.0% 46.80 49.97 -6.7%
Arrival Number of Threads or Processes
Rate 6 9 12
(per min.) thr proc diff thr proc diff thr proc diff
6 2.20 2.37 -7.7% 2.33 2.37 -1.7% 2.35 2.36 -0.4%
30 3.50 3.72 -6.2% 3.62 3.68 -1.6% 3.58 4.05 -13.1%
60 17.45 17.72 -1.5% 15.60 16.10 -3.2% 16.19 16.20 -0.6%
300 38.73 40.16 -3.6% 40.99 41.32 -0.8% 41.67 45.32 -8.8%
Table 3: Actual Measured Average Response Time on a Cold Start (seconds)
Arrival Number of Threads or Processes
Rate 1 2 3
(per min.) thr proc diff thr proc diff
1.23 1.15 1.16 -0.8% 1.16 1.16 0.0%
30 1.68 1.20 1.30 -8.3% 1.17 1.26 -7.6%
60 2.83 1.46 1.51 -3.4% 1.26 1.40 -11.1%
300 27.74 12.43 13.16 -7.6% 7.45 7.93 -6.4%
Arrival Number of Threads or Processes
Rate 6 9 12
(per min.) thr proc diff thr proc diff thr proc diff
1.16 1.15 0.8% 1.15 1.16 -0.8% 1.15 1.16 -0.8%
30 1.15 1.24 -6.1% 1.15 1.20 -4.3% 1.16 1.21 -4.1%
60 1.23 1.30 -5.6% 1.22 1.29 -5.7% 1.23 1.29 -4.8%
300 6.59 6.77 -2.7% 6.75 6.76 -0.2% 6.77 6.80 -0.4%

Table 4: Actual Measured Average Response Time on a Warm Start (seconds)

bottleneck. Figure 2(c) illustrates the configuration using
2 CPU for a 1 GB collection distributed on 4 disks. Fig-
ure 2(d) illustrates the configuration using 2 CPU for a 4
GB collection distributed on 4 disks. Figure 2(e) shows
CPU and disk utilization at some interested data points in
configuration (a) to (d). The box on the top of each figure
lists the system parameters for the experiment. Table 1
defines the abbreviations.

In all the configurations, the average response time im-
proves significantly as the number of threads increases un-
til either CPUs or disks are over utilized, as illustrated in
Figure 2(a), (b), and (e). Too few threads limits the sys-
tem’s ability to achieve its peak performance. For exam-
ple in configuration (c) (see Figure 2(c)), using 4 threads
only support 120 requests per minutes at which the sys-
tem supports a response time under 10 seconds, while us-
ing 16 threads supports more than 180 requests per min-
utes under the same hardware configuration. When either
the CPU or disk is a bottleneck, the system needs fewer
threads to reach its peak performance. When CPUs and
disks are well balanced (configuration (c) and (d)), the
necessary number of threads is influenized more by the
number of disks than the collection size. In both config-
uration (c) and configuration (d), the system achieves its
peak performance using 16 threads. Additional threads
do not bring further improvement.

4.2.2

This section examines system scalability and hardware
balancing as the collection size increases from 1 GB to 16
GB. In order to examine possible hardware configurations,
we consider two disk configurations: fixing the number of
disks and adding disks as the collection size increases, and
then vary the number of CPUs in each disk configuration.

Increasing the collection size

Distributing the collection over a fixed number of

disks

In this set of experiments, we fix the number of disks at
N and use a round-robin strategy to partition the M GB
collection over N disks, where each disk stores all database
components for M/N GB of data.

Figure 3 and Table 6 illustrate the average response
time and resource utilization when the collection size
varies from 1 GB to 16 GB, and are distributed over 16
disks. Each disk thus stores a database for 1/16 of the
collection. Table 5 reports the largest arrival rates under
different configurations at which the system supports a
response time under 10 seconds.

Partitioning the collection over 16 disks illustrates when
the system is CPU bound (see Table 6). Although perfor-
mance degrades as the collection size increases, the degra-
dation is closely related to the CPU utilization. With 1
CPU, the CPU is over utilized for 1 GB and 60 requests
per minute. In this configuration, increasing the collec-
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Figure 2: Performance as the number of threads increases (Simulated)

tion size from 1 GB to 16 GB decreases the largest arrival
rate at which the system supports a response time under
10 seconds by a factor of 10 (see Figure 3(a)). With 4
CPUs, CPUs are over utilized for 1 GB and 180 requests
per minute. In this configuration, the performance de-
grades much more gracefully (see Figure 3(c)). Increasing
the collection size from 1 GB to 16 GB only decreases
the arrival rate at which the system supports a response
time under 10 seconds by a factor of 3. This set of ex-
periments illustrates dramatic improvements due to addi-
tional CPUs. For a 1 GB collection, 4 CPUs improve the
arrival rate at which the system supports a response time
under 10 seconds by a factor of 3 compared with 1 CPU.
For a 16 GB collection, 4 CPUs improve the arrival rate
by a factor of 10 compared with 1 CPU.

We also find instances where the system supports the
same arrival rates under different system configurations.
At these data points, we can support the same perfor-
mance by doubling the number of CPUs when the col-
lection size increases by a factor of 4. For example, the
system supports an arrival rate of 60 requests per minutes,
when using 1 CPU for 1 GB, using 2 CPUs for 4 GB, or
using 4 CPUs for 16 GB; the system supports the arrival
rate of 90 requests per minutes, when using 2 CPUs for 2
GB, or using 4 CPUs for 8 GB.

Distributing the collection over a variable number
of disks

In this set of experiments, the number of disks increases
with the size of the collection. We use a round-robin strat-
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Figure 3: Average response time for a collection dis-
tributed over 16 disks (Simulated)
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Figure 4: Average response time when the number of
disks varies with the size of the collection (Simulated)



egy to partition the M GB collection over M disks, where
each disk stores all database components for 1 GB of data.

Figure 4 and Table 8 illustrate the average response
time and the resource utilization when the collection size
varies from 1 GB to 16 GB and each disk stores a database
for 1 GB of data. Table 7 reports the largest arrival rates
under different configurations at which the system sup-
ports a response time of 10 seconds.

The results show that the system scales up to 2 GB
using 1 CPU, up to 4 GB using 2 CPUs, and 8 GB using
4 CPUs. An even more interesting phenomenon is that a
single CPU system handles a 2 GB collection faster than a
1 GB collection, and a 4 CPU system handles a 2, 4, or 8
GB collection faster than a 1 GB collection in our config-
uration. The performance improves because work related
to retrieving summaries is distributed over the disks such
that each disk handles less work, relieving the disk bot-
tleneck. By examining the utilization of CPU and disk in
Table 8, we see that the performance improves until the
CPUs are over utilized. In the example of the single CPU
system, the CPU is over utilized for a 4 GB collection.
For a 2 GB collection distributed over 2 disks, the system
handles 27.8% more requests than for a 1 GB collection
on 1 disk (see Figure 4(a)).

We also observe that adding CPUs does not bring im-
provement when disks are a bottleneck. For example, a 1
GB collection with 2 and 4 CPUs achieves the same per-
formance as 1 CPU, and a 2 GB collection with 4 CPUs
achieves the same performance as 2 CPUs.

Under this disk configuration, we need to double the
number of CPUs when we double the amount of data, if
we want to support the same level of performance. For
example, if we want the system to support an arrival rate
of about 60 requests per minute, we need 1 CPU for a 4
GB collection, 2 CPUs for a 8 GB collection, and 4 CPUs
for a 16 GB collection.

Summary

In parallelizing our IR server, we find instances when in-
creasing the collection size has no impact in performance.
We can even find instances where increasing the collection
size improves performance because each disk handles less
work. Although the performance eventually degrades as
collection size increases, the degradation is very graceful
until the CPU becomes over utilized.

We find that the CPU utilization is most closely related
to the number of disks rather than the collection size. We
also find that adding disks degrades system performance,
when the CPU is over utilized. For example, for a 2 GB
collection, partitioning over 2 disks using 2 CPUs results
in 38.1% CPU utilization (see Table 8), while partition-
ing over 16 disks results in 91.8% CPU utilization (see
Table 6), due to the additional overhead to access each
disk. In this configuration, a system with 16 disks per-
forms worse than 2 disks because the CPU is over utilized.

Num. | Size of Collection (size/16 GB per disk) |
CPUs [TGB [2GB | 4GB [ 8GB [ 16GB |

1 60 35 30 10 6
2 120 90 60 35 25
4 180 150 120 20 60

Table 5: Requests per minute with a response time under
10 seconds for a collection distributed over 16 disks

[ QN [TPQ [ QTF | CPU [ DISK | TH | X |
[ 1000 | 2 | Obs. | Varied | 16 | 16 | 120 |
Num. [ Size of Collection (size/16 GB per disk) |
CPUs |Resource] 1GB [ 2GB [ 4GB [ 8GB [ 16 GB |
[ CPU | 96.6% | 97.4% [ 98.1% | 98.6% [ 99.0% |

1 | DISK | 21.6% | 18.4% | 14.7% | 11.9% | 9.8% |

[ CPU | 78.1% | 91.8% | 94.2% | 95.9% | 97.0% |

2 | DISK | 35.1% | 34.9% | 28.6% | 23.0% | 19.4% |

[ CPU [ 38.9% | 49.7% | 68.0% | 88.0% | 93.5% |

4 | DISK [ 32.9% | 37.8% | 41.1% | 42.6% | 37.4% |

Table 6: Resource utilization for a collection distributed
over 16 disks (Simulated)

Num. Size of Collection (1 GB per disk)
CPUs [1GB [2GB [ 4GB | 8GB | 16 GB |
1 920 115 65 30 6
2 920 125 125 60 30
4 920 125 150 120 60

Table 7: Requests per minute with a response time under
10 seconds when the number of disks varies with the size
of the collection

[ QN [ TPQ [ QTF [ CPU [ DISK [ TH [ x |
[ 1000 | 2 | Obs. | Varied | Varied | 16 | 120 |
Num. Size of Collection (1 GB per disk) |
CPUs |Resource] 1GB [ 2GB [ 4GB [ 8GB [ 16 GB |
[ CPU | 36.2% | 75.3% | 94.3% | 98.1% [ 99.0% |

1 [ DISK [ 97.4% | 82.2% | 43.5% | 20.6% | 9.8% |

[ CPU | 181% | 38.1% [ 71.2% | 95.0% [ 97.0% |

2 | DISK | 97.4% | 82.9% | 66.2% | 40.5% | 19.4% |

[ CPU 9.0% | 19.0% [ 35.7% | 67.5% | 93.5% |

4 | DISK | 97.4% | 82.9% | 66.7% | 57.1% | 37.4% |

Table 8: Resource utilization when the number of disks
varies with the size of the collection



However when CPUs are not over utilized, the perfor-
mance improves as we partition the collection over more
disks. For example, using 4 CPUs, partitioning 2 GB over
16 disks improves the largest arrival rate supported by a
factor of 1.2 compared with partitioning 2 GB over 2 disks
(compare Table 5 and Table 7). These results suggest that
we need to balance hardware resources carefully in order
to achieve scalable performance.

5 Related Work

Although commercial information retrieval systems, such
as Web search engines AltaVista and Infoseek, exploit par-
allelism, parallel computers, and other optimizations to
support their services, they have not published their hard-
ware and software configurations that they use to achieve
high performance. Although there have been a number of
papers regarding to using multiprocessor machines for in-
formation retrieval [3, 10, 11, 13, 17, 18, 20, 21, 22], most
of them use a distributed memory, massively parallel pro-
cessing (MPP) architecture [3, 11, 13, 18, 20, 21, 22].

Couvreur et al. analyze the tradeoff between perfor-
mance and cost when searching large text collections.
They use simulation models to investigate three differ-
ent hardware architectures: a mainframe, a collection of
RISC processors connected by a network and a special
purpose machine [10]. They use different search algo-
rithms on different hardware architectures. The experi-
ments using a mainframe are most related to our work.
They measure the response time under different query ar-
rival rates and identify the query arrival rate the system
can support within 30-40 seconds. By using a 4-CPU
IBM 3090/400E mainframe, they achieve 45 searches per
minute when searching a 14 GB collection. In our system,
we can achieve 70 searches per minute with a response
time under 10 seconds using 4 CPUs when searching a
16 GB collection. Since we do not have the figures such
as clock speed, memory size of their machines, we cannot
compare the numbers directly. Our major contribution is
not that we can build a faster system, but is that we focus
on a single system and analyze how different parameters
such as number of threads, disks, and CPUs affect the
system performance. Besides measuring response time,
we also measure the system utilization and identify bot-
tlenecks.

Jeong and Omiecinski investigate two inverted file par-
titioning schemes in a shared-everything multiprocessor
system [17]. One scheme partitions the posting file by
term identifiers while the other scheme partitions the
posting file by document identifiers. They focus on the
effect of adding disks on system performance. They show
that response time decreases as the number of disks in-
creases up to some threshold. Partitioning based on term
identifiers performs the best when the term distribution is
less skewed or when the term distribution in the query is
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uniformly distributed. Partitioning based on document
identifiers performs the best when term distribution is
highly skewed. We use partitioning based on document
identifiers in our experiments. We also consider the bal-
ance of CPUs and disks, and multiple threads, which are
not addressed in this work.

The other related studies use MPPs and focus on how
to speed up single query processing. Stanfill et al. imple-
ment their IR system on the connection machine (CM),
which is a fine-grained, massively parallel distributed-
memory SIMD architecture with up to 65,536 process-
ing elements [20, 21, 22]. Bailey and Hawking report
their IR system on Fujitsu AP1000, which is a 128-node
distributed-memory multicomputers and each node has a
25 MHZ CPU and 16 MB memory [3]. Cringean et al.
and Efraimidis et al. implement their IR systems on a
transputer network, which belongs to the MIMD class of
parallel computers [11, 13]. Our work instead uses a SMP
and investigates the system performance when processing
multiple queries.

6 Conclusion

In this paper, we investigate building a parallel informa-
tion retrieval server using a symmetric multiprocessor to
improve the system performance. We measure the actual
systems to compare the performance of multithreading
and multitasking. We build a flexible simulation model
to study performance in more detail by varying numerous
parameters, such as the number of threads, disks, CPUs
and the collection size. We present a series of experi-
ments that measure system response time and utilization,
investigate hardware/software balance, and identify sys-
tem configurations and workloads at which the system
supports a response time under 10 seconds. Since our
investigation is based on a proven effective, widely used
retrieval engine InQuery, our results provide insights for
building high performance IR servers for searching on the
Web and in other environments using a symmetric multi-
processor.

The results on multithreading versus multitasking show
that the performance of the multithreaded version and the
multitasking version is similar in our implementation, al-
though the multithreaded version is always slightly faster
than the multitasking version (90% of measured response
times fall within 10% of each other). The performance
benefit of multithreading is enough to warrant its inclu-
sion in any new parallel IR system developed from scratch,
but it may not be worth the recoding effort in a large
legacy system with pervasive global variables.

By using the simulator, we explore information retrieval
system scalability with respect to multiple threads, CPUs,
and disks as the collection size increases from 1 GB to 16
GB. Our results show that we need more than one thread
to fully utilize hardware resources (4 to 16 threads for the



configurations we explored). We also show that adding
hardware components can improve the performance, but
these components must be well balanced. In some cases,
additional hardware actually degrades performance. Our
results show that we can search more data with no loss in
performance in many instances. Although performance
eventually degrades as the collection size increases, the
performance degrades very gracefully if we keep the hard-
ware utilization balanced. Our results also show that sys-
tem performance is more related to the number of disks,
rather than the collection size.

In summary, because of the mix of CPU and I/O
activities, multithreading will significantly improve the
throughput and performance of parallel IR servers. Ad-
ditional CPUs and disks lead to further improvements,
but each IR system must explore how to balance them to
achieve the best utilization and performance in light of
their implementations.
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Appendix A: Validation of Basic IR
Functionality

System Measurements

The system measurements include query evaluation time,
and document/summary retrieval time. We obtained the
measurements using InQuery version 3.1 running on DEC



Table 9: Query Model Validation

AlphaServer 2100 5/250 with 3 CPUs (clocked at 250
MHz), 1024 MB main memory and 2007 MB of swap
space, running Digital UNIX V3.2D-1 (Rev 41).

We model the query evaluation time as a sum of eval-
uation time for each term in the query plus a small over-
head that represents the time to combine the results of
each term [6]. The time to evaluate a term ranges from
0.06 seconds for a term that appears only once in the in-
verted file to 1.2 seconds for a term that appears 995,008
times (the maximum term frequency of Tipster 1). The
evaluation time is divided into CPU, I/O bus, and disk
access time. The disk access time accounts for 32% to
90% of the total evaluation time with an average of 73%,
and the I/O bus time accounts for 0.4% to 2.5% of the
total evaluation time, assuming the index file is on disk.

Since the document sizes of the Tipster 1 collection is
not very large (2.3 KB on average) and thus retrieval oc-
curs very quickly, there is no strong correlation between
document size and document retrieval time [6]. We thus
represent the document retrieval time as a constant value:
0.027 seconds, which is the average document retrieval
time for 2000 randomly selected documents from the Tip-
ster 1 collection. The document retrieval time is also di-
vided into CPU, I/O bus, and disk access time. The disk
access time accounts for 86.7% of the total retrieval time,
and the I/O bus time accounts for 0.2%. We represent the
summary retrieval time as a sum of the document retrieval
times for each document in the summary request [6].

Validation of Query Evaluation Model

In this section, we validate the accuracy of the query simu-
lation model against the sequential implementation of In-
Query version 3.1, by creating artificial queries and com-
paring the performance of each query on the implementa-
tion and simulator. We randomly generate three sets of
queries: 50 short queries with an average of 2 terms per
query, 50 medium queries with an average of 12 terms per
query, and 50 long queries with an average of 27 terms per
query. We do not generate queries with multiple occur-
rences of the same term since our model does not account
for these types of queries.

Before processing each query, we chill the system by
reading a large file that fills the memory such that every
term in the query is read from disk. Table 9 shows the
validation results. Column 2 and 3 show the average per-
centage difference of evaluation time between the simula-
tor and the actual system, and its standard deviation. A

Query Difference Ave. Eval. Total Distribution

Type Ave. Std. ||£10% £20% £30% £40% || Time (sec) Query 0% to | —10% to | —20% to

Short 2.0% 16.2% (| 42% 72% 96% 100% 0.7 Type Number | Percentage —-10% —20% —30%

Medium| 4.2% 10.1% || 68% 90% 100% 100% 4.6 Short 22 44% 11 7 4

Long 23% 8.5% 78% 96% 100% 100% 10.1 Medium 17 34% 14 3 0

Ave. 2.8% 11.6% || 63% 86% 99% 100% 5.1 Long 19 38% 18 1 0
Ave. 58 39% 43 11 4
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Table 10: Distribution of Underestimated Queries

positive value means that the simulator overestimates the
actual system; a negative value means that the simulator
underestimates the actual system. Columns 4 through 7
show the percentage of queries running on the simulator
that fall within +£10%, £20%, +30% and +40% of the ac-
tual system. The last column lists the average evaluation
query time for each set of queries in the actual system.
On average the simulator is 2.8% slower than the actual
system with the standard deviation of 11.6%. The vari-
ation of short queries is twice that for long queries. All
queries fall within 40% of the actual system.

Table 10 details the underestimated queries. Columns
2 and 3 show the total number of underestimated queries
and the corresponding percentage in all query sets.
Columns 4 through 6 show the number of the underes-
timated queries that fall within —10%, —10% to —20%
and —20% to —30% of the actual system. Although we
underestimate 58 queries out of 150 queries, 43 queries fall
within 10% and only four short queries fall outside of 20%.
Thus, we usually overestimate queries. Our validation re-
sults show that our query evaluation model matches the
actual system very closely, although we do not accurately
model every query.



