A LANGUAGE MODELING APPROACH TO
INFORMATION RETRIEVAL

A Dissertation Presented
by
JAY MICHAEL PONTE

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY
September 1998

Department of Computer Science

© Copyright by Jay Michael Ponte 1998
All Rights Reserved

A LANGUAGE MODELING APPROACH TO
INFORMATION RETRIEVAL

A Dissertation Presented
by
JAY MICHAEL PONTE

Approved as to style and content by:

W. Bruce Croft, Chair

Andrew G. Barto, Member

James Allan, Member

Ramesh Korwar, Member

James Kurose, Department Chair
Department of Computer Science

ABSTRACT

A LANGUAGE MODELING APPROACH TO
INFORMATION RETRIEVAL

SEPTEMBER, 1998

JAY MICHAEL PONTE
B.S.,, NORTHEASTERN UNIVERSITY
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor W. Bruce Croft

In today’s world, there is no shortage of information. However, for a specific
information need, only a small subset of all of the available information will be useful.
The field of information retrieval (IR) is the study of methods to provide users with
that small subset of information relevant to their needs and to do so in a timely
fashion. Information sources can take many forms, but this thesis will focus on
text based information systems and investigate problems germane to the retrieval of
written natural language documents.

Central to these problems is the notion of “topic.” In other words, what are doc-
uments about? However, topics depend on the semantics of documents and retrieval

systems are not endowed with knowledge of the semantics of natural language. The

v

approach taken in this thesis will be to make use of probabilistic language models to
investigate text based information retrieval and related problems.

One such problem is the prediction of topic shifts in text, the topic segmentation
problem. It will be shown that probabilistic methods can be used to predict topic
changes in the context of the task of new event detection. Two complementary sets
of features are studied individually and then combined into a single language model.
The language modeling approach allows this problem to be approached in a principled
way without complex semantic modeling.

Next, the problem of document retrieval in response to a user query will be inves-
tigated. Models of document indexing and document retrieval have been extensively
studied over the past three decades. The integration of these two classes of models
has been the goal of several researchers but it is a very difficult problem. Much of the
reason for this is that the indexing component requires inferences as to the seman-
tics of documents. Instead, an approach to retrieval based on probabilistic language
modeling will be presented. Models are estimated for each document individually.
The approach to modeling is non-parametric and integrates the entire retrieval pro-
cess into a single model. One advantage of this approach is that collection statistics,
which are used heuristically for the assignment of concept probabilities in other prob-
abilistic models, are used directly in the estimation of language model probabilities
in this approach. The language modeling approach has been implemented and tested
empirically and performs very well on standard test collections and query sets.

In order to improve retrieval effectiveness, IR systems use additional techniques
such as relevance feedback, unsupervised query expansion and structured queries.
These and other techniques are discussed in terms of the language modeling approach
and empirical results are given for several of the techniques developed. These results

provide further proof of concept for the use of language models for retrieval tasks.

TABLE OF CONTENTS

Page

ABSTRACT e iv

LIST OF TABLES e xii

LIST OF FIGURES e xiv
Chapter

1. INTRODUCTION e e s 1

1.1 Background Information and Preliminary Definitions 2

1.1.1 Information Retrieval 2

1.1.2 The Vector Space Model, 4

1.1.3 Retrieval Systems Lo 5

1.1.4 Relevance Feedback 0oL, 5

1.1.5 Information Routing/Filtering 6

1.2 Topics and Language Models L. 6

1.2.1 Language Models L. 9

1.3 A Language Modeling Approach to Information Retrieval 10

1.4 Language Models for Topic Segmentation 16

1.4.1 Motivation Lo 16

1.4.2 Exampleso 17

1.4.3 Text Filtering and Routing 18

1.4.4 Topic Detection and Tracking (TDT) 18

1.5 Research Contributions o0 19

1.5.1 Language Models for Text Segmentation 19

1.5.2 Language Models for Information Retrieval 20

vi

2. RELATED WORK AND BACKGROUND MATERIAL 22

2.1 Language Models L 23
2.1.1 Smoothing Methods 0L 23
2.1.2 Predictive Language Modeling 27
2.1.3 Language Models for Speech Recognition 28
2.1.4 Exponential Modelso o000 30
2.1.5 Hidden Markov Models (HMMs) 31
2.1.6 Example: POS Tagging 40
2.1.7 Acoustic Models for Speech Recognition 41
2.1.8 Asian Language Word Segmentation 42

2.2 Retrieval Models oo 43
2.2.1 The Vector Space Model 43
2.2.2 Probabilistic Models o000 44

2221 The Fuhr Model 46
2.2.2.2 The Inference Network Model 47

2.2.2.3 A Utility Theoretic and Information Theoretic Ap-
proacho 49
2.2.2.4 The Multinomial Model o0
2.2.3 Extended Boolean Queries 52
2.24 The P-Norm Model 52
2.2.5 The PIC Operators 53
2.2.6 Passage Retrieval o000, 54
2.2.7 Relevance Feedback 0000, 56
2.2.7.1 The Harper and van Rijsbergen Model o7
2.2.7.2 The Rocchio Method 58
2.2.7.3 Relevance Feedback in the INQUERY Model 59
2.2.8 Query Expansion Without Relevance Information 61
2.2.8.1 Latent Semantic Indexing 62
2.2.8.2 An Association Thesaurus 63
2.2.8.3 Local Feedback, 63
2.2.8.4 Local Context Analysis (LCA) 64

2.3 Text Segmentation L0 64
2.3.1 Text Segments and Text Themes 64
232 Text Tiling 64
2.3.3 Multiple Language Models 65

vii

2.3.4 Exponential Models 000000, 66

3. LANGUAGE MODELS FOR TEXT SEGMENTATION 70
3.1 Newsfeeds and Topic Boundaries 70
3.2 The TDT Tasks e et it e e 71

3.2.1 Segmentation L Lo 71
3.2.2 Event Tracking 71
3.2.3 Segmentation Direct Evaluation 72
3.2.3.1 A Probabilistic Error Metric 72

3.2.3.2 Recall and Precision 73

3.2.3.3 The Pessimistic Error Function 74

3.2.3.4 The Partial Match Error Function 74

3.2.4 Segmentation Indirect Evaluation 75
3.24.1 Event Tracking Evaluation. 75

3.3 Two Complementary Approaches to Segmentation 77
3.3.1 Content Based LCA Segmentation 7
3.3.2 LCA Expansion — A Preliminary Study 7
3321 Results 7

3.3.2.2 The Offset Heuristic 78

3.3.23 The TDT Corpus 79

3.3.2.4 Pros and Cons of the LCA method 81

3.3.3 Discourse Based HMM Segmentation 81
3.3.3.1 Pros and Cons of the HMM method 83

3.3.4 Preliminary Results and Discussion 83
3.3.41 LCA Method 83

3.3.4.2 HMM Method 84

3.4 Combining the Two Methods 84
3.4.1 Sentence Clustering 84

3.5 Results of the Indirect Evaluation 87
3.6 Discussion e e 87

viii

4. LANGUAGE MODELS FOR INFORMATION RETRIEVAL

4.1
4.2

4.3

4.4

4.5

Chapter Introduction
The Salton Approach to Indexing

4.2.1 The Kalt Model o .
The Language Modeling Approach
4.3.1 Insufficient Data o000,

4.3.1.1 Small Sample Size

4.3.2 Averaging L e
4.3.3 Combining the Two Estimates

Empirical Results o oo

4.4.1 Evaluationo
4.42 Data
4.4.3 TImplementation Lo oo
4.4.4 Recall/Precision Experiments
4.4.5 Improving the Basic Model

Discussion

5. QUERY EXPANSION TECHNIQUES

5.1

5.2

9.3

Chapter Introduction

5.1.1 Term Mismatch
5.1.2 Query Expansion in the Language Modeling Approach

5.1.2.1 Interactive Retrieval with Relevance Feedback
5.1.2.2 Document Routing

Relevance Feedback

5.2.1 The Ratio Method
5.2.2 Information Routing

5.2.2.1 Ratio Methods With More Data
5.2.2.2 Routing Results,

Query Expansion Without Relevance Information

5.3.1 Local Context Analysis (LCA)

ix

5.3.2 Local Feedback 125
5.3.2.1 Local Feedback Results 125
5.3.3 Extending Local Feedback with Co-Occurrence Information . . 127

5.3.3.1 Harper and van Rijsbergen’s Co-Occurrence Model . 130

5.3.3.2 Extended Local Feedback Results 130

5.3.4 Non-query Terms as Evidence 131

6. ADDITIONAL ASPECTS OF RETRIEVAL 134
6.1 Chapter Introductiono o oL 0oL 134
6.2 Proximity Information 0 0 00000 135
6.2.1 New Features vs. New Models 135
6.2.2 Phrasal Evidence o000 136
6.2.3 Backoff Models o0 137
6.2.4 Passage Level Evidence 139
6.2.4.1 Sliding Window Passages 139

6.3 Boolean Queries 140
6.4 Query Term Weighting 141
6.4.1 Risk Functions oo 141
6.4.2 User Specified Language Models 142

7. CONCLUSIONS AND FUTURE WORK 144
7.1 Text Segmentation L o 144
7.2 Information Retrieval 145
7.2.1 User Preference 146
7.2.2 Estimators. Lo oo o 147

7.2.3 Generalized Boolean Operators 147
7.2.4 Feature Selection and Weighting 148
7.24.1 Recall/Precision Experiments 149

7.2.42 Mixture Models 0oL 149

7243 Stemming Lo s 150

7.2.5 Relevance Feedback and Routing 151
7.2.6 Passage Level Evidence and Passage Retrieval 151
7.2.7 Simulating Passage Retrieval 151

BIBLIOGRAPHY

xi

LIST OF TABLES

Table Page
3.1 Example of aligned segmentations. 73
3.2 Comparison of content based segmentation with and without LCA

4.1

4.2

4.3

4.4

4.5

5.1

5.2

9.3

expansiononset 1. L o 78

Contingency table for sets of documents. 98

Comparison of tf.idf to the language modeling approach on TREC
queries 202-250 on TREC disks 2 and 3. 102

Comparison of tf.idf to the language modeling approach on TREC
queries 51-100 on TREC disk 3. 104

Comparison of the original language modeling approach to the new
language modeling approach on TREC queries 202-250 on TREC disks
2and 3. e 106

Comparison of the original language modeling approach to the new
language modeling approach on TREC queries 51-100 on TREC disk

Comparison of Rocchio to the Language modeling approach using 1
document and adding 5 terms on TREC queries 202-250 on TREC
disks 2and 3. oL 115

Comparison of Rocchio to the Language modeling approach using 2
documents and adding 5 terms on TREC queries 202-250 on TREC
disks 2and 3. 117

Comparison of Rocchio to the Language modeling approach using 10
documents and adding 5 terms on TREC queries 202-250 on TREC
disks 2and 3. oL 120

xii

0.4

2.5

2.6

5.7

2.8

Comparison of Rocchio to the Language modeling approach using 10
documents and adding 10 terms on TREC queries 202-250 on TREC
disks2and 3. 121

Comparison of ratio methods one and two on TREC 93 routing task. . 123

Comparison of baseline to unweighted local feedback. 126
Comparison of baseline to weighted local feedback. 128
Comparison of baseline to extended local feedback on TREC queries

202-250 on TREC disks2 and 3. 132

xiii

LIST OF FIGURES

Figure Page

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Example training data from a logistic function corrupted by Gaussian

1010) 1<V 24
Example of an estimator that exhibits variance error. 25
Example of an estimator that exhibits bias error. 26
Example of a Mealy machine., 32
Example of a Moore machine. 32
Example of a non-deterministic Mealy machine. 33
Example of a non-deterministic Moore machine. 34
Example inference network. oo o000 49
Close-up view of query network. 60
Annotated query network. L. 61
Example DET curve., 76
Example of 3 typical topic segments. 79
Non-stopwords in common from previous example. 79
Number of common LCA features for six example sentences. 80
Discourse based HMM segmentation model. 82
Combined discourse and content model. 87
DET curve comparing predicted breaks to actual breaks. 88

Xiv

4.1

4.2

4.3

4.4

5.1

5.2

9.3

5.4

3.5

2.6

5.7

2.8

Comparison of tf.idf to the language modeling approach on TREC
queries 202-250 on TREC disks 2 and 3. 101

Comparison of tf.idf to the language modeling approach on TREC
queries 51-100 on TREC disk 3. 103

Comparison of the original language modeling approach to the new
language modeling approach on TREC queries 202-250 on TREC disks
2and 3. e 105

Comparison of the original language modeling approach to the new
language modeling approach on TREC queries 51-100 on TREC disk

Comparison of Rocchio to the Language modeling approach using 1
document and adding 5 terms on TREC queries 202-250 on TREC
disks 2and 3. oL 114

Comparison of Rocchio to the Language modeling approach using 2
documents and adding 5 terms on TREC queries 202-250 on TREC
disks 2and 3. 116

Comparison of Rocchio to the Language modeling approach using 10
documents and adding 5 terms on TREC queries 202-250 on TREC
disks 2and 3. oL 118

Comparison of Rocchio to the Language modeling approach using 10
documents and adding 10 terms on TREC queries 202-250 on TREC
disks 2and 3.o 119

Comparison of ratio methods one and two on TREC 93 routing task. . 122

Comparison of baseline to unweighted local feedback. 127
Comparison of baseline to weighted local feedback. 129
Comparison of baseline to extended local feedback. 131

XV

CHAPTER 1
INTRODUCTION

This thesis explores the use of probabilistic language models for information re-
trieval (IR). Many of the success stories in natural language processing including
speech recognition, text extraction, part-of-speech tagging, and parsing have relied
heavily on probabilistic methods in general and language models in particular. The
work presented here is the development of an approach to information retrieval and
related problems based on probabilistic language models.

The use of language models allows retrieval problems to be phrased in a manner
that is conceptually simpler than many other approaches. Estimation of probabilities
will play the key role in many of the techniques developed. This means that existing
techniques for improving estimation can be brought to bear on the retrieval task.

This chapter begins with some basic concepts and preliminary definitions related
to information retrieval in section 1.1. These definitions provide context for the
discussion of retrieval models. After that, the concept of “topic,” a central idea in
information retrieval, will be discussed in section 1.2. The difficulties associated with
that concept will also be discussed.

Next, the concept of language modeling in the context of information retrieval
will be introduced, in section 1.3 and two applications will be introduced, interac-
tive retrieval, discussed in section 1.3 and prediction of topic shifts, discussed in 1.4.
Language modeling is a more tractable problem than topic identification and these

applications serve to underscore that fact. The chapter concludes with the contribu-

tions that this thesis makes to the field of information retrieval, as well as an outline

of the remainder of this document in Section 1.5.

1.1 Background Information and Preliminary Definitions

Some general background information and preliminary definitions about the study
of information retrieval and related tasks will now be presented. The IR task is the
retrieval of unstructured information. Such information might include text, images,
audio etc., For the purposes of this thesis the discussion will be restricted to text
based information systems. In the standard information retrieval task, documents
are pre-defined and the retrieval system will retrieve documents in order to satisfy
information needs of users. A related task is passage retrieval where the system
retrieves only the most relevant portions of documents.

In a typical application, a collection of documents may be several gigabytes in size
and will contain on the order of millions of documents. In a collection of this size,
often only a few hundred documents, or fewer, will be relevant to a specific query.
This large disparity in the cardinality of the relevant set of documents vs. the non-
relevant set makes the problems quite different from many classification tasks and

affects how retrieval systems are designed as well as how they are evaluated.

1.1.1 Information Retrieval

A collection of documents will be indexed by a set of features. In a text based
retrieval system, features can include words, phrases etc. or manually assigned con-
trolled vocabulary items. The focus of this dissertation will be automatic methods
and so manually assigned features will not be considered.

When one has chosen a feature set, two approaches to retrieval are exact match
methods and ranked methods (also know as partial match methods). For the sake

of discussion, assume that the feature set consists of individual words. An exact

match method would return a set of documents corresponding to the strict Boolean
combination of indexing features. For a collection of one million documents, it is
highly unlikely that the relevant set can be retrieved correctly since the event space
is the power set of the set of all documents in the collection. That is, one set of
documents must be chosen out of 21900900 possible sets. Moreover, this choice must
be made on the basis of a single, relatively short, user query. On the other hand, for
ranked retrieval, any ranking that tends to place relevant documents near the top of
the list is useful.

Ranked retrieval methods retrieve a ranked list of documents rather than an un-
ordered set. This allows these methods to take advantage of the fact that some
features are better discriminators than others due to their occurrence statistics. Two
useful measures for determining the importance of a feature are term frequency, tf,
and inverse document frequency idf. The term frequency of a word is a function of
the number of occurrences of that word in a given document — ¢f is a document level
statistic. The inverse document frequency of a word is a function of the proportion
of documents that a word occurs in — idf is a collection level statistic.

This information, combined in an appropriate fashion, can provide a very useful
ranking of documents, typically ranking several relevant documents near the top of
the list. With exact match systems, many documents, both relevant and non-relevant
will typically be retrieved due to the number of possible sets of documents. Since these
documents are presented to the user in no particular order, the user will be left to
sift through a large quantity of documents to find the relatively few interesting ones.

For this reason, partial match retrieval is a better solution to the problem of
document retrieval and will be the focus of this thesis. It should be pointed out that
some users prefer Boolean systems because they feel as though they have more control

of the search [11]. This issue will be addressed further in section 7.2.

There are two widely used classes of ranked retrieval models in IR, probabilistic
models [46] and the vector space model [51] and the meaning of the ranking is different
in each. Most probabilistic models follow the probability ranking principle [46]. This
means that documents are ranked according to the probability of being relevant to
the information need of the user. The retrieval model developed in Chapter 4 will be
a departure from this. An example of a probabilistic retrieval model that follows the
probability ranking principle is the INQUERY inference network model [61] based on
Bayesian networks. This model as well as other probabilistic models are discussed in

Chapter 2.

1.1.2 The Vector Space Model

The vector space model [51] treats documents and queries as vectors in an N-
dimensional space, where N is the number of indexing features. The document vec-
tors are ranked according to their cosine similarity (or, in general, according to some
distance function) to the query vectors in that space. The major difference between
probabilistic models and the vector space model is that while the probabilistic ap-
proaches attempt to explain the data by means of probabilistic modeling, the vector
space model is more of an abstraction of the retrieval task itself. This means that
in the vector space model the weighting and combination functions are determined
empirically, rather than being prescribed or explained by the model. The semantics
of the space are not defined, and the researcher is free to choose among distance
functions. The tradeoff between the two approaches is that the vector space model
is not burdensome to maintain, since it does not prescribe how retrieval should be
done. On the other hand, the vector space model does not provide guidance to the

researcher as to how retrieval performance might be improved as probabilistic models

do.

1.1.3 Retrieval Systems

Information retrieval systems prepare a collection of documents for retrieval by
the process of indexing. At indexing time, documents are tokenized into words and an
inverted index file is built. The inverted file has a list for each indexing feature showing
the documents that contain it. Phrases and proximity features can be calculated at
retrieval time if the inverted file contains within-document positions of words. This
approach allows more complex features, such as several words in proximity, without
an explosion in index size, but incurs the cost of merging the ranked lists during query
processing in order to calculate these features.

There are additional steps that may take place either at indexing time or at
retrieval time. Each word will usually be compared against a stopword list. Stopwords
are words with no discriminatory value such as “a”, “an” and “the.” These words
are often discarded at indexing time in order to save space, although it is possible
to perform stopping at retrieval time. An additional step is a form of morphological
analysis, called stemming, that reduces variant forms of the same word to a common
root form. For example “car” and “cars” would both be conflated to the same root.
Stemming can also be performed at retrieval time by adding the variant word forms

to the query [34].

1.1.4 Relevance Feedback

Relevance feedback is a technique for improving retrieval effectiveness based on
relevance judgments provided by the user. At retrieval time, the user of the retrieval
system poses a query, and the system retrieves a ranked list of documents. At this
point, the user can provide relevance judgments about one or more documents in
the ranked list. The retrieval system can modify the original query based on these
relevance judgments. This is typically done by adding new terms from relevant doc-

uments and/or assigning weights to query terms based on occurrence statistics in the

judged documents. This modified query will then be run and a new ranked list will
be returned. Relevance feedback typically provides a significantly improved ranking
as compared to retrieval based on the initial query. Existing methods of relevance

feedback will be covered in Chapter 2.

1.1.5 Information Routing/Filtering

The information routing or filtering task is similar to the retrieval task with rel-
evance feedback. However, instead of a static collection of documents, the data is a
dynamic stream of documents such as an online newswire. Each document is com-
pared to a set of long-term user profiles and will be routed accordingly.

Since routing profiles represent, long-term information needs, it is possible to col-
lect a large number of relevance judgments over time, more judgments than one would
expect for relevance feedback in the retrieval task. Much of the research in routing
centers on how best to use these relevance judgments. This problem will be discussed

further in Chapter 2 and again in Chapter 5.

1.2 Topics and Language Models

The techniques developed in this thesis, as well as problems in information retrieval
in general, are intimately related to the concept of “topic.” Yet, this concept is
difficult to define. Retrieving documents relevant to the information need of the user
can be viewed as a problem of inferring the topic that the user had in mind from
the query, and making similar inferences about the documents in the collection. The
documents could then be ranked according to the degree of belief that the document
describes a similar topic to that which the user had in mind. This is essentially what
existing probabilistic retrieval models do. An indexing model, one component of a
probabilistic retrieval model, infers which concepts are likely to be present in the

document, as will be described in Section 1.3. Additional inferences are made as to

the content of the query. In Section 1.1, interactive ranked retrieval was introduced.
Probabilistic retrieval models attempt to formalize the process of ranked retrieval by
interpreting the ranking scores as the probability that a document is relevant to the
query. Relevance depends on user judgments, but one would expect users to judge as
relevant those documents that described the topic expressed by the query.

The topic of the query is, however, a semantic notion, and retrieval systems work
without semantic information. The important distinction to be made is the de dicto
vs. the de re view of documents and queries, i.e., regarding the expression of doc-
uments and queries vs. regarding the physical objects expressed by documents and
queries. To put this another way, should a retrieval model describe documents and
queries or, should it describe what documents and queries describe? Existing ap-
proaches to retrieval make complex inferences as to the semantic content of documents
and queries, i.e., the models make inferences as to what documents and queries de-
scribe — their subject matter or topic.

On what basis are these inferences made? A fortunate fact about language is
that words are useful features for retrieval and, at the same time, carry considerable
semantic content. (This is not true, for example, of image retrieval where distinguish-
ing features, such as color histograms, do not correspond to what typical users would
think of as the semantics of the image.) That words are useful features that carry
semantic content helps make text retrieval an especially useful technology. Users can
choose features that are meaningful to them and that will be useful to the system to
find documents. Many existing models of retrieval explicitly make this connection.
The task of retrieval is viewed as one of inference about semantic content based on
word occurrences.

However, without deep understanding of natural language on the part of the
retrieval system, the semantics are inferred from the words (or more complex fea-

tures) that the query and the document have in common and, possibly, by addi-

tional collection-wide co-occurrence statistics. Subtleties of language such as figures
of speech, ambiguities etc., are not accounted for by such a model, except to the extent
that occurrence statistics preserve this information. The question becomes whether
it is desirable to maintain this extra complexity as part of the model. If semantics
are not being modeled explicitly, is it desirable to state that documents containing
similar words are likely to be about similar topics, or that documents containing the
same words as a query are likely to be relevant to the underlying topic expressed by
that query? The view taken here is that this complexity is not necessary. Moreover,
attempting to make inferences about the topic of documents has required researchers
to estimate probabilities by heuristic methods.

The modeling of semantics requires the introduction of hidden variables. For
example, in the 2-Poisson indexing model (described in Section 1.3) words are assumed
to follow Poisson distributions with two different rates: one rate for documents that
should have the word assigned as an indexing feature, and another rate for those
documents for which the word should not be assigned. Whether a word should or
should not be assigned to a document depends on whether a user posing that word
as a query would be satisfied with the document. The mixture needs to be inferred
since one cannot directly observe the phenomenon of interest.

Hidden variables are not necessarily a problem in and of themselves, and in some
cases can be very appropriate. For example, in the speech recognition community,
Hidden Markov Models (HMMs) are used to estimate the probability of words from
acoustic signals. It is known that in human speech, sounds form equivalence classes
which can be thought of as abstract sounds or “phonemes.” In speech, an underlying
phoneme will be expressed as its surface form (sometimes referred to as a “phone”).
This process is governed by simple, well understood rules. Moreover, a phone is only
one step removed from its underlying phoneme. For this reason, modeling a sequence

of phonemes is a reasonable idea and the estimation of the probabilities is relatively

simple. On the other hand, the meaning of a document is several levels removed
from the surface form and the rules of producing the surface form according to the
underlying form are not entirely known. That being the case, should we believe that
the probabilities of a hidden variable model can be estimated with any degree of

accuracy?

1.2.1 Language Models

If one does not wish to model semantics what can be done instead? In this thesis,
the concept of “topic” will be replaced by the concept of language model. In general,
a language model is a probability distribution over strings in a finite alphabet. These
probabilities can be estimated by a variety of techniques using as much (or as little)
knowledge as one has about the language generation process. For example, suppose
the alphabet consists of the two symbols ‘0’ and ‘1.’ In addition, suppose that the

generation mechanism is known to be the following:

P(z; =0|z;_y =0) =0.9
P(z; =0lz;.y =1) =0.1
Plri=1lzii=1) =09
P(z; =1|z;y =0) =0.1

These four probabilities can be viewed as a language model for the language in
question, since they characterize the distribution of strings in this language. Another,
simpler model for the above language is P(x; = 0) = P(x; = 1) = 0.5. This simpler
model captures the distribution of symbols over the long term but does not account
for the local sequential effects, i.e., it is a memoryless model. Also notice that the
simpler model is vague in the sense that it describes any language consisting of an
equal number of these two symbols regardless of the local sequential effects. This

simpler model is analogous to the models that will be used for text retrieval.

The advantage of using language models is that the observable information, i.e.,
the collection statistics, can be used in a principled way to estimate these models and
do not have to be used in a heuristic fashion to estimate the probability of processes
that nobody fully understands. The view taken here then, is that the model should
describe documents and queries themselves rather than make inferences as to their

semantic content.

1.3 A Language Modeling Approach to Information Retrieval

The use of language models in the context of text retrieval allows for a simple
formulation of the problem that is amenable to the application of many well studied
techniques of probability estimation for the purposes of improving retrieval effective-
ness. In addition, it will be shown that commonly used retrieval techniques, such as
relevance feedback, have a natural interpretation using this approach.

The semantic inferences referred to in Section 1.2 are carried out by the compo-
nent of a probabilistic retrieval model known as the indexing model, i.e., a model of
the assignment of indexing terms to documents based on the concepts those terms
represent. The discussion of indexing models will begin with a discussion of manual
indexing, followed by the discussion of automatic indexing models in general. Finally,
a specific example of an indexing model, the 2-Poisson model will be presented.

The notion of the indexing model can be thought of by analogy to manual indexing.
In order to manually index a document, an expert indexer will read it, and assign
words and phrases, often from a controlled indexing vocabulary. Manual indexers are
highly trained and generally will have significant knowledge of the subjects of the
documents they index. The assigned indexing terms in some way capture the content
of the document in an abbreviated form and can then be used by searchers to find
documents of interest.

The idea of manual indexing depends on two tacit assumptions:

10

e A small set of concepts can characterize the semantic content of a document.

e The indexing terms can be used to characterize these concepts.

However, the same document may be important to different people for different
reasons. It is not likely that an indexer will be able to anticipate the information
need of every user in advance. However, in a library environment, the concept of
manual indexing often makes sense. The success of manual indexing depends on how
well the indexers and the searchers agree on the assignment of the terms and on how
well each is acquainted with the vocabulary of the subject (controlled or otherwise).
In a library environment, where the indexers and the searchers have backgrounds in
library science, or where the searchers at least have the assistance of librarians, one
would hope that the agreement between searchers and indexers would be reasonably
strong, and therefore, good retrieval performance would result.

Indexing models are an attempt to automate the process of index term assignment.
Generally speaking, indexing models will weight terms that occur in the documents
according to their suitability as indexing terms. Note that this is already a far cry
from the manual indexing case where indexer and searcher are assumed to have consid-
erable expertise and, in the best case, considerable agreement as to indexing terms.
Moreover, information retrieval systems must retrieve documents in heterogeneous
collections. These collections are considerably less “well behaved” than the text in a
library environment and are likely to be less amenable to manual indexing in the first
place.

In addition, the users of retrieval systems are typically not trained in library
science and may not have a high degree of familiarity with the subject of documents
for which they are searching. One might question whether the analogy to manual
indexing is a reasonable basis at all for the model of a modern IR system.

This is especially the case when one considers that indexing models introduce

additional complexity into retrieval models. More importantly, estimating the prob-

11

ability that a document is about a particular concept is very difficult. In practice,
retrieval systems tend to use heuristic techniques to estimate these probabilities. The
notion that a subset of important terms should be assigned to capture the meaning
of a document is not warranted in the context of modern IR and, in practice, all of
the words are used with the exception of stopwords. This being the case, modern
indexing models have shifted emphasis away from the assignment of a select set of
terms and, instead, try to weight every term. That means that every word is assumed
to have an associated concept and the indexing model is meant to quantify to what
extent a document is about a concept associated with each word in a document.

An early probabilistic indexing model is the 2-Poisson model, due to Bookstein and
Swanson [9] and independently to Harter [28]. By analogy to manual indexing, the
task was to assign a subset of words contained in a document (the “specialty words”)
as indexing terms. The probability model was intended to indicate the useful indexing
terms by means of the differences in their rate of occurrence in documents “elite” for
a given term, i.e., a document that would satisfy a user posing that single term as a
query, vs. those without the property of eliteness.

The success of the 2-Poisson model has been somewhat limited because when one
considers the full text in heterogeneous collections, the distribution of terms does not
fit a mixture of two Poisson distributions very well [38]. In addition, documents were
assumed to be of approximately equal length, a reasonable assumption for the data
used in the initial studies [28] but not a reasonable assumption in general. To sum up,
the 2-Poisson model makes several problematic assumptions that limit its usefulness,

including:
e Inappropriate distributional assumptions.

e A subset of specialty words.

e A classification of documents into elite and non-elite sets.

12

e Uniform document length.

It should be noted that Robertson’s #f, which has been shown to work very well
empirically, was intended to behave similarly to the 2-Poisson model though no at-
tempt was made by Robertson to fit a mixture of two Poisson distributions explicitly
[48]. Tt appears that while Robertson’s ¢f may have been inspired by the 2-Poisson
model, it does not actually implement it.

Other researchers have proposed a mixture model of more than two Poisson dis-
tributions in order to better fit the observed data. Margulis proposed the n-Poisson
model and tested the idea empirically [38]. The conclusion of this study was that a
mixture of n-Poisson distributions provides a very close fit to the data. In a certain
sense, this is not surprising. For large enough values of n, one can fit a very complex
distribution arbitrarily closely by a mixture of n parametric models if one has enough
data to estimate the parameters [59].

In any event, when one makes the leap from the 2-Poisson model to the n-Poisson
model, the semantics of the mixture model are no longer clear, and so it is is not
obvious how one would exploit the good fit even if it is meaningful.

Apart from the adequacy of the available indexing models, estimating the param-
eters of these models is a difficult problem. Researchers have looked at this problem
from a variety of perspectives and several of these approaches will be discussed in
Chapter 2. In addition, as previously mentioned, the current indexing models make

two assumptions about the data that may be unwarranted.

e The parametric assumption.

e The assumption that semantics can be modeled by a latent variable.

In the approach developed in this thesis, these two assumptions will be relaxed.

Rather than making parametric assumptions, as Silverman said, “the data will be

13

allowed to speak for themselves.” [57] Unlike the current indexing models, the lan-
guage modeling approach will not require the use of a hidden variable representing
semantic content. Instead, rather than constructing a parametric model of the data,
the actual data can be used by means of non-parametric methods.

Regarding the second assumption, the 2-Poisson model was originally based on
the idea of “eliteness” [28]. It was assumed that a document elite for a given term
would satisfy a user if the user posed that single term as a query. Since that time,
the prevailing view has come to be that multiple term queries are more realistic. In
general, this requires a combinatorial explosion of elite sets for all possible subsets of
terms in the collection. The point of view taken here is that each query needs to be
looked at individually and that documents will not necessarily fall cleanly into elite
and non-elite sets. To sum up, in the manual indexing case, indexer and searcher are
both experts with similar training. In the case of modern IR systems, the indexer is a
machine and the user may have no training at all. The assumption that the semantics
of documents can be captured by a simple latent variable model has not been shown
to be reasonable in practice.

The approach that will be taken instead is based on probabilistic language mod-
eling and integrates the entire retrieval process into a single model. The problematic
notion of topic has been replaced with the notion of language model which can be
used to capture the important features of documents in a useful way without making
inferences about semantic content.

The approach to retrieval taken here is to infer a language model for each document
and to estimate the probability of generating the query according to each model. The
documents are then ranked according to these probabilities. This means that a single
model describes the data, without the use of hidden concept variables, and the same

model is used directly for retrieval.

14

The intuition behind this approach is that users have a reasonable idea of terms
that are likely to occur in documents of interest and will choose query terms that
distinguish these documents from others in the collection, an intuition discussed in
more detail in section 7.2. When the task is stated this way, the view of the retrieval is
that a model can capture the statistical regularities of text without inferring anything
about the semantic content. This is very much in contrast to the indexing model
approach, where inferences must be made about concepts that can be assigned to
documents and that can be characterized by words.

Indexing models are based on the notion that there is a correct set of indexing
terms that will characterize documents and allow users to find them. The view taken
here is that there is no correct set of terms and that choosing indexing terms is
successful only to the degree to which the indexer and user are in agreement, not
to the degree to which the terms are correct. The task is no longer to estimate the
probability that a given term is a correct indexing term and that will allow the model
to be considerably simpler. This is very much in accord with the modern practice of
indexing documents by all of the terms that occur in them (often with the exception
of stopwords such as “the” which are usually not indexed).

By focusing on the query generation probability, as opposed to the probability of
relevance, as in other models, the language modeling approach does not require a set
of inferences for indexing and a separate set of inferences for retrieval. More to the
point, problematic inferences related to the semantic content of documents do not
have to be made. This is really the key idea of the language modeling approach to
retrieval. The resulting model is conceptually simple and does not require heuristics
to estimate the probabilities.

Most retrieval systems use term frequency, document frequency and document

length statistics. Typically these are used to compute a tf.idf score with document

15

length normalization. An example of this is the INQUERY ranking formula shown
in Section 4.4.4.

In the approach taken here, collection statistics such as term frequency, document
length and document frequency are integral parts of the language model and are
not used heuristically as in many other approaches. For this reason, the standard tf
and df scores will not be used. In addition, length normalization is implicit in the
calculation of the probabilities and does not have to be done in an ad hoc manner.

Other probabilistic approaches to retrieval are discussed in chapter 2. The defini-
tion and study of the language modeling approach appears in Chapter 4 and continues
in chapters 5 and 6 which develop additional aspects of the retrieval model. Before
that, an additional application of language modeling to a problem in IR, the topic

segmentation problem, is introduced.

1.4 Language Models for Topic Segmentation
1.4.1 Motivation

Topic segmentation is potentially useful for information retrieval and related tasks.
Early retrieval systems were tested using document collections such as the Cranfield
collection [13] which consisted of 1400 relatively short documents. More recently, due
to the Text Retrieval Evaluation Conferences (TREC) [25] , much larger collections
have been made available. These are heterogeneous collections containing documents
from a variety of sources and consisting of several gigabytes of full text documents.
Some documents in these collections are several megabytes in size. One problem that
arises in this context is that very long documents may be about several different
topics. This is a problem for two reasons. First of all, a document with a small
relevant section may receive a low ranking due to the ’'noise’ in the remainder of
the document. Secondly, false hits can occur when different query terms appear in

unrelated portions of a document.

16

Modern IR systems do well on these collections in spite of these problems, but the
problems will continue to get more difficult as the systems are applied to more and
more heterogeneous databases. For example, consider the World Wide Web, where
one finds short articles, such as typical USENET news posts, as well as entire books
and everything in between. In such an environment, how does one define the concept
of document? Perhaps an online book is a document. Then again, maybe a chapter
or a chapter section or even a single paragraph should be considered a document.
What is the one best way to define the concept of document?

This question may not have a satisfactory answer, but perhaps it does not matter
if the problem is redefined. Instead of being concerned with the retrieval of relevant
documents, the task can be framed as the retrieval of relevant text segments. In order

to make this redefinition, one needs a method of segmenting text by topic.

1.4.2 Examples

Consider an example information need such as labor relations. A query for that in-
formation need might contain the words “union” and “management.” The first prob-
lem is that in large heterogeneous text collections, a document with a small relevant
section may receive a low ranking due to the “noise” in the remainder of the document.
The tf statistic is a function of the number of term occurrences normalized by the
size of the document (where size can be measured in various ways). If, for example,
an online book about baseball contained a short passage about union/management
relations, the terms in this section would be given relatively low weight since they
account for a small portion of a very long document. This reflects the intuition that
this particular document is not about union/management relations, for the most part.
However, the small section about union/management relations by itself may be rel-
evant to the example query and as such one would like to see it reasonably high in

the ranked list.

17

The second problem was that false hits can occur when different query terms
appear in unrelated portions of a document containing several topics. For example,
in a book review article, two unrelated sections, such as a review of a book about the
Union Army during the American Civil War and a second unrelated review of a book
about time management could make this article appear relevant to the example query
about labor relations especially if the words “union” and “management” occurred
frequently enough; it would be preferable to split this article into two documents for

the purposes of ranked retrieval.

1.4.3 Text Filtering and Routing

An additional task studied by the IR community is text routing or filtering. In
this task, documents are received over a newswire and each document is compared
to a collection of user profiles and sent to those users who are likely to be interested.
One generally thinks of newswire documents as having predefined boundaries. Topic
segmentation does not seem necessary for this task. However, a variant of this task
is the routing of speech data from a radio or television broadcast. This data will be
indexed by transcripts obtained from an automatic speech recognition system. The
output of the speech recognition system is a stream of text. Once again, there is a

need to segment the text by topic.

1.4.4 Topic Detection and Tracking (TDT)

The specific task that motivated the segmentation work presented here was the
Topic Detection and Tracking (TDT) pilot study [64]. TDT is a study investigating
the problems of new event detection and long term event tracking in broadcast speech.
Stated briefly, the new event detection task is to label each story as to whether it is
the first description of a real world event, the Kobe earthquake for example, that the
system has processed. The tracking task is to identify subsequent articles for a topic

of interest. For example, if the system identified the Kobe earthquake as a new event,

18

a user could then decide to track the stories about that event over time. The system
would label incoming articles as to whether they describe the Kobe earthquake and
the ones that did would be sent to the user.

As mentioned, the data for this task consisted of speech transcripts of broadcast
news. Segmentation can be viewed as an enabling technology for this task since story
boundaries are not available from automatic speech transcripts.

Over the course of the TDT pilot study [64], which will be described in Section
3.2, the concept of topic was abandoned and an event driven definition was adopted
instead. For further discussion of events and their properties see [4]. The operational
definition used for the segmentation task in the TDT study was the identification of
story boundaries. The original story boundaries were provided for the study corpus by
the human transcribers and the task was to recover those boundaries. This definition
is somewhat limited in scope, but will be useful in the context of the segmentation

study discussed in Chapter 3 and for news routing in general.

1.5 Research Contributions

This thesis makes the following contributions to the field of information retrieval:

e A language modeling approach to the segmentation of text by topic.

e A new approach to text retrieval in general, based on probabilistic language

modeling.

1.5.1 Language Models for Text Segmentation
Two complementary feature sets, referred to as discourse features and content
features are studied separately for the segmentation problem and then are combined

into a single unified probabilistic model. It will be demonstrated that:

1. Text segmentation can be solved in a purely statistical manner without resorting

to expensive knowledge-based approaches.

19

2. Discourse features and content features are useful complementary classes of

features.

3. Local Context Analysis (LCA), which has been shown to be effective for solving
the vocabulary mismatch problem between queries and documents, can also be

used to solve the terseness problem in the context of segmentation.

It will be shown that language models can be used, in lieu of semantic knowledge,
for topic segmentation problem. The resulting method is tested in the context of the
event tracking task. It will be shown that the segmenter predicts topic boundaries
in the text well enough to be almost indistinguishable from the original boundaries
with respect to performance of the new event detection task.

The two feature sets, discourse features and content features are first tested sepa-
rately and it will be shown that both sets of features provide reasonable segmentation
performance. However, it will also be shown that when these two feature sets are com-
bined by means of a probabilistic model, the error rate is improved over the methods
using either feature set alone.

Finally, the method of local context analysis will be used as a method of identifying
content shifts. When segmenting text, words are not always repeated enough times
to identify topic shifts entirely by the number of repeated words. It will be shown
that the method of local context analysis can be used to improve the accuracy of the

content based segmenter. The segmentation phase is detailed in chapter 3.

1.5.2 Language Models for Information Retrieval

The new retrieval model is developed in chapters 4 though 6. This model is tested
using Labrador, a research prototype retrieval system described in section 4.4.3, and
compared to a method of retrieval based on more traditional models of retrieval. It

will be shown that:

20

1. The retrieval problem can be simplified by phrasing it as a generative language

modeling problem and the resulting approach will provide effective retrieval.

2. Heuristic techniques used by previous retrieval models are not necessary to

provide effective retrieval. A purely probabilistic method can be used instead.

3. Additional techniques, such as relevance feedback, which often involve heuris-
tic estimation in existing models, can be derived from the language modeling

approach without the use of heuristics.

Standard probabilistic models of retrieval have viewed the problem as an inference
process, whereby the probability of relevance can be estimated from the presence
of index terms in a document. The process of determining these index terms is
also one of probabilistic inference. The language modeling approach is conceptually
simpler than existing models of retrieval. Collection statistics, used heuristically in
existing retrieval models, can be used directly in the estimation of probabilities in
the language modeling approach. Furthermore it will be shown that the process of
relevance feedback which in current models relies heavily on heuristic use of collection
statistics can be derived directly from the language modeling approach.

A description of additional aspects of retrieval will also be provided to show that
other techniques used by retrieval systems have a natural interpretation in the lan-

guage modeling approach.

21

CHAPTER 2
RELATED WORK AND BACKGROUND MATERIAL

This chapter introduces previous work related to language modeling, information
retrieval and text segmentation. The chapter begins with a discussion of language
models and probability estimation. Several of the language modeling techniques de-
scribed later will make use of some form of smoothing and so an introduction to
smoothing methods is included. After that, various language modeling techniques
and some of their applications are discussed. Language modeling is the central con-
cept for the solution of the problems addressed in this thesis and so the work de-
scribed in this section provides important background for the understanding of the
whole approach. In Section 2.1.8, language modeling approaches to Asian language
word segmentation are described. This is included here because it is related to work
discussed in Chapter 7.

The chapter continues with discussion of other models of information retrieval.
This is important background for the discussion of the new approach to retrieval
discussed in chapter 4. This section includes a discussion of passage retrieval. It will
be shown in Section 6.2.4 that passage retrieval has a natural interpretation in the
language modeling approach to retrieval investigated in this thesis. The two next
sections, 2.2.8 and 2.2.7 describe query expansion techniques and relevance feedback,
respectively. These are two techniques for improving retrieval effectiveness. Both
of these techniques will be shown to have a natural interpretation in the language

modeling approach to retrieval in Sections 5.2 and 5.3.

22

Section 2.3 describes other approaches to text segmentation, the application of

language modeling studied in Chapter 3.

2.1 Language Models
2.1.1 Smoothing Methods

The topic of smoothing encompasses a wide variety of techniques that can be
applied to probability estimation and many related problems. The discussion here
will be confined to the questions of why smoothing is useful, when it should be done,
and an example of a simple smoothing technique to make these notions more concrete.
Additional smoothing methods will be introduced later in this chapter in the context
of specific probability models.

Consider the problem of estimating the probability that a real valued random
variable X takes on the value x. Assume that a limited amount of training data is
available from which to estimate this probability and we wish to perform the esti-
mation by counting. Because X is a a real-valued variable, by definition there is not
enough data to estimate the entire distribution. Even in the discrete case, it is often
very difficult to get enough data to estimate a distribution purely from counts. A
useful notion in discussing the errors made by estimators derived from training data
is known as the bias-variance tradeoff.

Stated simply, bias error is error due to the inability of an estimator to fit the
data closely enough. On the other hand, variance error is error due to the ability of
an estimator to fit the data too well, also known as over-fitting.

For example, in Figure 2.1 data was generated from a logistic function corrupted
by Gaussian noise. Suppose these data are used to build an estimator for novel data
from the same source. In other words, for a given value on the x axis, the task is to

predict the corresponding y value. Consider two different estimators.

23

1.4 T T T T

1.2 -

0.8]

04 -

0.2 |]

0.2 1 1 1 1

Figure 2.1. Example training data from a logistic function corrupted by Gaussian
noise.

The first estimator is obtained by connecting the original training data points.
The resulting curve is shown in figure 2.2, superimposed on a second set of data
points from same source and, again, perturbed by random Gaussian noise. Notice
that there is considerable error in the prediction made by this estimator since it has,
in effect, fit the noise in the training data as much as it has fit the underlying function.
This is error due to variance, i.e., error as a result of fitting irrelevant artifacts of the
data.

The second estimator is a linear fit to the training data. The resulting curve is
shown in figure 2.3. Notice that, once again, there is considerable error in the pre-
diction made by the estimator. However, in this case, the error is more systematic
than in the previous example. In other words, the linear fit tends to systematically

over or under estimate the y value for large regions of the graph. Recall that the data

24

1.4 T T T T

testdata +
1.2 -

0.8 +11 -

0.6 [t e

02F T4 T+ # i

0.2 . .

0.4 L L L I
0 2 4 6 8 10

Figure 2.2. Example of an estimator that exhibits variance error.

was generated by a logistic function. The linear constraint does not allow this esti-
mator to fit the underlying form of the data very well. In cases where the generation
mechanism is unknown, choosing the correct form of an estimator can be crucial for
avoiding excessive bias error.

How does the bias variance trade off relate to density estimation, the prediction
of the probability that a random variable X takes on the value z7 As mentioned,
there is, more often than not, insufficient training data from which to estimate a
probability density function purely by counting. What does one do instead? One
possibility is to assume a parametric distribution and use the training data to estimate
the parameters. For example, one can assume a normal distribution and estimate
the mean and variance. This allows all of the data to be used to estimate two

values and is a very good solution to the problem if the underlying data really is

25

1.2 T T T T

bias error |
A

-0.2 + -

0.4 L L L I
0 2 4 6 8 10

Figure 2.3. Example of an estimator that exhibits bias error.

normally distributed (or well approximated by a normal distribution in a region of
interest). However, if the data is not normally distributed, making this assumption
will introduce bias error. If the data is far from normal, this error may be quite
severe.

On the other hand, if one estimates the probability purely from the counts, vari-
ance error will be introduced. One common symptom of variance error in language
modeling is that an unseen word is assigned a probability of zero. The resulting model
performs badly on novel data as a result.

In between these two extremes are non-parametric density estimators. The bias-
variance tradeoff is still present in non-parametric estimation but these two sources
of error can be balanced to obtain a reasonable estimator. A simple example of a

non-parametric estimator is the histogram.

26

Histogram estimators are probably the simplest form of non-parametric density
estimator or smoothing-based estimator. The fixed-width histogram has a single
smoothing parameter known as the bin width, h. Getting back to the original problem
of estimating P(X = z), the X values are divided into bins of width h. Then, each
training data point is put into the appropriate bin. The density estimate for a data

point is then computed as:

where #z; is the count of points in the same bin as z;, n is the number of data points
and h is the bin width. This value is used to estimate the density of any future data
point that would be assigned to the bin.

As bin width is increased, bias error is increased and variance error is reduced
and, as expected, the converse is also true. Intuitively, this is the case because, as
bin width approaches zero, the estimator becomes the simple count estimator, which
fits the data exactly, random noise included. This can cause error due to variance.
As the bin width gets wider, there are fewer distinctions between points and, in the
extreme, all of the points would be placed in a single bin and the average value would
be used to estimate everything, which can cause error due to bias.

For additional material on smoothing methods, see [57]. Specific examples of
smoothing will be presented in the context of various language modeling problems

later in this chapter.

2.1.2 Predictive Language Modeling

In general, language models are probability distributions over strings in a given
language. The language itself can be any set of sequences made up from a predefined
set of characters. In the context of information retrieval, the sequential aspects of

language do not need to be modeled in the case of single word features and so, for

27

document retrieval, the specific language models in which we shall be interested are
those that predict the probability of word tokens without respect to order. This can
be thought of as “bag of words” modeling rather than string modeling. Conversely,
for the topic boundary prediction problem, sequence is important, but only at a gross
level. However, language models are used in a variety of tasks where fine grained

sequential aspects of the data are modeled and we shall consider some of them here.

2.1.3 Language Models for Speech Recognition

Bahl et al. [6] describe the use of of language modeling to improve the perfor-
mance of speech recognition systems. This is especially important to reduce error
for large vocabulary recognition. The speech recognition task can be framed as the
maximum likelihood estimate of a series of words given an acoustic signal. One could,
in principle, solve this problem by means of an acoustic model for each word in the
vocabulary. However, doing so would require search in a very large space of possible
acoustic models and would be prone to error. Language modeling is used to narrow
the search by using the predictive probabilities as a prior over the possible acoustic
models. If one can predict words that are more likely to occur at a given point in the
speech signal, the search space becomes narrower and error can thereby be reduced.

A method of modeling that works well for the purpose of word prediction is the
simple trigram model. The probability of a word w at a given position in the text is
estimated by the conditional probability p(w|w_jw_5). In other words, the Markov
assumption is being made with the states consisting of the previous two words. Esti-
mation of the trigram probabilities is done by means of maximum likelihood estima-
tion from a large training corpus. Since the possible number of trigrams is cubic in
the vocabulary size, many possible trigrams may not occur in a given training collec-
tion. This sparse data problem will be addressed using a type of smoothing known

as a backoff model. In general, backoff models are methods where the probabilities

28

of relatively rare events are estimated using data from more common events. Specifi-
cally, to estimate trigram probabilities, bigrams and unigrams will also be used. Since
bigrams and unigrams are more common than trigrams, more data exists for the es-
timation of their probabilities. For trigrams with too few occurrences, the bigram is
used. Likewise, for rare bigrams, unigram probability estimates will be used.

The specific form of the estimator is a linear interpolation model of the following

form:

P(w|w_1w_g) = AP (w|w_1w_2)+ AoPmi(w|w_1) +A1Pmi(w) + Ao 1.0/ |vocabularysize|

where pp,(+) is estimated from the frequencies in the training corpus and the inter-
polation parameters \; are estimated using a method known as deleted interpolation,
described below.

Typically, several A\ vectors will be estimated for trigrams of different frequencies.
For low frequency trigrams, more weight would be given to the bigrams and so forth.
The multiple vector models are a form of generalized backoff model where one “backs
off” to the bigram estimate when there is not enough data for a particular trigram
and likewise one “backs off” to the unigram probability when there is insufficient
data to estimate the bigram etc. The implementation of this scheme requires the
definition of several ranges of trigram frequencies and the estimation of A\ vectors for
each range [6]. For example, one may wish to define three ranges of frequencies for
common, medium frequency, and rare trigrams, and to estimate a set of parameters
for each one.

In order to estimate the interpolation parameters, the data is divided into equally
sized blocks. To estimate the A\ values for a particular frequency range, the n-grams
of that range are counted in all blocks except one. The held out block is used to
estimate the number of unseen n-grams. Each block is held out in turn in order to

make the best use of the available training data.

29

As mentioned, in the context of information retrieval, one is not, in general, in-
terested in predicting the next token in a sequence and so the language modeling
that will be employed in Chapter 4 will be designed to estimate the probability of
a bag of words and local predictive effects will not be modeled. However, a sim-
ple backoff scheme will be employed for non-occurring query terms. An estimate of
the collection-wide occurrence probability will be used to estimate the probability of
words not occurring in a document of interest. This will be described in detail in
Chapter 4. Likewise, for the segmentation task, a backoff method will be used to
handle unseen words. For the segmentation task, sequential modeling ¢s used, but at

a coarser level than the trigram models just described.

2.1.4 Exponential Models

A richer class of predictive models based on the generalized Gibbs distribution has
been explored by Darroch and Ratcliff [16] and later by Della Pietra et al. [18]. This
class of models can account for longer range effects than the simple trigram model.

The distribution is defined as follows:

_ eAf(w)pd(x)
Yx eM@py(z)

p(x)

where) is a vector of parameters, f(x) is a vector of features that predict z and
pa(z) is a default probability estimate of z. For example, for a predictive language
modeling task, x would be a word, ps(z) could be a backoff trigram model, as defined
in Section 2.1.3, and f(z) could be a set of long range predictors of z. For example,
the fact that x has occurred previously will tend to make it more likely to occur
again. That being the case, one of the features in the vector f(-) might be a function
that evaluates to one if x has occurred in the last 300 words and to zero otherwise.

The parameters of the model can be learned using a variety of algorithms including

30

Generalized Iterative Scaling, developed by Darroch and Ratcliff [16] and Improved
Iterative Scaling algorithm developed by Della Pietra et al. [18].

Beeferman et al. [8] applied this class of models to the text segmentation problem.
See Section 2.3 for a description of this work and of the specific implementation of

the estimation algorithms.

2.1.5 Hidden Markov Models (HMMs)

Hidden Markov Models are probabilistic finite automata. To begin with, finite
automata can be defined in two ways, the Mealy machine and the Moore machine.
In the Mealy formulation, the symbols are associated with the transitions while in
the Moore formulation, symbols are associated with the states. In Figure 2.4, an
example state diagram is shown for a Mealy machine that writes ‘A’ zero or more
times followed by one or more occurrences of ‘B.” The state on the left is the start
state, indicated by the arrow from the left, and the state on the right is the end state
indicated by the double circle. Note that the symbol is written during the transition
from one state to the next. Figure 2.5 shows a Moore machine for the same language.
In this case, the symbol is written during the occupation of the state rather than
during the transition.

In most applications, Hidden Markov Models will defined as Moore machines. In
other words, the output symbols will be associated with the states. The reason for this
will be made clearer with an example application, part-of-speech tagging, described
in Section 2.1.6, but first the models will be defined in more detail.

A second distinction to be made between finite automata is the deterministic
machine vs. the non-deterministic machine. The two machines in figures 2.4 and 2.5
are both deterministic machines. Non-deterministic equivalent machines are shown

in figures 2.6 and 2.7. Notice that in these machines, the output of the machine does

31

Figure 2.4. Example of a Mealy machine.

B B

Figure 2.5. Example of a Moore machine.

not determine the state. For example, in Figure 2.6, the machine can write a ‘B’ and
make the transition to either of the two right hand states.

Probabilistic automata can be thought of as a generalization of non-deterministic
automata. As stated earlier, Hidden Markov Models are probabilistic finite automata.
Consider the case of the non-deterministic automaton. If one views the possible non-
deterministic steps as equally likely to occur, then the non-deterministic machine can
be viewed as a special case of the probabilistic machine. The HMM generalizes the

non-deterministic finite automaton in that any probability distribution can be placed

32

Figure 2.6. Example of a non-deterministic Mealy machine.

over the transitions. In addition, several output symbols can be associated with a
state along with a probability distribution over the possible outputs.
The parameters of an HMM consist of a vector 7 and two matrices A and B. 7

is the initial state probability distribution of the model [44].

7; = the probability of starting in state 4,1 < i < |states|

The matrix A is the transition probability matrix,

A;; = the probability of state j at time ¢ + 1 given state 7 at time ¢

The matrix B is the probability distribution of the output symbols.

B;; = the probability of writing symbol j given that the model is in state 7

Intuitively, the underlying state space is hidden and can only be observed indi-

rectly via the sequence of observed symbols. For this reason, HMMs are also referred

33

B B

Figure 2.7. Example of a non-deterministic Moore machine.

to as Markov source models. In other words, the underlying source is a Markov chain
but the observable sequence has been corrupted by noise.

Computational problems associated with HMMs can be divided into three prob-
lems as was done by Rabiner [44]. The treatment of HMMs given here is largely
derived from the discussion in Rabiner [44] and Rabiner and Juang [45]. For an
alternative formulation of HMMs see Elliot, Aggoun and Moore [21].

The three problems discussed by Rabiner are:

1. Calculating the probability of a sequence given the model.
2. Estimating the model parameters.

3. Estimating the maximum likelihood state sequence for an observation.

In the discussion that follows, it will be assumed that a sequence of symbols
has been written by a specific Hidden Markov Model. The computational problem
associated with the first item is that for a sequence of length ¢ and an HMM with
n states, there are n' possible paths through the model, i.e. there are n' possible

sequences of states. However, due to the Markov property, the probability of being in

34

a state m; at time ¢; depends only on the state at time ¢;_;. This property allows for
efficient calculation of the probability in time O(¢n?) using dynamic programming.

The second problem is that of estimating the model parameters, the A and B
matrices and the vector m. Several methods exist for estimating these probabilities
and some of them will be described here.

Finally, the third problem is that of determining the maximum likelihood state
sequence for a given output sequence of symbols. This problem is often referred to as
the decoding problem. The same computational difficulty that arose in the probability
calculation, an exponential number of paths, is also an issue for the decoding problem.
Once again the answer to this problem will be dynamic programming, in this case in
the guise of the Viterbi algorithm, to be discussed.

As pointed out earlier, a serious computational problem must be solved in order
to calculate the probability that a sequence of symbols would be written by a specific
Hidden Markov Model. The naive computation of the probability is to sum over all
possible state sequences. To make this more concrete the following notation will be

used:

M the model , a fully specified HMM

n the number of states of the model M

t the length of the sequence

O; the sequence of symbols where 7 ranges from 1 to ¢

S; the state at time ¢ where ¢ ranges from 1 to ¢

Tk the probability of beginning a sequence in state k

Ap i the probability of making a transition from state k£ to state &'

By, the probability of writing symbol [while in state &

Using this notation, the probability of the observation sequence O for a single

pre-specified state sequence is written as follows:

35

Ty Bs1,01 As1,52Bs2,00 " " Asy_1,6.Bs,,0,

Intuitively, this probability is defined as the probability of starting in the initial
state and writing the first character, making the transition to the second state and,
from there, writing the second character, etc.

Given an estimate for the probability of the sequence given a specific state se-
quence one can calculate p(O|M), the probability of the sequence given the model by
summing over all possible state sequences. However, in the general case, all of the
entries of A and B can be non-zero meaning that, at each timestep, the model can
make a transition to any of the n states and write the observed output symbol. This
means that the total number of state sequences is exponential in ¢, the length of the
symbol sequence.

In order to avoid summing over an exponential number of sequences, a dynamic
programming method, commonly known as the forward algorithm can be used. The
forward algorithm takes advantage of the Markov property by keeping an n x t table
of probabilities for each state at each time step. This forward probability table will
be referred to as ok, where 7 is the index of time and £ is a state. Since the Markov
property says that the probability of being in a state k£ at time ¢ is conditioned only
on the state at time ¢ — 1 (or, in general, i — § for higher order processes), the forward

probability table can be calculated as follows:

Qaq = 7Tchlc,01

_ n
Qitig = [Zhet QigArp]| Br o,

In other words, the probabilities are propagated forward through the table and

the current timestep is calculated from the current output symbol, the state table

36

entries from the previous time step and the transition probabilities from each of the
previous states. The probability of the symbol sequence is then the sum of the final
column of the table.

One can also define a backward variable § where a similar calculation is done
from the end of the sequence to the beginning. The sum of the first column of the
backward table yields the same probability estimate as the corresponding forward
calculation. Both the forward and backward variables are used for the estimation of
the model parameters described next.

Several methods exist for the estimation of HMM parameters. The two methods
discussed here include estimation from labeled training data and the Baum-Welch
algorithm for the estimation from unlabeled training data.

The easiest method for estimating HMM parameters is to hand-label a large quan-
tity of data with state information. The parameter estimation is then a simple matter
of counting the number of state transitions and the number of times each symbol is
labeled from each state and estimate the probabilities from the counts. Assuming
that the amount of hand labeled data is not enough to achieve reliable estimates, one
may wish to do some smoothing.

For example, suppose an HMM is used to model the production of natural language
text. Each word in the text can be labeled with a state tag and the probabilities can
then be estimated from the counts. However, suppose a word w is not labeled with a
state s anywhere in the training data. The probability of w given s in the B matrix
would be assigned the value zero based on the count information. In many cases, this
is not a reasonable value since it amounts to assuming that an event is impossible
only because it has not been seen in a limited amount of training data. In order to
avoid this unreasonable assumption one can assign a small additional ‘mass’ to the
output distribution of s and distribute the unseen words over that mass according

to their global probability of occurrence. The column vector associated with state

37

s can then be renormalized to insure that the state has a valid output probability
distribution.

The Baum-Welch algorithm utilizes the forward and backward variables, defined
earlier, in order to estimate the model parameters from unlabeled training data. The
model parameters can be initialized randomly or according to a reasonable prior and
then these initial values are updated over several iterations of the algorithm. As a
variant of the Expectation-Maximization (EM) algorithm, the Baum-Welch algorithm
proceeds by calculating the expected number of transitions made from each state and
the expected number of transitions between states, both conditioned on the current
parameter values, and the observation sequence (i.e., the training data).

How can these expectations be calculated? The calculation is done by first defining

two new variables:

Yikg = p(si = k|O, M)
G =Dp(si=kAsiy1 =Fk0, M)

In other words, v is the probability that the state at time ¢ is k£ given the train-
ing data and the current parameter values, while { is the probability of making a
transition from state k to state k' at time 7 given the training data and the current
parameter values. These variables can be calculated from the forward and backward

tables as follows:

] _ %iBik
Yok p(0[M)

_ _ ik Apw Br o, Bigi e
Cz,k,lc' - p(O]M)

50, 7k is calculated from the forward and backward estimates normalized by the
probability of the training sequence given the current model parameters. Likewise,
Gikk', the probability of making a transition for state £ to state £’ at time ¢ is calcu-

lated as the probability of getting to state k at time ¢ (o) making the transition to

38

state k' (Agw), writing the corresponding symbol from state k' (By o,,,) and then
seeing the remainder of the sequence starting from state &' (3,114) and, again, nor-
malized by the probability of the training data given the current model parameters.

The desired expectations can then be calculated by summing over ¢, the length of

the training sequence, as follows:

25:1 7k = expected transitions from &

S Grr = expected transitions from k to k'

This concludes the expectation step of the EM algorithm. The updates of the

model parameters are then completed as follows:

Tk = Y1,k

A Et'—l ik, k!

App = g

XZ:;,L'ZI ’Yl,k

~ ;i _;1 ik
1=1N0;=l ’

By, ="+t —
Zi:l ’Yi,k

In other words, 7y, the start probability for state k, is estimated as the probability
of making a transition from state k at time 1. Similarly, flk’k/, the transition probabil-
ity from state k to state k' is estimated as expected number of transitions from state
k to state k' divided by the expected number of transitions from state k. Finally, Bk,z,
the probability of writing symbol [in state k is estimated as the expected number
of times of being in state k£ and writing symbol [divided by the expected number of
times in state k. This procedure is applied repeatedly until convergence.

Finally, the third problem associated with HMMs is the estimation of the maxi-
mum likelihood state sequence for an observation. Once again, the exponential num-
ber of possibilities must be contended with and, as before, the solution will be a
dynamic programming algorithm. The Viterbi algorithm [63] is similar to the for-

ward algorithm for determining the probability of a sequence. However, in this case,

39

the probability of the sequence following the maximum likelihood state sequence is

calculated instead. Recall that the forward calculation proceeds as follows:

ok = By, 0,

Qip1h = [Sp—1 ¥igArr] Br o,

Where each entry in the a table is updated by summing over the entries from the
previous time step. A similar procedure is used in the Viterbi algorithm, but the

table ¢ will be filled in using the maximum at each step as follows:

51,k = 7Tchk,01

Siip = [Maxi<p<n OikArr] By o,

At each time step, a backtracking table W is also filled in:

\I’i+1,k' = argmaxi<g<n 5z‘,kAk,k'

The W table is filled in with the most likely previous state, k, that was on the path
preceding state £’. When the tables have been filled in, the maximum likelihood path
is computed by finding the maximum value in the final column of the § table and

then backtracking through the ¥ table to determine the sequence of states.

2.1.6 Example: POS Tagging

An example of HMMs in practice is the Xerox part-of-speech tagger developed by
Kupiec [36]. The underlying state space consists of the part-of-speech tags. In this
context the transition matrix A, introduced in Section 2.1.5, consists of the matrix
of conditional probabilities of seeing a particular tag at the current time step given
the tag seen at the previous time step.

In each state, the output symbols are all words in the vocabulary. A special

unknown word symbol is included for words that did not occur in the training data.

40

That means the output matrix B is a matrix of conditional probabilities of each word
given the current tag. Finally, 7 is a vector of probabilities of starting a sentence with
each of the tags. As mentioned, this formulation is known as a Moore machine where
the output symbols correspond to the states. This is a very natural formulation of
the problem because the task is seen as uncovering the hidden state sequence given
the observable sequence of outputs.

The model probabilities are estimated via the Baum-Welch algorithm, the Expectation-
Maximization algorithm for HMMs described previously. The process of tagging now
becomes the process of determining the maximum likelihood state sequence for a
given sequence of words, i.e., the sequence of tags that would produce the text with
maximum likelihood given the HMM parameters. This is accomplished using the
Viterbi algorithm, the dynamic programming algorithm for determining the maxi-

mum likelihood path through the model that was described in Section 2.1.5.

2.1.7 Acoustic Models for Speech Recognition

In addition to the trigram language models described earlier, the process of speech
recognition makes use of HMMs for acoustic modeling of the speech signal. For this
task, each word has an acoustic model where the state space is the underlying sequence
of sounds making up the word and the output symbols account for the variations in
pronunciation for each sound.

In Section 1.2, the concepts of “phone” and “phoneme” were introduced. A phone
is the actual sound produced, while a phoneme is an abstract underlying sound
which is essentially an equivalence class of various phones. In terms of the defini-
tion of HMMs given in Section 2.1.5, the A matrix represents the transitions from
one phoneme to the next. The B matrix represents the probability distribution over

possible phones for a particular phoneme.

41

The speech signal is first quantized into a sequence of discrete observations and the
probability of the given word is computed according to the acoustic model and also
according to the trigram language model described in Section 2.1.3. The two estimates
together are used to model the joint distribution of the word and its acoustic signal
[6].

This concludes the introductory discussion of probabilistic language models. Ad-
ditional material on language models will be covered in the context of specific appli-

cations in sections 2.3.3 and 2.3.4.

2.1.8 Asian Language Word Segmentation

An additional application of language modeling to information retrieval arises
in the context of retrieval of Asian language documents. Asian languages such as
Chinese, Japanese, Thai, Korean, and many others, are written without interword
delimiters. Retrieval systems generally rely on some form of word segmentation as
part of the tokenization process. For an overview of Chinese segmentation in the
context of information retrieval see [66]. The task of segmentation is often carried
out by means of probabilistic language models.

Ponte and Croft [43] did a study in which they developed a retargetable seg-
menter for Asian languages. The core of the segmenter was a probabilistic automa-
ton, a Markov model, of the lexicon. This method was shown to be accurate, easily
retargetable and fast enough to index large text collections.

Sproat et al. [58] describe a Chinese word segmentation algorithm based on proba-
bilistic automata. The details of the probability models were not discussed but it was
mentioned that their approach included special recognizers for Chinese names and
transliterated foreign names and a component for morphologically derived words.

Barnett [7] used a word based model for segmenting Japanese. The model used

word frequency. The input is segmented by summing the frequencies of words in each

42

possible segmentation and subtracting out a per word cost. Additional complexity
arises in Japanese from inflectional endings. In order to consider a candidate word,
morphological processing is done to find every possible grouping of characters that
form valid words.

The topic segmentation methods that will be described in chapter 3, will be some-
what similar in nature to the word segmentation discussed here. The main difference
is that topic segmentation has a hidden state that will be modeled by a Hidden
Markov Model whereas the word segmentation algorithms can be described as ob-
servable Markov chain models. An interesting question about word segmentation,
and many other natural language processing techniques, is that, often, doing a bet-
ter job of language processing does not necessarily produce better retrieval results.
The probabilistic techniques for segmentation discussed here in conjunction with the
language modeling approach to retrieval may help provide new ways for investigating

this issue. This will be discussed further in section 7.2.4.2.

2.2 Retrieval Models

As noted in Section 1.1.1, there are two widely used classes of retrieval models.
One of the two is the vector space model of Gerard Salton [51], discussed in section
2.2.1. Other approaches to retrieval fall under the heading of probabilistic models.
These include early models such as the Robertson and Sparck Jones model [46] and

the Croft and Harper model [15] as well as more recent probabilistic approaches such

as the Fuhr model [22] and the INQUERY inference network model [61].

2.2.1 The Vector Space Model
The sense of the word “model” in the “vector space model” is the sense used
in much of computer science. It refers to a useful abstraction of the task at hand.

Specifically, for retrieval, one can implement a system using a variety of data struc-

43

tures depending on performance requirements and on the hardware on which the
system runs. The vector space model provides an abstract way of talking about the
retrieval process that does not depend on how a specific system is implemented or
on the formula used to rank the documents. The model states that documents and
queries can be viewed as vectors in a 7' dimensional space where T is the number
of terms in the collection. The retrieval process is then a ranking of documents by
the “distance” from the query. This distance can be computed in a variety of ways,
cosine correlation being a standard measure, though the model does not specify how
to do the distance calculation [51].

As an abstraction of the retrieval process, the vector space model works quite well.
It describes the process of retrieval in a way that abstracts away all of the details of
implementation and of the specific ranking formula and does so in an intuitive way.
However, since the model does not prescribe how the ranking is to be done, it does

not provide the researcher with guidance for improving the process.

2.2.2 Probabilistic Models

Models that do attempt to provide this guidance generally fall under the heading
of probabilistic models. Here the word “model” is intended to mean probability
model. Probabilistic retrieval is usually phrased as the process of ranking documents
by estimated probability of relevance to the information need of the user as expressed
in a query. Where the vector space model attempts to describe the retrieval process,
probabilistic approaches attempt to explain it.

Two well known probabilistic approaches to retrieval are the Robertson and Sparck
Jones model [47] and the Croft and Harper model [15]. Both of these models estimate
the probability of relevance of each document to the query.

The Robertson and Spark-Jones model weights terms according to the following

log ratio:

44

p(t[r) x (1.0 — p(t[F))

w; = log ((1.0 = p(t|r)) x p(t[7)

where p(t|r) is the probability of term ¢ occuring in a relevant document and p(t|7) is
the probability of term ¢ occuring in a non-relevant document. This model depends
on relevance information for the estimation of the two probabilities [46].

The Croft and Harper model [15] uses an equivalent ratio for term weighting stated

in a different form:

Wy = log (%) ~ log (%)

The main difference is that Croft and Harper make two additional assumptions.
First, in the absence of relevance information, assume that query terms are equally

likely to occur in relevant documents. Second, the probability of occurrence in non-

df,

——+t———_ In other words, because
collection size

relevant documents can be approximated by
most documents in the collection are not relevant, the non-relevance probability is
closely approximated by the collection statistics. This means that relevance informa-
tion is not needed in the Croft and Harper model [15].

What these two models have in common is that the within document frequency
of query terms is not part of the model. This is in contrast to later approaches to
probabilistic retrieval, including the approach developed in this thesis. An additional
difference between these early models and the new approach developed here is that,
in the new approach, relevance is not directly modeled.

Regarding within document frequency of terms, this information is useful for re-

trieval, as has been shown empirically. A mechanism for incorporating term frequency

information is the indexing model which was discussed at length in Chapter 1. More

45

recent approaches to probabilistic retrieval have attempted to integrate document

indexing into the retrieval model as whole.

2.2.2.1 The Fuhr Model

A recent probabilistic model is that of Fuhr [22]. A notable feature of the Fuhr
model is the integration of indexing and retrieval models. A major difference between
Fuhr’s approach and the approach investigated here is that in the Fuhr model, the
collection statistics are used in a heuristic fashion in order to estimate the probabilities
of assigning concepts to documents. The notion of estimating the probability that
a concept should be assigned to a document by means of an indexing term is a
problematic one. How can one claim to be able to reliably estimate this quantity? A
human indexer will assign terms based on an understanding of the semantics of the
document. It would not be surprising if the tendency of human indexers to assign
terms was somewhat correlated with the number of term occurrences, but it would be
quite surprising if one could obtain an accurate probability estimate of this tendency
from the available data. In the language approach described in Chapter 4, heuristic
methods of probability estimation are not necessary since there is no inference of
concepts from terms and, in fact, no notion of the assignment of indexing terms.

Like the 2-Poisson model, the Fuhr model was developed by analogy to manual
indexing. The approach to indexing involves learning of term assignment probabilities
from available relevance judgments over the long term. The learning approach is to
assume a model and estimate weights using regression. Originally linear regression
was used to estimate the models. Later, logistic regression was used partially in
response to objections raised by Cooper.

Cooper has criticized Fuhr’s use of linear regression to fit relevance judgments
because relevance is assumed to be a binary valued random variable [14]. This is

an important point as Cooper recommends logistic regression to fit the model to

46

relevance judgments. Even if one makes the assumption of two valued relevance
judgments, using logistic regression to fit the data requires an additional assumption.
The assumption is that feature assignment probabilities can be learned for the sets of
relevant and non-relevant documents from the available information. One potential
problem with this notion is that it is possible for documents to be relevant in more
than one way and likewise documents can be non-relevant in more than one way. For
example, for the information need “sanctions against Iraq”, a document can fail to
be relevant if it describes sanctions against Iran instead of Iraq, but it can also fail
to be relevant if it doesn’t describe sanctions at all. There is a difference between
non-relevant documents that are similar to relevant documents (and there a several
ways to be similar) and documents that are non-relevant and extremely dissimilar.

Fitting a two valued relevance model does not capture this difference.

2.2.2.2 The Inference Network Model

Another recent probabilistic approach is the INQUERY inference network model of
Turtle and Croft [60]. Similar to the Fuhr model, Turtle and Croft integrate indexing
and retrieval by making inferences of concepts from features. Features include words,
phrases and more complex structured features. Evidence from multiple feature sets
and multiple queries can be combined by means of a Bayesian network in order to infer
the probability that the information need of the user has been met. This distinction
between information need and query is a notable feature of this model. As previously
noted, in this thesis the emphasis has been shifted from probability of relevance to
probability of query production. It is likely that these probabilities are correlated
but no attempt is currently made to model that correlation explicitly. This point is
discussed further in section 7.2.

Figure 2.8 shows a pictorial representation of an INQUERY inference network.

The document portion of the network is computed in advance and the query por-

47

tion is computed at retrieval time. The document side consists of document nodes
dy ...d;, text nodes t; ...%; and concept representation nodes r; ...7;. The document
nodes represent abstract documents. A document may consist of text, figures, im-
ages, formatting information, etc. The text nodes represent the textual component
of the documents. A given text node corresponds to the observation of the text of
a document. For our purposes, we can assume that there is a one-to-one and onto
relationship between text nodes and document nodes but, of course, in general that
is not necessarily true. Several documents could share a textual component and, con-
versely, non-textual information can be considered as a another source of information
within the same model, but these two cases are not relevant to the present discussion.

The concept representation nodes ry ...r; are features that can be possessed by
the document texts. A link to an r node means that a document is “about” that
particular concept. There is some uncertainty to be resolved due, for example, to
differences in word sense e.g., the word “train” may mean that a document is about
trains as a mode of transportation or it may mean that document is about training
employees, as well as other factors. This distinction between words and concepts
is the key distinction to be made here. The uncertainty of indexing in information
retrieval is based on not having a direct representation of concepts. Instead, the
probabilities of concepts are estimated from word occurrence statistics.

The query side of the network consists of the query concepts, c¢;...¢,, some
number of queries, ¢; and ¢ in this diagram, and I the information need. The query
concepts are the primitive concepts used to represent the query. The concepts will be
represented by the words of the query, but again there is a fair amount of uncertainty
due to differences in word sense. The query nodes represent individual queries. In this
model, the information need of the user can be represented by more than one query,
using more than one type of information. The information need itself is known only to

the user and needs to be inferred from the queries. There can be an additional layer

48

between the query nodes and the concept nodes representing intermediate operators
such as phrases or Boolean operators. The task then is to calculate the belief in
the information need of the user given each document. The documents will then be

ranked by their belief scores [61].

(99) ©
t1

Query
Network

Figure 2.8. Example inference network.

2.2.2.3 A Utility Theoretic and Information Theoretic Approach

Wong and Yao [65] proposed a model in which they represented documents ac-
cording to a probability distribution. They then developed two separate approaches
to retrieval, one based on utility theory and the other based on information theory.
Regarding the probability distribution, Wong and Yao use a maximum likelihood
estimator for term probabilities. Wong and Yao’s utility and information theoretic

retrieval models are somewhat analogous to other approaches to retrieval in that

49

they have an indexing model apart from their retrieval model. Terms are associated
with documents according to the maximum likelihood probability estimate and the
discriminant is a utility theoretic or information theoretic function of this estimate.
The main problem with the Wong and Yao approach is that the maximum likeli-
hood estimator is not adequate for this task. This point is discussed further in section

2.2.2.4 and a solution to this problem is given in Chapter 4.

2.2.2.4 The Multinomial Model

The most similar approach to the one taken in this thesis is that of Kalt [32]. In
the Kalt model, documents are assumed to be generated by a stochastic process: a
multinomial model. The task investigated was text classification. Each document was
treated as a sample from a language model representing the class of that document. In
this model, document length and within-document term frequency are both integral
parts of the model rather than being used heuristically as they are in many other
models. The discriminant function is taken to be the maximum likelihood estimator
of the query terms given the document’s language model. Note that the ’query’ in
this case was inferred from the training set in the context of the classification task.

As with Wong and Yao’s approach, the use of the maximum likelihood estimator
was the main problem with the Kalt approach. It should be noted that this estimator
makes sense given Kalt’s view of the problem. This estimator is, in a certain sense, a
perfect predictor of each document. However, when one considers the generation of
queries, rather than documents, it becomes apparent that better estimation is needed.
This is a key point and will be developed further in chapter 4. The major difference
between the approach that will be developed in Chapter 4 from the Kalt approach,
is that a more robust estimator will be employed in lieu of the maximum likelihood
estimator. This is a key difference. Kalt reported results for the TREC-3 routing

task that are considerably lower than those that will be described in Section 5.2.2.

90

An important reason for the difference is that Kalt’s probability estimation is not as
robust as the method described in Chapter 4.

While the new approach is conceptually somewhat different, it is clearly related to
the Kalt approach and shares the desirable property that the collection statistics are
integral parts of the model. An additional difference is that Kalt’s assumption that
documents were drawn from £ language models representing the £ classes of interest
will not be made here. Instead, a weaker assumption will be made, that estimates
of each document’s language model can be obtained individually without making
inferences about the class membership of documents. These models can then be used
to compute the query generation probability.

To sum up, there is the vector space model which is simple and intuitive but that
does not explain the process of retrieval or how it can be improved. There are also the
early probabilistic approaches to retrieval which are explanatory as far as they go, but
that do not address the problem of within-document term weighting. Finally, there
are the more recent approaches that do explain within-document term weighting but
that, in general, do so in a very complex manner. Moreover, these models require
the inferences related to the semantics of the text, the probabilities of which must be
estimated using heuristics.

A model that does not require heuristics is the Kalt model for document classifi-
cation. However, the Kalt model did not perform well compared to other approaches
to the classification task. The main problem with the Kalt approach lies in the esti-
mation. It will be shown in chapters 4 through 6 that a related model that shares the
desirable characteristics of Kalt’s model performs very well in comparison to other
approaches to retrieval on several tasks largely due to improved estimation.

Also, the new model introduced in this thesis shares the desirable property of
simplicity and intuitiveness with the vector space model but it also provides an ex-

planatory model of retrieval, including within document term weighting as provided

o1

by the more complex modern probabilistic models. The simplicity is retained by
avoiding the question of semantics altogether and replacing it with the notion of lan-
guage modeling. It will be shown that the language models can be estimated well

enough from the available data to provide effective retrieval.

2.2.3 Extended Boolean Queries

Many modern retrieval systems support Boolean queries. One potential problem
with Boolean queries is that users do not always have good intuitions as to how
to specify them in order to achieve the desired result. To combat this problem,
researchers have proposed generalizations of Boolean operators that give extra-weight
to documents that satisfy the Boolean queries exactly but also give reduced weight
from other documents. This allows users to gain the benefits of Boolean queries

without being hurt by overly specific queries.

2.2.4 The P-Norm Model

An implementation of generalized Boolean operators proposed by Salton et al.
[53] is the P-Norm model. Recall that in Salton’s vector space model of retrieval,
documents and queries are treated as vectors in a 7" dimensional space where 7' is the
number of terms in the collection.

For a two term query with query term weights ¢; and ¢» and document weights

di and dy, the Ly-Norm implementation of OR is computed as follows:

id? + ¢3d3
i+

and similarly, the L,-Norm implementation of AND is computed as:

Lo |B00—d)+ 300 dy
' i+

52

This assumes that the distances of document values in the vector space is Eu-
clidean. In order to generalize this family of operators, the L,-Norm for OR is com-

puted as follows:

1.0
qufdf +q§d£] p
&+

and similarly, the L,-Norm implementation of AND is computed as:

10— [q{’(l.o —) + 310 - d»”] o
@+

This formulation allows generalized versions of AND and OR operators to be
incorporated into queries. However, the reason why one should expect the vector
norms to improve retrieval effectiveness is unknown. Since there is an additional
parameter, one has an additional degree of freedom in order to better fit the data,
but the reason the fit is better is not specified by the vector space model. In addition,
no principled method is known for choosing a value for p. Instead, values of p are

generally set empirically.

2.2.5 The PIC Operators

The P-Norm model does not have a probabilistic interpretation. This makes these
operators undesirable for use in the INQUERY inference network model, since they
violate the semantics of the formalism. In order to implement a probabilistically
motivated family of generalized Boolean operators, Greiff et al. [24] developed the
PIC operators.

In the INQUERY model, inferences are made as to the presence of concepts in
documents. Each concept node represents the degree of belief in that concept for
the given document. In order to combine concept nodes, the PIC matrices make the

simplifying assumption that only the number of true concept nodes will effect the

93

final outcome. This is known as the “parent indifference criterion”, and is where the
PIC operators get their name. By making this assumption, the operators can be
computed efficiently by means of a dynamic programming algorithm developed by
Greiff et al.

The characteristics of each operator is determined by a single parameter that
controls the rate of increase as a function of the number of true parents. A range of

values for the parameters was determined empirically.

2.2.6 Passage Retrieval

Passage retrieval is a generalization of the text retrieval task where relevant pas-
sages rather than entire documents are retrieved. This task is somewhat related to
the topic segmentation task and so it will be discussed from that point of view. Pas-
sage level evidence using fixed length vs. variable length passages in the context
of the document retrieval task will be discussed further in section 2.2.6. Additional
discussion of passage retrieval in the context of the language modeling approach to
information retrieval will be presented in Section 6.2.4.

Salton et al. used features such as paragraph or section boundaries [52] for pas-
sage retrieval. The test data for this study was a collection of text from an online
encyclopedia. In this well-edited collection, paragraph and section boundaries pro-
vide useful information. For the task of topic segmentation, it cannot be assumed
that paragraph and section information will be reliable in heterogeneous collections.
Moreover, this information is not available at all in broadcast speech data. However,
it will be shown that the task can be performed well even without such information.

As mentioned earlier, much of the work on passage retrieval has used passages of
fixed length. An exception to this is Mittendorf and Shauble [39] in which Hidden
Markov Models (HMMs) were used to retrieve passages of variable length. This is

an interesting approach and is somewhat related to the current work on topic seg-

54

mentation in that the text is broken up using a sequential (Markov) decision process.
The difference is that in their approach, a specific information need is modeled by
a stochastic process which generates text fragments relevant to a particular query.
This process is called the passage model. A second process generates typical text
fragments without regard to any query. This process is called the background model.

In terms of the notation introduced in Section 2.1.5, the A matrix represents
the transition probabilities between the background and passage models and the B
matrix contains probabilities of words associated with the two models. A text block
t is scored as a function of the probability that the passage model produced ¢ and
the background model produced the surrounding context of ¢. This work is related
in two ways. First, in the context of segmentation, the approach taken in this thesis
is to use HMMs with several background models since, for the task of interest, the
information need was not expressed a priori.

Regarding the language modeling approach to retrieval, discussed in Chapter 4,
one can view each document as a language model. One could view a collection of
documents as a collection of models similar to the collection of states in an HMM. The
major point of departure is that sequential effects are not modeled for the retrieval
task.

Callan [12] used passage level evidence to improve results for ad hoc retrieval
and compares the effectiveness of discourse and window passages. Discourse passages
could be any identifiable units of discourse but are restricted to single paragraphs in
Callan’s paper. Experiments were also done with bounded paragraphs where para-
graphs are used as passages but with minimum and maximum length requirements.
Results of experiments on four test collections show that using paragraph or bounded-
paragraph passages yields results worse than the baseline system but passage level
evidence in combination with the baseline system improves results slightly. On the

other hand, fixed length passages alone yielded better results than the baseline sys-

95

tem and results were better still when used in combination. However, for different
test collections, different passage sizes were optimal.

Allan [1] used passages in the context of information routing. Rather than per-
forming relevance feedback on entire documents, only the best passage was used.
Results show that this method is more effective than feeding back entire documents.
In this study passages were of fixed length and experiments were done with passage
sizes ranging from 50-1000 words.

Hearst and Plaunt [30] used variable length passages, which they call tiles to
augment ad hoc retrieval. They report a significant increase in performance but also
report a similar increase using paragraph passages. They did not perform experiments
using fixed length passages. A natural question in light of Callan’s results [12] is
whether fixed length passages would have been better still. Their larger improvement
(relative to [12]) may have been due to a lower baseline.

Knaus et al. [33] use passage level evidence to improve ad hoc retrieval. Passages
in this study are variable length. They report a ten percent improvement in average
precision over the basic document level method.

The question of whether passage level evidence is useful for document retrieval
remains an open question. With the introduction of Robertson’s tf, and the corre-
sponding higher baseline performance, the improvements provided by passage level
evidence have largely disappeared. This is not an intuitive result and cannot ad-
equately be explained. In Section 7.2.6, this question, and suggestions for how to

address it, will be discussed further.

2.2.7 Relevance Feedback
As noted in Section 1.1, the technique of relevance feedback can be used to improve
retrieval effectiveness. In an interactive setting, a user can run a query and mark one

or more documents in the resulting ranked list as relevant to the query. At this point,

26

the system will choose terms and possibly other features such as phrases to add to
the query based on the occurrence statistics in the marked documents. In addition,

the query features will sometimes be re-weighted.

2.2.7.1 The Harper and van Rijsbergen Model

In 1978, Harper and van Rijsbergen developed a method for using relevance infor-
mation, obtained by relevance feedback, to obtain better estimates for the probability
of relevance of a document given the query. This work attempted to correct for the
assumption of independence which the authors did not think was realistic [27].

Given complete relevance information, an approximation of the dependence of
query terms was defined by the authors by means of a maximal spanning tree. Each
node of the tree represented a single query term and the edges between nodes were
weighted by a measure of term dependence. Rather than computing the fully con-
nected graph, the authors computed a tree that spanned all of the nodes and that

maximized the expected mutual information computed as follows:

P(x;, x})
> Platon (55
where ¢ and j range over the query terms, P(xz;, ;) is the probability of term z; and
term x; occurring in a relevant document, P(x;) is the probability of term z; occurring
in a relevant document and, likewise, P(z;) is the probability of term z; occurring in a
relevant document. Note that these probabilities refer to the probability of occurrence
of the term or term pair one or more times in a document. The within document
frequency is not accounted for by this measure.

Harper and van Rijsbergen did two sets of experiments using this approximation.
The first was to determine the upper bound performance of the term dependence
model vs. a term independence model using the complete relevance judgments. These

experiments showed that under these conditions, the dependency graph did, in fact,

o7

yield useful information and resulted in more effective retrieval than the model that
did not utilize this information.

The second set of experiments used the dependency graph in the presence of
a limited number of relevance judgments; both ten and twenty judged documents
were tested. In order to compensate for the relatively sparse data, the authors used
a Bayesian estimator with Jeffrey’s prior as recommended in [62], to estimate the
probabilities. The authors found that with a limited number of judgments, it was
still the case that the dependency graph model yielded better retrieval. It should
be noted that the collections used for these experiments were quite small, as larger
collections were not available at the time, and the authors cautioned against drawing

firm conclusions from these results [27].

2.2.7.2 The Rocchio Method
A commonly used method of relevance feedback is due to Rocchio [49]. The
Rocchio method provides a mechanism for the selection and weighting of expansion

terms and is defined as follows:

1.0 1.0
w,(t) = aw(t) +ﬂ® %:w(t) —Vﬁzw(t) (2.1)

R

where « is the weight assigned for occurring in the initial query, § is the weight
assigned for occuring in relevant documents, ~y is the weight assigned for occurring
in non-relevant documents, w(t) is a weighting function, generally based on term
frequency and/or document frequency, R is the set of documents judged relevant and
R is the set of documents judged non-relevant. This formula can be used to rank
the terms in the judged documents. The top N can then be added to the query and
weighted according to the Rocchio formula.

This is a reasonable solution to the problem of relevance feedback that works well

in practice. However, there is no principled way to determine the optimal values of

o8

a, # and 7 and so these parameters are generally set empirically. Also, the weighting
function, w(t) is based on heuristic use of the collection statistics. The method
described in Section 5.2 will be derived from the language modeling approach and

will not require heuristics and empirically set parameters.

2.2.7.3 Relevance Feedback in the INQUERY Model

The formulation of the INQUERY inference network model in 1991 by Turtle [61],
included discussion of relevance feedback. The theoretical work of actually adding
relevance feedback to the inference network model and the implementation of the
theoretical ideas was done in 1996, by Haines [17]. A new type of node was added to
the inference network to reflect the relevance judgments provided by the user. These
annotation nodes were added to the query side of the inference network and the
evidence from the annotations was propagated through the network using message
passing.

Figure 2.9 shows a closeup view of a portion of the query network from Figure
2.8. Once again, cl and c2 represent query concept nodes, gl represents a query
and [represents the information need of the user. The relevance judgments will be
represented by means of a set of annotation nodes.

In order to incorporate annotations, each query concept node is annotated using
three additional nodes as shown in figure 2.10. The nodes k1 and k2 represent the
proposition that nodes c1 and ¢2 imply that the information need I has been satisfied.
The nodes j1 and 52 represent the observed relevance judgments. The and nodes are
used to require that the query concept occur in the document in question in order for
an annotation to have an effect on the score.

Haines was able to show that an inference network annotated in this way can be
computed efficiently [17], thereby showing that relevance feedback can be incorporated

into the inference network model in practice as well as in theory.

99

Figure 2.9. Close-up view of query network.

The only drawback of this technique is that it requires inferences of considerable
complexity. In order to make use of relevance judgments, two additional layers of
inference and several new propositions are required. So, while this method has been
shown to work, it is more complex than is desirable. The required node structure is
not obvious nor are the implications of this node structure for the improvement of
relevance feedback.

In contrast, the method of relevance feedback that will be described in section 5.2

follows more directly from the language modeling approach described in Chapter 4.

60

k1l cl c2 k2

j1 and and]2

Figure 2.10. Annotated query network.

This technique is very straightforward and will be shown to work as well as existing

methods of relevance feedback.

2.2.8 Query Expansion Without Relevance Information

One source of problems in IR is the mismatch of query and document features.
For example, one might wish to find documents about connectionist models, but
the query “connectionist models” would miss documents that only use the phrase

“neural networks.” A similar problem arises in the text segmentation task. Within-

61

topic sentences may not have enough words in common to allow the determination
to be made that they are, in fact, discussing the same topic. Researchers have tried
several approaches to fix the problem of document/query mismatch. Several of these
techniques are discussed here. The study described in Chapter 3 shows that one of

these techniques, Local Context Analysis, is useful for the segmentation task.

2.2.8.1 Latent Semantic Indexing

Latent Semantic Indexing (LSI) [50] is a technique intended to improve perfor-
mance of the vector space retrieval model. In the vector space model [51], documents
and queries are represented as vectors in an N-dimensional vector space where N
is the number of indexing features, usually the number of unique words in the col-
lection after stemming. LSI attempts to reduce the dimensionality of this space by
singular value decomposition using co-occurrence information, i.e., the feature space
is aggregated into higher order concepts. The result of the decomposition is a lower
dimensional space which approximates the original feature space. Query terms can
then be expressed as a linear combination of the higher order features. The technique
is extremely computationally expensive and, while it has the effect of improving recall,
it does so at the expense of precision as reported in [20].

The effect of LSI is to enhance recall. For example, the query “plane crashes”
might also return documents describing helicopter crashes if the co-occurrence statis-
tics of “helicopter” and “plane” causes LSI to treat them as a higher order concept.
The major problem with LSI is that it can have negative effects on precision since
information is lost. In the previous example, one may not be interested in helicopter
crashes but, with LSI, it is no longer possible to make that distinction. Dumais [20]
shows examples where this effect causes problems. Due to the time complexity, brit-
tleness and adverse effects on precision, as well as the potential dynamic nature of

the data, we do not consider LSI a viable option for the segmentation task.

62

2.2.8.2 An Association Thesaurus

A different approach, taken by Jing and Croft [31], is the automatically con-
structed association thesaurus. As in LSI, co-occurrence information of concepts is
examined. In the case of the association thesaurus, called PhraseFinder, concepts
consisting of nouns and noun phrases are extracted from the collection. Each concept
is indexed by the words that co-occur with it in the collection. This is done by con-
structing pseudo-documents where the concept is the title of the pseudo-document
and the co-occuring words are the text. At query time, the original query will be run
against the PhraseFinder pseudo-document database and the concepts, the titles of
the top retrieved pseudo-documents, returned by that query are added to the original
query and weighted according to their rank position. This approach is more robust
than LSI in terms of retrieval effectiveness and more flexible since it operates at query
time. One drawback of this technique is that it is quite resource intensive to construct

the association thesaurus.

2.2.8.3 Local Feedback

A technique studied by Attar and Fraenkel in the late *70’s [5] is known as local
feedback. In this technique, one assumes that the top N ranked documents are likely
to be relevant, and expands the query much like relevance feedback. One problem
with this technique is that if initial retrieval results are poor, this technique will make
them worse. Despite some early success, this technique was largely abandoned for
several years.

Recently, however, local feedback was revisited by Buckley et al. [10]. In the
TREC 4 evaluation, local feedback was used successfully to improve results in the ad
hoc retrieval task. In one respect, this is not surprising. Since IR systems perform
much better now than formerly, one would expect that the top N documents are more

likely to be relevant. Nevertheless, local feedback is still a somewhat risky technique

63

and is quite sensitive to the value chosen for N, where N is number of top documents
selected for feedback [67]. One advantage to local feedback is that is less resource

intensive than either LSI or PhraseFinder.

2.2.8.4 Local Context Analysis (LCA)

Local Context Analysis (LCA) is a technique recently developed by Xu and Croft
[67]. This technique, like PhraseFinder and local feedback, is used at query time to
expand the initial query. Like PhraseFinder, concepts consist of words and phrases.
Concepts associated with the initial query are added. Unlike PhraseFinder, only
features from the top retrieved documents will be considered, i.e local information
as opposed to collection-wide information. LCA is efficient in both time and space
complexity compared to LSI and PhraseFinder. It is more robust than local feedback
with respect to the number of documents/passages to consider. Most importantly,
LCA outperforms all of these techniques. These attributes make LCA the technique

of choice to find features for the text segmentation task.

2.3 Text Segmentation
2.3.1 Text Segments and Text Themes

Salton and Singhal [54] and Salton et al. [55], discuss the decomposition of text
into segments and themes where a segment is a contiguous block of text discussing
a single subtopic and a theme is a chain of such segments possibly interleaved with
other themes. The segmenting process is done at the paragraph level by computing

cosine similarity of adjacent paragraphs.

2.3.2 Text Tiling
Hearst [29] and Hearst and Plaunt [30] discuss a method of segmenting expository
texts into multi-paragraph subtopics which they call ‘tiles’ using cosine similarity in

conjunction with smoothing. First, they break up texts into blocks of size N (where

64

N ranges from three to five sentences in their experiments). Next they compute a
similarity curve of adjacent blocks using cosine similarity and smooth this curve to
get rid of local extrema. Finally, they use the resulting smoothed graph to identify
potential topic boundaries. Each local minimum corresponds to a topic boundary.
They performed experiments using these topic boundaries to improve ad hoc retrieval
effectiveness and also compared the segmentation to that of human judges. While
the agreement to the human judgments was reasonable, the improvements in retrieval

performance were not better than those achieved using fixed length passages.

2.3.3 Multiple Language Models

Yamron et al. [3] developed a segmenter based on Hidden Markov Models (HMMs).
Their approach was to construct one hundred language models, each model roughly
corresponding to a topic. They produce these language models using a training corpus
containing story boundaries. First they cluster the stories using a k-means clustering
algorithm and then they produce a unigram language model for each of the resulting
clusters.

The clustering algorithm works as follows:

1. Set a clustering threshold ¢.
2. For each story, place it in the closest cluster (as defined below).
3. If the distance is greater than ¢, create a new cluster.

4. Repeat the above process several times, taking each story out of its current
cluster and re-clustering. Clusters are added as needed and removed if they

become empty.

The threshold ¢ was not specified in [3] but seems to have been determined em-

pirically. The distance metric was defined as follows:

65

_ . . 8i/ 2 si /S e lo ci/Xci
4= 25/ 2 s lo8 o e sy G)8 o)

where s; and ¢; are the story and cluster counts for word ¢. They refer to this
distance as a variation of the symmetric Kullback-Leibler (KL) metric. Apparently
this measure is intended to insure that words will have a distribution in the clusters
similar to their distribution in the stories of the training data, though this point is
not discussed in [3].

The resulting language models are then smoothed using the smoothing method
described in Section 2.1.5 and each model is used as a state in an HMM. The A
matrix in this HMM is the probability of seeing a particular language model given
the previous model. The B matrix is the term distribution for each model, i.e., the
probability distribution over words in the corpus for each of the one hundred models.

The task of segmenting is then carried out by using the Viterbi algorithm to
determine the maximum likelihood sequence of models and then inserting a break

each time there is a transition to a new model [3].

2.3.4 Exponential Models
Beeferman et al. [8] describe an approach to segmentation using exponential
models. The model utilizes two types of features which they call ‘relevance features’

)

and ‘lexical features.” A trigram model as described in section 2.1.3 is used as the
short range model. Longer range ‘triggering’ effects are incorporated into the model
by means of a recently seen word cache and then the probabilities can be calculated
using an exponential model as described in Section 2.1.4. To be more precise, the

relevance features consist of ratios of probabilities of long range language models and

short range language models as follows:

66

CA-f(m)ptri(w)
> ox T @pyri(z)

Diri (.73)

L =log

where the features of exponential model f; consist of words that predict the word z
within a predefined window of 500 words and py;(z), the trigram probability, is the
probability of x given the two previous words. The intuition behind this approach is
that when a long range language model is not able to predict the next word better
than a short range language model, that indicates a shift in topic. In Section 5.2, a
similar ratio based approach will be used for a different purpose, prediction of useful
terms for relevance feedback.

The second class of features, the lexical features, consisted of words whose presence
predicts a break or the absence of one. An example of such a feature is the personal
pronoun ‘he.” The presence of the word ‘he’ indicates that the current sentence is
probably not the start of a new topic since it refers to a person introduced previously
in the story. The notable characteristic of their approach is that these features were
induced from the training data automatically using a sophisticated feature induction
algorithm. However, the space of possible features was determined by Beeferman
et al. in advance. The features are induced one at a time and their weights are
calculated using the improved iterative scaling algorithm [18].

This algorithm is defined in a very general sense in [18]. The specifics of the
algorithm for the segmentation task are given here.

Once again, the exponential model is defined as follows:

p(z) =< M @py(z))

>x e @py(z)

where) is a vector of parameters, f(z) is a vector of features that predict x and

pa(z) is a default probability estimate of z, the probability of seeing a break at the

67

current position. The feature vector f(z) can consist of a combination of the relevance
features and lexical features described above. The features are chosen one at a time
according to the maximal gain criterion defined as follows:

Let B, and B, be binary valued random variables defined as:

(0) = 1.0-plg]

(1) = 5lg]

,(0) = 1.0-qlg]

(1) = dqlg

where p[g] is the expected value of candidate feature g in the training data and ¢[g]

is the expected value of g according to the current model q. Having defined these

variables, the maximal gain is computed as follows:

A B
G = —ZBplog (ﬁ)
0,1

q

This is the Kullback-Leibler divergence of the current model with the observed
data. In other words, it is the maximal degree to which the model can be improved
by feature g. This is a greedy search in the following sense, the gain is maximal using
the current values of the A vector. To find the feature with the real maximum gain,
the A\ vector would need to be re-estimated, as described below, for each candidate
feature. The greedy algorithm is used to avoid performing the costly re-estimation
algorithm for every candidate feature.

Once a feature has been chosen, it is assigned the value, & defined as:

+ — log [Pl91(1-0 — dlg])
o= log (q[g](l-ﬂ —ﬁ[g]))

as an initial estimate for its A value where & is the closed form solution for the value

that produces the maximal gain. For the theoretical derivation of G and @ see [18].

68

After choosing a new feature and assigning the initial value of A for the new
feature, the entire A\ vector is re-estimated by solving the following equation for each

)‘i:

g [fie"I*] = p[f]

where fy is the sum over the observed training data of the number of features that are
‘on’ for a given observation. As before, the square brackets indicate the expectation
of the variable under the indicated distribution, where ¢ refers to the distribution
determined by the exponential model and p is the empirical distribution ofthe feature
in the training data itself. For the segmentation work, this equation was solved using
Newton’s method [37]. The process of adding the maximal gain feature and then
re-estimating is repeated until the maximal gain of all candidate features is below an

empirically determined threshold.

69

CHAPTER 3
LANGUAGE MODELS FOR TEXT SEGMENTATION

This chapter begins with a brief introduction to the segmentation problem in
Section 3.1. Next, an overview of the TDT project, the project that motivated the
segmentation work, is given in section 3.2, along with a description of the evaluation
methodology used later in the experiments.

Next, in Section 3.3, the approaches to segmentation are described along with the
features that will be used. In addition, a preliminary study is described showing how
local context analysis (LCA) can be used to find some of the features.

Section 3.4 describes how the two feature sets, previously described in Section 3.3,
can be combined into a single probabilistic model. The empirical results of segmenting
with this combined model are then presented in Section 3.5. The chapter concludes

with a discussion of the results in Section 3.6.

3.1 Newsfeeds and Topic Boundaries

There has recently been interest in tracking events in information “feeds.” A
feed is a continuous stream of text produced, for example, by speech recognition of
broadcast news. The text in such an environment contains no mark-up to indicate
topic boundaries and may not even delineate sentences. The text also tends to be terse
and words are not repeated to the degree they would be in, for example, an academic
journal paper. Approaches to text segmentation that depend on redundancy at the

word level such as [29] will fail on such data.

70

The work presented here was done as part of the Topic Detection and Tracking

(TDT) pilot study [3].

3.2 The TDT Tasks

The TDT pilot study evaluated the state of the art in three tasks, new event
detection, event tracking and segmentation. For our purposes, the TDT segmentation
task will be explained and also the event tracking task since it is relevant to the
indirect evaluation of the segmenter.

The TDT study corpus consisted of approximately 16000 news stories. Approxi-
mately half came from CNN news transcripts and the remaining half were from the

Reuters newswire.

3.2.1 Segmentation

The input to the segmentation module is a stream of text without explicit topic or
document boundaries. The task is to break this text into blocks representing homo-
geneous topics. The ability to do so is useful in any case where a stream of text does
not contain explicit document or topic markers such as collections of automatically
recognized speech or collections of text documents in which the documents contain
multiple topics. In such cases, segmentation is an enabling technology for the event
detection and tracking tasks as well as any similar tasks, such as document routing
or filtering. In the context of the TDT evaluation, the story boundaries were re-
moved from the study corpus and the task was to predict story boundaries using an

automatic segmenter. [3]

3.2.2 Event Tracking
One method of evaluation for the segmenter is the evaluation of the effects of
segmentation on a real-world task. The task that will be used is the tracking of

events. The event tracking task can be described as assigning labels to stories from a

71

predefined set of topic labels [3]. If one views this task in relationship to the document
routing task described earlier, it is very similar but it has the added dimension of
time and the task centers on specific events rather than more general topics as in the
routing task. Indirect evaluation of the segmenter in the context of this task will be

described in section 3.2.4.

3.2.3 Segmentation Direct Evaluation
3.2.3.1 A Probabilistic Error Metric

The segmenter can be evaluated directly by computing the probability that two
words drawn at random from the corpus will be correctly classified as to whether they
belong to the same segment. However, an algorithm should get less credit for correctly
predicting this information regarding the first and last words in the corpus, which are
almost certainly in different segments, than for correctly predicting for words near
each other. This can be accomplished by a kernel type estimator originally proposed
by Beeferman et al. [8].

The error probability is defined as follows:

N N

E =33 D(j — 1) x 6:(i,)& (i,)
i=1j=1
where, N is total number of words in the corpus, 4,(i, j) equals 1 if words 7 and j
belong to the same segment and 0 otherwise. Similarly, 5 (4, j) equals 1 if words i and
j have been predicted by the segmenter to belong to the same segment and 0 other-
wise. @ means exclusive NOR, meaning that either both or neither of the ¢ functions
must evaluate to one. Finally, D(j — i) is the distance probability distribution which
weights words that occur in close proximity more heavily than those further away.
The distribution originally proposed for D by Beeferman et al. was a single parameter

exponential distribution. However, for the TDT evaluations, the distribution chosen

72

by Doddington [19] was a triangular distribution with standard deviation equal to

one half the average segment length in the study corpus, approximately 250 words.

3.2.3.2 Recall and Precision

In addition, the metrics of recall and precision were employed for a preliminary
study. To compute recall and precision, first a least squares alignment of the predicted
segmentation with the correct segmentation is performed. Then the distance between
the two segmentations is measurable in terms of insertions, deletions and moves. An
insertion error occurs when the algorithm produces a break that does not line up
with a real break when the least squares alignment is done. Similarly, a deletion
error occurs when a real break exists but the algorithm does not produce a break
that lines up with it. Finally, a move error occurs when two breaks line up, but
are not in the same place. Table 3.1 shows an example. The first column shows
the true segmentation and the second column shows the predicted segmentation.
In this example, an insertion error occurs at sentence 5 where the algorithm has
predicted a break which does line up with a real break. A deletion error occurs at
sentence 27 where the original segmentation has a break which is not found by the
algorithm. Finally, two mowve errors occur at sentences 26 and 31 where the algorithm

has predicted breaks when the real breaks are at sentences 25 and 29.

Table 3.1. Example of aligned segmentations.

Actual Predicted
Segmentation | Segmentation
2 2
5
10 10
14 14
19 19
25 26
27
29 31
35 35

73

3.2.3.3 The Pessimistic Error Function

Given the aligned segmentations one can choose an error function for the mowve
errors based on the desired level of tolerance. An insertion or deletion always counts
as one error. Results are reported using two error functions. The first is a ‘pessimistic’

error function:

{1 if Ir(b = r);

0 otherwise

fb) =

This function simply counts each break b if and only if it matches some real break
r exactly. This measure does not take into account predictions that were close but
not exact, e.g. a block of length six would count as a complete miss even if the real

block started in the same place and was of length seven.

3.2.3.4 The Partial Match Error Function

The problem with the exact match error function is that it does not distinguish
between some segmentations where it clearly should. For example, suppose a data
set consists of one hundred sentences with a topic break at sentence fifty. The exact
match error function would not distinguish between an algorithm that predicted a
single break at sentence forty-nine and one that predicted a single break at sentence
two even though the former is clearly better. However, the following error function

does make that distinction:

- () (-9

In this function, d is the difference between the predicted break b and the corre-
sponding real break (where correspondence is determined by the alignment process),
u is the difference between the next actual break and the previous one, and g is the
number of insertion errors between the next actual break and the previous one. It

may help to think of u as the amount of uncertainty and g as the number of guesses.

74

This partial match error function gives full credit for exact matches and partial credit
for near misses. The first term causes the amount of credit to drop off as the distance

increases and the second term measures the ‘nearness’ of the near miss.

3.2.3.4.1 Preliminary Study For the purposes of the preliminary study, scores
with both of the above error functions are reported. The errors are counted using both
error functions and then the counts are used to calculate recall and precision scores
for each function. Recall is measured as the percentage of topic breaks in the original
data that were predicted by the algorithm. Precision is measured as the percentage
of breaks that were predicted by the algorithm that appeared in the original data.
The two sets of recall and precision scores allow more meaningful comparisons
than either set by itself. Two segmentations can be compared by the worst case
analysis using the exact match score. The partial match score provides a reality
check if the exact match scores are close. Also, for a single segmentation, the partial
match scores can be compared to the exact match scores to determine the closeness

of missed breaks.

3.2.4 Segmentation Indirect Evaluation

The indirect segmentation evaluation is carried out by comparing the results of the
event tracking task using the automatically predicted story boundaries as compared
to the same task run with the original story boundaries. This provides a more “real-
world” measure of segmentation quality as it shows the effects of segmentation on a

task of interest.

3.2.4.1 Event Tracking Evaluation
The TDT pilot study evaluated systems on the tasks of new event detection and
event tracking. Briefly, the task of new event detection was the identification of the

first instance of a story discussing a particular event and the tracking task was the

75

identification of subsequent stories describing the events of interest. 25 events were
tracked. Each story was labeled with a YES or NO label for each of these 25 events.
For the tracking task, when the system fails to label a story with the appropriate event
label, this results in a miss error. On the other hand, if the system labels a story with
an incorrect event label, that results in a false alarm error. These two types of errors
can be plotted against each other to evaluate system performance across a range of
threshold values in what is known as a Detection Error Tradeoff curve, or DET curve
[19]. Figure 3.1 shows an example DET curve. The DET curve plots the estimated
tradeoff between miss rate and false alarm rate. The axes are scaled according to a
normal distribution of the two metrics. Note that perfect performance for the tracking
task would be a single point at the origin. For the indirect segmentation evaluation,
one can define perfect segmentation performance as an identical DET curve for the

predicted breaks as was obtained by the true breaks [19].

O T T T T T T T T I T T

80

60

40

20

Miss Probability (in %)

10

.01.02 050102 05 1 2 5 10 20 40 60 80 90
False Alarm Probability (in %)

Figure 3.1. Example DET curve.

76

3.3 Two Complementary Approaches to Segmentation
3.3.1 Content Based LCA Segmentation

For the TDT pilot study, initially two largely complementary segmentation meth-
ods were developed. The first method makes use of the technique of local context
analysis (LCA) [67]. LCA was developed as a method for automatic expansion of ad
hoc queries for information retrieval. It is somewhat like the method of local feedback
[15] but has been shown to be more effective and more robust. For the segmentation
task, LCA can be thought of as an association thesaurus which will return words and
phrases which are semantically related to the query text and are determined based
on collection-wide co-occurrence as well as similarity to the original sentence. Each
sentence is run as a query against the LCA database and the top 100 concepts are
returned. The original sentence is then replaced with the LCA concepts and the ef-
fect is that sentences which originally had few or perhaps no words in common will

typically have many LCA concepts in common.

3.3.2 LCA Expansion — A Preliminary Study

Experiments were done to test the utility of LCA expansion for content based
segmentation [43]. The test data consisted of three sets drawn at random from the
“What’s News” articles from Wall Street Journal 1989. Test set 1 consists of 228
sentences and 86 segments, set 2 consists of 251 sentences and 96 segments and set
3 consists of 269 sentences and 119 segments. The results were measured using the

recall and precision metrics defined in Section 3.2.3.2

3.3.2.1 Results

The results on the three data sets can be seen in Tables 3.2. Note that use of
LCA improves the results in all three cases.

To see why this is the case, it will be useful to consider the example in Figure 3.2.

Three segments of two sentences each are shown delimited by groups of dashes.

7

Table 3.2. Comparison of content based segmentation with and without LCA ex-
pansion on set 1.

Exact Match | Exact Match || Partial Match | Partial Match
Recall Precision Recall Precision
Set 1
Original Words | 70.0% 62.9% 77.9 % 70.1%
LCA Concepts | 88.8% 82.6% 91.4% 85.1%
Set 2
Original Words | 58.8% 61.3% 66.8% 69.7%
LCA Concepts | 78.4% 79.2% 79.9% 80.7%
Set 3
Original Words | 58.3% 70.7% 64.6% 78.3%
LCA Concepts | 75.0% 85.7% 76.6% 87.6%

The important point to notice about this example is the number of words in com-
mon in the within-segment sentences. Figure 3.3 shows the counts of non-stopwords
in common between pairs of sentences. Notice that the two sentences in the first
segment, have only one word in common. Likewise for the third segment. The two
sentences in the second segment have no common words at all.

A similar table is shown in Figure 3.4 for the same six sentences after LCA ex-
pansion. Now the three segments have 10, 11 and 65 concepts in common, making

the content based segmentation much easier.

3.3.2.2 The Offset Heuristic

The original LCA method was derived from that described in [43]. The text is
indexed at the sentence level using offsets to encode the positions of the LCA features.
For example, suppose the feature “O. J. Simpson” occurs in sentence 1, 3, and 10.
The index will encode these positions as 1, 2 and 7, the offset from the previous
occurrence of the concept. The main idea of the LCA segmenter is to use these
offsets to measure shifts in vocabulary over time. The original method, which was

tested on the Wall Street Journal in the preliminary study, used a simple function of

78

Police in Lebanon said that two Red Cross workers abducted last week
are being held by Palestinian guerrillas led by terrorist Abu Nidal.
Meanwhile, thousands of students returned to classes as Lebanon’s
state schools, most private schools and the American University of
Beirut reopened after being closed for six months.

The White House said that a cyst removed Friday from Bush’s right
middle finger wasn’t cancerous.

A presidential spokesman said a routine pathological examination was
performed on the half-inch growth following the 25-minute surgical
procedure at Walter Reed Army Medical Hospital.

Singapore’s Lee Kuan Yew said he would step down as prime minister by
the end of next year, ending three decades of nearly one-man rule in
the island nation.

The 66-year-old Lee, in an interview with the British Broadcasting
Corp., said he would hand over power to his deputy, Goh Chok Tong.

Figure 3.2. Example of 3 typical topic segments.

the offsets as a heuristic measure of the “surprise” of seeing a particular concept in
a particular sentence. A large number of repeated concepts, i.e., small offset values,

indicate topical cohesion while new concepts, i.e., large offsets, indicate a new topic.

3.3.2.3 The TDT Corpus
In a collection of newspaper text from a single source, in this case the Wall Street

Journal, the offset heuristic in conjunction with LCA expansion worked quite well, as

‘Sentence‘1‘2‘3‘4‘5‘6‘

1 1 70 (0 [0 [0
2 1 |—1(0 (0 |0 |0
3 010 |—1]0 [0 [0
4 0 |0 |0 010
3 0 |0 |0 |O |— 1
6 0 |0 |0 |O |1

Figure 3.3. Non-stopwords in common from previous example.

79

‘Sentence‘1‘2‘3‘4‘5‘6‘
1 —110|0 |1 |0 |O
2 10(—|0 |0 |1 |3
3 0 |0 |—]11|1 |1
4 1 |0 |11 |— 1|0 |O
5 0 |1 |1 |0 |—|65
6 0 |3 |1 |0 |65]—

Figure 3.4. Number of common LCA features for six example sentences.

shown in the preliminary study. However, the TDT corpus has stories from several
sources, and so it often happens that several stories on the same topic will occur
in close proximity. Moreover, since much of the TDT corpus consists of transcribed
speech, there is far more off-topic language than in the Wall Street Journal. For
example, throughout the corpus, one finds social interaction between speakers that
does not relate to the current topic such as the following exchange between two news

reporters:

That is where there are-

-Very much so Bob-

-Go ahead Bill.

-Yeah Bob, that’s very well said.

These two difficulties, repeated topics and off-topic language, were circumvented
by means of an exponential length model. Rather than looking at the total size
of the offset, a model of the average segment size was used. The model was used to
determine the probability that an occurrence of a concept was in the same segment as
the previous occurrence. This method is more robust with respect to multiple stories

on same topic and also to “social noise” than the original method and performance

is improved.

80

3.3.2.4 Pros and Cons of the LCA method

The LCA method can be thought of as a content-based method. It works by look-
ing at changes in content-bearing words. It is somewhat similar to the topic models
used by Yamron et al. [3] and to the relevance features used by Beeferman et al. [8].
The strong point of the LCA method in comparison to these other approaches is that,
other than the length model estimation, it is completely unsupervised. One weakness
of this method is that the current implementation is somewhat slow since it requires
a database query per sentence. However, it could be sped up considerably using ex-
isting query optimization techniques for information retrieval. A second weakness is
that performance of the LCA expansion currently requires sentence breaks. A modi-
fication of this approach would be to use a fixed-sized window rather than sentences

as the atomic unit for expansion.

3.3.3 Discourse Based HMM Segmentation

The second method uses a Hidden Markov Model to model “marker words,” or
words which predict a topic change. The model consists of a state for the first sentence
of a segment, one for the last sentence, and one for the remainder of the segment. So
while the LCA segmenter relies on shifts in content, the HMM segmenter is relying
on words which predict the beginning or end of a segment without regard to content.
This is somewhat similar to the use of lexical features in [8]. The model is trained
using segmented training data. For each state s, the probability of generating a word

w 1s estimated as:

In other words, the numbers of times word w is seen while in state s in the

training data, over the total number of times in state s. In order to avoid over-fitting

81

the training data, words that were not seen were estimated using a backoff scheme as

follows:

k X Daug(t)

where k is a small default weight (0.1 in these experiments) added to each state and
Pavg (t) is the average probability of term ¢ across all of the states. The unseen words
were given a fraction of this weight distributed according to the average probability
of the word over all of the states. Words that did not appear at all in the training

data received a default weight:

1.0
0.5 X |training data|

This weight was used to estimate pg,q(t) for non-occurring words. This essentially
assumes that a non-occurring term occurred one half of one time in the training data.
This prevents non-occuring terms from causing the probability to estimated as zero
but does not allow them to have a large effect on the result. The resulting HMM is

shown in Figure 3.5.

~

Figure 3.5. Discourse based HMM segmentation model.

The three states B, M and E are the beginning, middle, and end states, respec-

tively. Each state has an output distribution determined from the training data as

82

described above. Each arrow in the diagram represents a transition probability, the
A matrix in the standard formulation of HMMs given earlier. These probabilities are
estimated from the counts of the state transitions in the segmented training data.
Segmentation is performed using the Viterbi algorithm to determine the most likely
state sequence that the model would go through to produce the sentences in the test

set. A break is predicted each time the model enters state B.

3.3.3.1 Pros and Cons of the HMM method

One advantage of the HMM implementation is that it is very fast. Training time is
approximately 15 minutes on the TDT training corpus and segmentation is extremely
fast, as one would expect from an HMM with a small number of states. Also, unlike
the LCA method, the HMM method can be used at the word level (although the
current implementation works at the sentence level). The disadvantage of the HMM

method is that it requires segmented training data.

3.3.4 Preliminary Results and Discussion
3.3.4.1 LCA Method

The LCA segmenter with the exponential length model achieves a 17.6% error
probability as compared to the 30.6% error probability of the original LCA method
described in the preliminary study that used only the offset heuristic. The new
method is still heuristic in nature and a more principled use of the LCA concepts,
as we shall see, improves performance further. One difficulty with the LCA method
is that when one gives a query to LCA such as “Thank you and good-night.” the
concepts one gets back are essentially random. This difficulty will be circumvented

by the combined method.

83

3.3.4.2 HMM Method

The HMM segmenter produces a segmentation with a 23% error rate on the TDT
corpus. One caveat is that this approach may rely on the similarity of the training
data to the test data somewhat heavily. Still, it shows that very simple discourse
modeling can provide useful information. This method could be made more robust
by explicitly modeling segues and other regularities of the source. For example, it
would be more general to tag place names and names of reporters and to learn the
probability of segment boundaries relative to the tags, rather than to the specific

names, as the current approach does.

3.4 Combining the Two Methods

As pointed out, the two methods previously discussed make use of complementary
features. Moreover, the two approaches have different strengths and weaknesses. A
method will now be described that takes advantage of the strengths of the individual
methods by means of a unified probabilistic model. This method achieves better

performance than either method alone.

3.4.1 Sentence Clustering

The method of combining these two approaches is to use a Hidden Markov Model
with explicit start and end of topic states, as in the previous HMM approach, and
with multiple states representing topic models similar to those of Yamron et al. [3].
Recall that Yamron et al. clustered a hand segmented training corpus to produce one
hundred language models. Instead of that, a similar clustering algorithm will be em-
ployed, but without segmented training data. Instead, the LCA concepts will be used
to cluster the sentences. This allows language models to be produced without relying

on hand segmented data. This is useful, because hand segmented data will generally

84

not be available for the production of topic specific language models, particularly in

a dynamic news environment.

3.4.1.0.1 K-means Clustering The sentence clustering algorithm is a variation
of k-means clustering. Recall that each sentence is represented by 100 concepts re-
turned from the LCA expansion. The similarity of two sentences s; and s, is computed
by the count of the common LCA concepts.

Each cluster is represented by a centroid vector containing the total counts of the
LCA features for the member sentences. The similarity of a sentence s and a cluster

c is computed using average link clustering as follows:

Ysree sim(s, s')
|

where |c| is the number of sentences in the cluster and sim(s,s’) is the similarity
between sentences s and s’ determined by coordination match of the LCA concepts
for the two sentences.

The preliminary pass is done in random order. In order to produce N clusters,
the first N sentences (drawn at random) are each placed into a new cluster. Each
subsequent sentence is placed into the closest cluster. After the first pass is completed,
ten additional passes are performed where each sentence is removed from its current
cluster and reclustered. The resulting clusters are used to build unigram language

models.

3.4.1.0.2 Language Model Construction Unigram language models are built
from the original (pre-LCA) text of the sentences for each cluster. The probability of

a word w for a cluster ¢ is estimated as:

#(w)
Ew’Ec #(wl)

85

In other words, estimated as the count of w normalized by the total number of word
tokens in the original text of the sentences of cluster c¢. These unigram models are
each treated as a state in a hidden Markov model similar to the approach in [3].
Unknown word probabilities for each state are estimated using the smoothing
method previously described in Section 3.3.3. Each unknown word w is assigned the
minimum within-state probability times the average probability of w across all of the
states. The resulting distribution is re-normalized to insure that the probabilities

sum to one.

3.4.1.0.3 Combined Model 100 language models were built using the above
clustering approach. These models were used to replace the middle state in the
HMM described earlier. The enhanced model is shown in Figure 3.6.

Once again, the states labeled B and E represent the states corresponding to
the first and last sentence of a segment. The middle state has been replaced with
the 100 language models generated from the clusters. The effect is to combine the
marker word approach, used in the original HMM segmenter, with the content based
features obtained by clustering the LCA concepts. The state transitions to each
of the language model states are estimated using the middle state probability from
the original HMM. The transition to each language model state receives ﬁ of the
transition probability to the middle state, i.e. each transition is considered equally
likely. Segmentation is performed by means of the Viterbi algorithm, as before. The
maximum likelihood state sequence is returned and a break is predicted each time
the model passes through the beginning state.

The combined model was used to segment the TDT corpus and the direct evalua-
tion was done as before. The result in the direct evaluation of the combined method
was a 13% error probability, better than either method alone. However, the more
important question is how this method performs in the context of the task of interest,

and that will be measured using the indirect evaluation.

86

e

Figure 3.6. Combined discourse and content model.

3.5 Results of the Indirect Evaluation

Figure 3.7 shows DET curves for the new event detection task using the predicted
breaks and the actual breaks. There is very little difference between the two curves
particularly in the critical middle region of the curve. This indicates that segmenta-
tion in the context of new event detection is robust to the current error level. Further

experimentation can be done to see if this will be case in general.

3.6 Discussion
The performance of the segmenter on the indirect evaluation shows that the new

event detection task is robust in the face of a segmentation error rate of 13%. This is

NV <r—T T T T T T T~ ! T T T

‘random performance. ——
; et Ry
| "tr_real. DET" -----

80

60

o Y S S S S S . S

20

Miss Probability (in %)

10

1 R N L | | | T | | |
.01.02 050102 05 1 2 5 10 20 40 60 80 90
False Alarm Probability (in %)

Figure 3.7. DET curve comparing predicted breaks to actual breaks.

consistent with results of using passage level evidence for interactive retrieval where
it has been demonstrated that fixed sized passages are adequate for the improvement
of retrieval effectiveness [1, 12]. Essentially, retrieval algorithms, and the derivative
event detection algorithms, only require a coarse approximation of topic segmentation
to perform well. For this reason, segmentation for the purposes of IR does not turn
out to be a very interesting problem.

The remainder of the thesis focuses on what is, from an IR perspective, a more
interesting problem, that of retrieval models. While segmentation for its own sake
has not turned out to be as interesting as initially thought, the lessons learned about
language modeling have been useful for the development of the new approach to

retrieval discussed in the remainder of the thesis.

88

CHAPTER 4
LANGUAGE MODELS FOR INFORMATION RETRIEVAL

This chapter begins in Section 4.1 with an introduction to the new approach to
retrieval that will be developed. Also discussed is the motivation for this approach
including a discussion of document indexing models.

Section 4.2 covers Salton’s recommendations for document indexing. Next, the
differences between document and query text will be discussed in section 4.2 including
the implications for probability estimation.

The description of the model takes place in Section 4.3. This includes the un-
derlying idea and also the probability estimators used to implement it. After that,
an empirical study is described in Section 4.4. The study compares the new model
with an approach based on tf.idf weighting as used in other models of IR and then
compares the baseline model with an enhanced model that uses a smoothing based

estimator.

4.1 Chapter Introduction

This chapter discusses the development of a new model of text retrieval and shows
its effectiveness empirically. The focus of this chapter is the ad hoc retrieval task,
with additional aspects of retrieval covered in subsequent chapters. The underlying
idea of this model in the context of ad hoc is quite simple. The retrieval task is
carried out by estimating the probability of query production according to language
models for each document. The intuition behind this approach is that users will have

an idea of the documents of interest and will choose query terms that distinguish

89

these documents from the remainder of the collection. It is unknown what actually
goes on in the mind of the user, so query production will be modeled as a random
process. This is a departure from the usual approach to retrieval modeling described
in Chapter 1 where the 2-Poisson model of index term assignment was discussed.

The early studies with this model showed that under certain circumstances, it was
quite reasonable [28]. However, more recent studies on large heterogeneous document
collections have shown that it does not apply in the more general case.

There are three reasons for this:

e Modern IR systems use a larger vocabulary.

e Modern IR systems rely on multiple term queries.

e Document length is highly variable in heterogeneous collections.

Regarding the first point, an indexing term assigned by the 2-Poisson model might
be a specific scientific or medical term. For example, in a database of medical doc-
uments, the term “hemoglobin” might be assigned to a document and an expert
reader would be able to determine whether or not the document was actually about
hemoglobin. However, consider a database of newspaper articles and some terms from
TREC topic number 202. Here is a list of terms from topic 202: “nuclear prolifera-
tion treaty violate monitor.” What would it mean for a document to about the term
“violate?” It is certainly not as clear as it is in the case of a word like “hemoglobin.”
In addition, it has been shown that in the case of a general vocabulary, words do
not fit a mixture of two Poisson distributions very well [38]. So, even if one could
reasonably claim that a document was or was not ‘about’ a single term, the model is
just not correct in the case of a larger vocabulary.

Regarding the second point, in the above query, it is not any one word in the
query that provides convincing evidence in favor of retrieving a document. Modern

IR systems retrieve documents intended to be relevant to the aggregate of many

90

terms, not relevant to a single highly specific term. This is a second reason why the
2-Poisson model does not apply to the modern retrieval task.

Finally, the original studies with the 2-Poisson model assumed that documents
were of relatively uniform length. This was a reasonable assumption for the small
collections of abstracts used in the original studies but it does not apply to the large
heterogeneous collections studied of late. These larger collections are more realistic in
terms of text retrieval in a general setting. It is worth mentioning that the 2-Poisson
model could be extended by means of normalized rates and doing so would circumvent
this problem. However, in light of the previous two items, it is not likely that doing

so would yield a useful model.

4.2 The Salton Approach to Indexing

An additional approach to indexing was developed by Salton [51]. Rather than
using probabilistic models, Salton devised what he called a blueprint for automatic
indexing, essentially a set of guidelines for the automatic indexing of documents.

Salton’s prescription is summarized as follows:

1. Identify individual word tokens.

2. Delete common words (stopwords).

3. Strip suffixes using a stemmer.

4. Compute a weighting factor for each term.

5. Replace low-frequency terms with thesaurus classes.
6. Form phrases from high frequency terms.

7. Devise weights for the thesaurus classes and phrases.

8. Assign the appropriate words, thesaurus classes and phrases to each document.

91

Notice that these guidelines do not specify the weights for terms or phrases as
would be done by a probabilistic model. In practice, a variation of tf.idf weighting
would typically be used. Item 5 addresses a potential problem of rare terms. A very
rare term may not be very useful for retrieval since it will not contribute to the score
of very many documents. Consider a term that occurs exactly once in a collection,
for example. In response to a user query, that term can cause the system to return
at most one document. Item 5 suggests replacing such words with equivalence classes
of related words. Likewise, item 6 suggests replacing common terms, which will tend
to retrieve too many documents, by forming phrases from them.

One important point is that Salton’s vector space model treats documents and
queries as if they are fundamentally the same kind of object, vectors in T" space where
T is the number of unique terms. In this case, items 5 and 6 make sense because
both prescribe ways of making better use of the available information in terms of
discriminatory power of the features. However, these items are not typically done in
practice. Part of the reason for this may be that queries and documents are really
fundamentally different, and that is the view taken here. For simplicity, the case of
single term features will be considered. Assume that queries consist of an unordered
set, of terms chosen by the user. The user will choose to add a term to the query if
that term is likely to help find documents of interest. In this case, the query text is
fundamentally different from the text of documents. It is text chosen by the user for
the purpose of finding documents. Consider again the idea of forming phrases out of
common terms. This would only help retrieval if the user can be relied upon to use
phrases in queries in the same manner.

The language modeling approach will make the distinction between document
text and query text. Document text is written natural language text. Query text is

written with the express goal of finding a particular set of documents in which the

92

user is interested. This is a subtle but key distinction between the language modeling

approach and the Kalt model [32].

4.2.1 The Kalt Model
Recall that the Kalt model treats documents as objects generated from a discrete
memoryless channel. The source probabilities for a term ¢ in a document d are

estimated using the maximum likelihood estimate:

tft,d)
dly

Do (t| My) =

where ? f(;,q4) is the raw term frequency of term ¢ in document d and dl; is the total

number of tokens in document d.

4.3 The Language Modeling Approach

In the language modeling approach, the process of document generation is not
modeled. It is the query generation process that is of interest for retrieval. The
assumption is that the user has a prototypical document in mind and can, with
a reasonable degree of accuracy, choose terms that will be likely to occur in that
prototypical document and that will separate it from the remainder of the collection.

For this reason, a language model is inferred for each document and the documents
are ranked according to the estimate of producing the query according to that model.
When one makes the this distinction between documents and queries, it becomes
clear why the maximum likelihood estimator is inadequate for the task. When one
wishes to estimate the probability of a novel event from training data, the maximum
likelihood estimator will over-fit when there is not enough data from which to estimate
it.

In some sense, using Kalt’s estimate for the document generation model is the

best one can do. It is a perfect fit for the document. However, it may not be a perfect

93

fit for the query, because a single document is too small a sample to obtain a good
estimate for the term probability.

The query generation probability p(Q|M,), is the probability of producing the
query given the language model of document d. To estimate this probability, the first
step will be to estimate the probability for each term in the query. This probability
will be estimated starting, as Kalt did, with the maximum likelihood estimate of the

probability of term ¢ in document d:

tfit.a)
dly

P (t|My) =

where % f(; 4) is the raw term frequency of term ¢ in document d and dl; is the total
number of tokens in document d. A simplifying assumption will be made. Assume
that given a particular language model, the query terms occur independently. The
maximum likelihood estimator gives rise to the ranking formula [T, Pmu(t, d) for each

document.

4.3.1 Insufficient Data

There are two problems with the maximum likelihood estimator, or perhaps a
better way to state this is that there are two symptoms of one underlying problem:
insufficient data for the estimation of the maximum likelihood estimator. These two
problems (or symptoms of the same problem) will now be examined a little more
closely.

The obvious practical problem with this estimator is that we do not wish to
assign a probability of zero for a document that is missing one or more of the query
terms. Doing so would mean that if a user included several synonyms in the query, a
document missing even one of them would not be retrieved

In addition to this practical consideration, from a probabilistic perspective, it is

a somewhat radical assumption to infer that p(t|M,) = 0, i.e., the fact that we have

94

not seen it does not make it impossible. Instead, we make the assumption that a
non-occurring term is possible, but no more likely than what would be expected by
chance in the collection, i.e., cc—j;t, where cf; is the raw count of term ¢ in the collection
and cs is the raw collection size or the total number of tokens in the collection.
This provides us with a more reasonable distribution and circumvents the practical
problem. It should be noted that in homogeneous databases, one may need to use
a more careful smoothing estimate of the collection probability since, in some cases,
the absence of a very frequently occurring word in a document (i.e., a word with the
characteristics of a stopword) could conceivably contribute more to the score of that
document in which it does not occur than it would for a document in which it does
occur. This is not a problem in the collections studied, as they are heterogeneous in

nature, and stopwords have been removed. However, this issue should be addressed

in the future to insure that this approach will be immune to these pathological cases.

4.3.1.1 Small Sample Size

The other problem with this estimator was pointed out earlier. If we could get
an arbitrarily large sample of data from M, we could be reasonably confident in the
maximum likelihood estimator. However we only have a document sized sample from
that distribution and so the variation in the raw counts may partially be accounted
for by randomness. In other words, if one were given two documents of equal length
generated from the same language model, one would expect these two documents to
have different numbers of occurrences of most of the terms due entirely to random

variation.

4.3.2 Averaging
Since it is not possible to draw additional data from the same random process that
generated each document, one can view the problem with the maximum likelihood

estimator as one of insufficient data. To circumvent the problem of insufficient data,

95

we are going to need an estimate from a larger amount of data. That estimate is the

mean probability estimate of ¢ in documents containing it:

i (£ M,
Pavg () = (Bt Zf:([Ma))

where df, is the document frequency of ¢. This is a more robust statistic in the sense
that we have a lot more data from which to estimate it, but it too has a problem. It
cannot be assumed that every document containing ¢ is drawn from the same language
model, and so there is some risk in using the mean to estimate p(¢|My). Furthermore,
if the mean were used by itself, there would be no distinction between documents
with different term frequencies.

In order to benefit from the robustness of this estimator, and to minimize the risk,
the mean will be used to moderate the maximum likelihood estimator by combining

the two estimates using the geometric distribution [69] as follows:

. [10 Fooo)7
Foa = <(1.0+ft)> - ((1.0+ft)>

where f, is the the mean term frequency of term ¢ in documents where ¢ occurs
normalized by document length. The intuition behind this formula is that as the ¢ f
gets further away from the normalized mean, the mean probability becomes riskier
to use as an estimate. For a somewhat related use of the geometric distribution see
[23].

There are several reasons why the geometric function is a good choice in addition
to the shape. In the first place, the mean of the distribution is equal to f,, the expected
rate of occurrence according to the mean probability. Secondly, the variance of this
distribution is larger than the mean. For this reason, the case where a large number
of relatively low rates of occurrence along with relatively few cases where there is

a large rate of occurrence are captured by this function. Finally, this function is

96

defined in terms of only the mean and the ¢f. This means that using this function
does not cost very much in terms of time, either at indexing time or retrieval time,
nor does it require additional space. IR systems need to be able to index Gigabytes
of text at rates of hundreds of megabytes per hour and to process queries in seconds.
Complex estimation techniques that require significant additional indexing time, even
if effective, would not be acceptable for real systems. In addition, techniques that
require significant additional space, such as storing an additional number per word
occurrence, would not be feasible. This makes the geometric distribution an excellent

choice from a systems engineering perspective.

4.3.3 Combining the Two Estimates
The geometric distribution will be used in the calculation of p(Q|My), the estimate

of the probability of producing the query for a given document model as follows:

ot B0 Ba) s nBra gy 5
oo — 11| 7 UL T

teQ % otherwise

(10— Ry q) Rig
Pou(t,d VX Pave(t) 0 if >0

t¢Q cc—fst otherwise

In this formula, the first term is the probability of producing the terms in the query
and the second term is the probability of not producing other terms. This can be
regarded as a “background” model for each document that captures the likelihood of
other terms for the document. This quantity essentially accounts for other terms that
would be better discriminators of the document than the query terms, i.e., terms that
would be unlikely to be left out of the query by users interested in the document.
Also notice the risk function, Rt,d and the background probability % mentioned
earlier. This function is computed for each candidate document and the documents

are ranked accordingly.

97

4.4 Empirical Results
4.4.1 Evaluation
Results are measured using the metrics of recall and precision. Table 4.1 shows

the contingency table for retrieval of a set of documents where:

r = Relevant Set
7 = Non-Relevant Set
R = Retrieved Set
R = Non-Retrieved Set

Table 4.1. Contingency table for sets of documents.

rONR|7TNR
rNMR|7NR

If one were retrieving a set of documents, recall is the probability that a document
has been retrieved given that it is a member of the set of relevant documents. Precision
is the probability that a document is a member of the relevant set given that it has

been retrieved. Defining these measures in terms of the contingency table yields:

Recall = |T‘r;|R| = p(R]r)
Precision = |T‘?{If| = p(r|R)

A third measure, fallout, is the probability that a document is not relevant given

that is has been retrieved. Fallout, in terms of the contingency table looks like this:

Fallout = "8 = p(Rl7)

Measuring performance in terms of recall and fallout would be more typical in a

classification task. However, fallout is not a very interesting measure for retrieval.

98

Suppose, for example, that a collection consisted of one million documents, and sup-
pose one hundred of them were relevant, which would be a typical proportion. In that
case one can do a reasonable optimization for fallout by not retrieving any documents
at all. Due to the huge disparity between the numbers of relevant and non-relevant
documents, recall and precision are the preferred metrics.

For the evaluation of ranked retrieval, precision can be measured at several levels
of recall to show the tradeoff. Other measures include the average precision over all
relevant documents and precision after n documents have been retrieved for various

values of n. Each of these measures will be reported for each of the experiments.

4.4.2 Data

Recall /precision experiments were performed on two data sets. The first set was
TREC topics 202-250 on TREC disks 2 and 3, the TREC 4 ad hoc task, and the
second was TREC topics 51-100 on TREC disk 3 using the concept fields. These
query sets were chosen because they are quite different from each other. The 51-100
concept fields are essentially lists of good terms while topics 202-250 are ‘natural

language’ queries consisting of one sentence each.

4.4.3 Implementation

A research prototype retrieval engine, known as Labrador, was implemented to
test the language modeling approach. This engine was originally implemented as a
high throughput retrieval system in the context of the topic segmentation work.

High throughput is achieved by keeping much (often all) of the index in memory
to reduce the device wait times. In order to keep a large portion of the index in
memory, it must be compressed. This is done using bit level index compression as
described in [40]. The cost incurred for uncompressing the index is far less than the

time for disk reads and so this is a very good tradeoff.

99

Labrador is best classified as a research prototype because it works very well
but does not fail gracefully. The shortcomings of Labrador include lack of error
checking and verification and a complete lack of documentation. This makes Labrador
unsuitable for wider use in research and commercial environments, but it performed

well for these experiments.

4.4.4 Recall/Precision Experiments

Recall /precision experiments were done to compare the language modeling ap-
proach against a baseline result. The baseline result was obtained using the IN-
QUERY ranking formula, which uses Robertson’s if score, called tfbel; ; below, and a

standard idf score. The function is defined as follows:

4
foela = - Toa -
ft,d +0.5+1.5 avgdoclen
. N +0.5
idf, = log(T)/log(N+ 1)
t

where if, ; is the count of term ¢ in document d, N is the number of documents in
the collection, df, is the number of documents containing term ¢, avgdoclen is the
average document length in the entire collection and leng is the length of document
d.

Figure 4.1 shows the results for TREC topics 202-250 on TREC disks 2 and
3. The top line is the language modeling approach, notice the improvement over
baseline. Also included are the UMass TREC 4 results. Notice that the results
with the language modeling approach are competitive with the official UMass run
even though the UMass run included additional features such as proximity pairs and
unsupervised query expansion.

Table 4.2 shows the comparison of tf.idf to the language modeling approach in

tabular form. In the table, we see the eleven point recall/precision results as well as

100

the non-interpolated average precision and precision figures for the top N documents
for several values of N. The first two columns compare the baseline result to the

language modeling approach.

0.8 T T T T

il

Lab tf.idf
LM -5--

0.7 . .

06 F]

P

04 NN -

Precision

03 | -

01} Tl .

0 | | | \T";;:—‘;m—;,—;;_—_r,—;iz

0 0.2 0.4 0.6 0.8 1
Recall

Figure 4.1. Comparison of tf.idf to the language modeling approach on TREC
queries 202-250 on TREC disks 2 and 3.

The third column reports the percent change. Column four is of the form I/D
where I is the count of queries for which performance improved using the new method
and D is count of queries for which performance was different. Column five reports
significance values according to the sign test and column six does likewise according
to the Wilcoxon test. The entries in these two columns marked with a star indicate
a statistically significant difference at the 0.05 level. Note that these are one sided
tests.

Notice that on the eleven point recall/precision section, the language modeling

approach achieves better precision at all levels of recall, significantly at several levels.

101

Table 4.2. Comparison of #f.idf to the language modeling approach on TREC queries
202-250 on TREC disks 2 and 3.

tf.idf | LModel | % chng. | I/D | Sign | Wilcoxon
Relevant: 6501 6501
Rel. ret.: | 3201 3364 | +5.09 [36/43 [0.0000x | 0.0002%
Precision
at 0.00 | 0.7439 | 0.7590 +2.0 | 10/22 | 0.7383 | 0.5709
at 0.10 | 0.4521 | 0.4910 +8.6 | 24/42 | 0.2204 | 0.0761
at 0.20 | 0.3514 | 0.4045 +15.1 | 27/44 | 0.0871 | 0.0081x
at 0.30 | 0.2761 | 0.3342 +21.0 | 28/43 | 0.0330% | 0.0054%
at 0.40 | 0.2093 | 0.2572 +22.9 | 25/39 | 0.0541 | 0.0158%
at 0.50 | 0.1558 | 0.2061 +32.3 | 24/35 | 0.0205% | 0.0018%
at 0.60 | 0.1024 | 0.1405 +37.1 | 22/27 | 0.0008% | 0.0027x
at 0.70 | 0.0451 | 0.0760 +68.7 | 13/15 | 0.0037x | 0.0062x
at 0.80 | 0.0160 | 0.0432 | +169.6 | 9/10 | 0.0107x | 0.0035%
at 0.90 | 0.0033 | 0.0063 +89.3 2/3 | 0.5000 | undef
at 1.00 | 0.0028 | 0.0050 +76.9 2/3 | 0.5000 | undef
Avg: | 0.1868 | 0.2233 | +19.55 | 32/49 | 0.0222x | 0.0003%
Precision at:
5 docs: | 0.4939 | 0.5020 +1.7 | 10/21 | 0.6682 | 0.4106
10 docs: | 0.4449 | 0.4898 +10.1 | 22/30 | 0.0081x | 0.0154%
15 docs: | 0.3932 | 0.4435 +12.8 | 19/26 | 0.0145% | 0.0038%
20 docs: | 0.3643 | 0.4051 +11.2 | 22/34 | 0.0607 | 0.0218x
30 docs: | 0.3313 | 0.3707 +11.9 | 28/41 | 0.0138% | 0.0070x
100 docs: | 0.2157 | 0.2500 +15.9 | 32/42 | 0.0005% | 0.0003x
200 docs: | 0.1655 | 0.1903 +15.0 | 35/44 | 0.0001x | 0.0000%
500 docs: | 0.1004 | 0.1119 +11.4 | 36/44 | 0.0000% | 0.0000
1000 docs: | 0.0653 | 0.0687 +5.1 | 36/43 | 0.0000% | 0.0002x
R-Precision: | 0.2473 | 0.2876 | +16.32 | 34/43 | 0.0001x | 0.0000x

Also notice that there is a significant improvement in recall, uninterpolated average
precision and R-precision, the precision after R documents where R is equal to the
number of relevant documents for each query. On the second part of the figure, there
is again an improvement at all levels of recall, many of them statistically significant.
It should be pointed out that using the only the maximum likelihood estimator yields
precision results worse at all levels of recall and worse by approximately 26% on
average.

Figure 4.2 shows the results for TREC topics 51-100 on TREC disk 3. Once again
the language modeling approach shows improvement over the baseline. See Table 4.3
for the same data in tabular form. Improvement in precision can be seen at most

levels of recall on the eleven point chart. The results on these two data sets indicate

102

0.8 T T T T T

\ LM -
07 b\ .

05 | S]

04 | N .

Precision

0.3 | T .

01 Ny -

O 1 1 1 1 B e
0 0.2 0.4 0.6 0.8 1
Recall

Figure 4.2. Comparison of tf.idf to the language modeling approach on TREC
queries 51-100 on TREC disk 3.

that the language modeling approach is a good alternative to the more traditional
tf.idf approach to retrieval. The next question is how the model can be used as a

guide for the improvement of retrieval effectiveness.

4.4.5 Improving the Basic Model

The language modeling approach depends on good estimation. In order to im-
prove retrieval effectiveness, one should improve the estimate of the query generation
probabilities. A simple improvement of the estimate developed in Section 4.3 is to
smooth the estimates of the average probability for terms with low document fre-
quency. The estimate of the average probability of these terms is based on a small

amount of data and so could be sensitive to outliers.

103

Table 4.3. Comparison of #f.idf to the language modeling approach on TREC queries
51-100 on TREC disk 3.

tf.idf | LModel | % chng. | I/D | Sign | Wilcoxon
Relevant: | 10485 10485
Rel. ret.: 5818 6105 +4.93 | 32/42 | 0.0005% | 0.0003%
Precision

at 0.00 | 0.7274 | 0.7805 +7.3 | 10/22 | 0.7383 | 0.2961

at 0.10 | 0.4861 0.5002 +2.9 | 26/44 | 0.1456 | 0.1017

at 0.20 | 0.3898 | 0.4088 +4.9 | 24/45 | 0.3830 | 0.1405
at 0.30 | 0.3352 0.3626 +8.2 | 28/47 | 0.1215 | 0.0277x
at 0.40 | 0.2826 | 0.3064 +8.4 | 25/45 | 0.2757 | 0.0286%
at 0.50 | 0.2163 | 0.2512 +16.2 | 26/40 | 0.0403x | 0.0007*
at 0.60 | 0.1561 0.1798 +15.2 | 20/30 | 0.0494x | 0.0025%
at 0.70 | 0.0913 | 0.1109 +21.5 | 14/22 | 0.1431 | 0.0288x

at 0.80 | 0.0510 | 0.0529 +3.7 | 8/13 | 0.2905 | 0.2108

at 0.90 | 0.0179 | 0.0152 —14.9 1/4 1 0.3125 | undef

at 1.00 | 0.0005 0.0004 —-11.9 1/2 | 0.7500 | undef
Avg: | 0.2286 | 0.2486 +8.74 | 32/50 | 0.0325% | 0.0015%
Precision at:
5 docs: | 0.5320 | 0.5960 +12.0 | 15/21 | 0.0392x | 0.0125%

10 docs: | 0.5080 | 0.5260 +3.5 | 14/30 | 0.7077 | 0.1938

15 docs: | 0.4933 | 0.5053 +2.4 | 14/28 | 0.5747 | 0.3002

20 docs: | 0.4670 | 0.4890 +4.7 | 16/34 | 0.6962 | 0.1260
30 docs: | 0.4293 | 0.4593 +7.0 | 20/32 | 0.1077 | 0.0095%
100 docs: | 0.3344 | 0.3562 +6.5 | 29/45 | 0.0362x | 0.0076x
200 docs: | 0.2670 | 0.2852 +6.8 | 29/44 | 0.0244x | 0.0009x
500 docs: | 0.1797 | 0.1881 +4.7 | 30/42 | 0.0040% | 0.0011x
1000 docs: | 0.1164 | 0.1221 +4.9 | 32/42 | 0.0005% | 0.0003x
R-Precision: | 0.2836 | 0.3013 +6.24 | 30/43 | 0.0069x | 0.0052%

In order to correct for this, the low document frequency data (using a cutoff of
df = 100) was binned by document frequency, and the binned estimate was used
for the average. This new estimate of the average is incorporated into the ranking
formula, as before, and rerun on TREC queries 202-250 against TREC disks 2 and 3.
The results are shown in Figure 4.3. A small improvement over baseline can be seen
from the graph. For an alternative view of these results see Table 4.4. The results
show a statistically significant improvement in precision at several levels of recall.
The average precision is also improved.

Running the new model on the second query set, TREC queries 51-100 against
TREC disk 3, yields the result shown in figure 4.4. The results have improved, but so

slightly, it is difficult see from the graph. However, when these results are viewed in

104

0.8 T T T T

LM2 —+—
0.7 | .

05]

0.4 -

Precision

03 | i

\+\\

01 f i

0 | | | | \\\i- —————————— S

0 0.2 0.4 0.6 0.8 1
Recall

Figure 4.3. Comparison of the original language modeling approach to the new
language modeling approach on TREC queries 202-250 on TREC disks 2 and 3.

tabular form (see Table 4.5), it can be seen that many of the improvements, though
modest, are statistically significant.

Note that the average query length for topics 51-100 is considerably longer than
for the previous set. A reasonable conjecture is that that smaller improvement on
this query set is due to the longer average query length. It appears that for low
frequency terms, the effects on the average due to outliers is just as likely to cause an
overestimate, as it is to cause underestimate, and so these effects cancel each other
out when there are more terms in the query. However, this is only a conjecture, the
verification of which is left for future work. The main point to take away from the
smoothing experiments is that improving the probability estimation, in this case by a
simple smoothing technique, improves retrieval performance. This is evidence further

evidence that the language modeling approach is a reasonable approach to retrieval.

105

Table 4.4. Comparison of the original language modeling approach to the new
language modeling approach on TREC queries 202-250 on TREC disks 2 and 3.

LModel | LModel2 | % chng. | I/D [Sign | Wilcoxon

Relevant: 6501 6501
Rel. ret.: 3364 3350 —0.42 | 16/33 | 0.5000 | 0.4432
Precision

at 0.00 0.7590 0.7717 +1.7 | 11/17 | 0.1662 | 0.1137
at 0.10 0.4910 0.5115 +4.2 | 25/41 | 0.1055 | 0.0194%
at 0.20 0.4045 0.4137 +2.3 | 23/42 | 0.3220 | 0.2100
at 0.30 0.3342 0.3539 +5.9 | 26/42 | 0.0821 0.0275%
at 0.40 0.2572 0.2709 +5.3 | 23/37 | 0.0939 | 0.0420%
at 0.50 0.2061 0.2164 +5.0 | 23/33 | 0.0175% | 0.0222%
at 0.60 0.1405 0.1405 —0.0 | 15/24 | 0.9242 | 0.8197
at 0.70 0.0760 0.0724 —4.8 | 4/14 | 0.0898 | 0.0886
at 0.80 0.0432 0.0450 +4.1 5/9 | 0.5000 | undef
at 0.90 0.0063 0.0065 +4.6 2/3 | 0.5000 | undef
at 1.00 0.0050 0.0040 —19.1 2/3 | 0.8750 | undef
Avg: 0.2233 0.2318 +3.81 | 34/49 | 0.0047x | 0.0055%
Precision at:
5 docs: 0.5020 0.5469 +8.9 | 13/17 | 0.0245% | 0.0176%
10 docs: 0.4898 0.5082 +3.7 | 12/22 | 0.4159 | 0.1532
15 docs: 0.4435 0.4571 +3.1 | 14/23 | 0.2024 | 0.1007
20 docs: 0.4051 0.4235 +4.5 | 18/25 | 0.0216x | 0.0083x
30 docs: 0.3707 0.3755 +1.3 | 16/34 | 0.6962 | 0.3222
100 docs: 0.2500 0.2655 +6.2 | 28/39 | 0.0047x | 0.0005%
200 docs: 0.1903 0.1932 +1.5 | 18/30 | 0.1808 | 0.1226
500 docs: 0.1119 0.1128 +0.8 | 21/37 | 0.2557 | 0.1615
1000 docs: 0.0687 0.0684 —0.4 | 16/33 | 0.5000 | 0.4432
R-Precision: 0.2876 0.2928 +1.79 | 19/34 | 0.3038 | 0.1485

4.5 Discussion
This chapter introduced the language modeling approach to text retrieval. A key
component of this approach is the estimation of the document model probabilities.
The smoothing experiments show that improving estimation of the probabilities leads
to improved retrieval. This helps to provide proof of concept of the language modeling
approach since improved estimation has the effect that the model predicts.
Compared to the vector space model, the language modeling approach shares the

virtue of simplicity, but is different in the following ways:

1. Queries and documents are treated as fundamentally different objects.

2. The semantics of the ranking function are an integral part of the model.

106

0.8 | T T T T

\ LM2 —+-
0.7 F \ .

\
\
05 N .

04 RN .

Precision

01|]

O 1 1 1 e
0 0.2 0.4 0.6 0.8 1
Recall

Figure 4.4. Comparison of the original language modeling approach to the new
language modeling approach on TREC queries 51-100 on TREC disk 3.

3. The model predicts methods of improving retrieval effectiveness.

Recall that in the vector space model, queries and documents are treated as objects
in the same space. However, the language modeling approach makes a distinction
between them. When one makes this distinction, the problem of estimation becomes
clearer. The document level statistics can be used to estimate a language model from
which the query generation probabilities, according to that model, can be calculated.
This requires that the estimates be robust to the possible variations in the rate of
occurrence of the query terms.

The contrasting view, where the estimation problem is viewed as the document
generation probability, could lead one to rely on the maximum likelihood estimator

exclusively, since it is essentially a perfect fit to each document.

107

Table 4.5. Comparison of the original language modeling approach to the new
language modeling approach on TREC queries 51-100 on TREC disk 3.

| | LModel | LModel2 | % chng. | I/D | Sign | Wilcoxon |

Relevant: 10485 10485
Rel. ret.: 6105 6107 +0.03 | 3/5 | 0.5000 | undef
Precision

at 0.00 0.7805 0.7807 +0.0 3/5 | 0.5000 | undef
at 0.10 0.5002 0.5038 +0.7 | 16/20 | 0.0059% | 0.0020%

at 0.20 0.4088 0.4093 +0.1 | 16/25 | 0.1148 | 0.0959
at 0.30 0.3626 0.3634 +0.2 | 13/18 | 0.0481x | 0.0238x
at 0.40 0.3064 0.3077 +0.4 | 16/24 | 0.0758 | 0.0198x

at 0.50 0.2512 0.2505 —0.3 | 11/25 | 0.3450 | 0.2059

at 0.60 0.1798 0.1777 —1.2 | 10/20 | 0.5881 0.3826
at 0.70 0.1109 0.1113 +0.3 | 9/12 | 0.0730 | 0.0356%

at 0.80 0.0529 0.0530 +0.1 5/8 | 0.3633 | undef

at 0.90 0.0152 0.0154 +0.9 1/2 | 0.7500 | undef

at 1.00 0.0004 0.0004 +0.4 1/1 | 0.5000 | undef
Avg: 0.2486 0.2488 +0.08 | 28/39 | 0.0047x | 0.0254%
Precision at:
5 docs: 0.5960 0.6000 +0.7 1/1 | 0.5000 | undef

10 docs: 0.5260 0.5260 +0.0 0/0 | 1.0000 | undef
15 docs: 0.5053 0.5093 +0.8 3/3 | 0.1250 | undef
20 docs: 0.4890 0.4920 +0.6 4/5 | 0.1875 | undef
30 docs: 0.4593 0.4613 +0.4 5/8 | 0.3633 | undef
100 docs: 0.3562 0.3568 +0.2 5/7 | 0.2266 | undef
200 docs: 0.2852 0.2859 +0.2 | 8/11 | 0.1133 | 0.0548
500 docs: 0.1881 0.1884 +0.1 6/9 | 0.2539 | undef
1000 docs: 0.1221 0.1221 +0.0 3/5 | 0.5000 | undef
R-Precision: 0.3013 0.3011 —0.08 | 8/12 | 0.9270 | 0.7349

Compared to more standard models of probabilistic retrieval, the language model-
ing approach shares the desirable property of explaining the semantics of the numbers.
The major difference is that in order to estimate indexing term assignment probabili-
ties, the traditional models tend to use heuristic techniques to estimate the probability
that a given document describes a particular concept. This make these model more
complex that the language modeling approach which is conceptually very simple.
The value of this simplicity will be demonstrated in Chapter 5 where query expan-
sion techniques will be developed that are fairly obvious extensions to the language

modeling approach.

108

CHAPTER 5
QUERY EXPANSION TECHNIQUES

This chapter begins with an introduction to query expansion techniques and their
role in retrieval systems. Next, the technique of relevance feedback is developed
using the language modeling approach in section 5.2. Empirical results comparing the
approach to an existing relevance feedback technique are also presented. A similar
technique is applied to document routing and empirical results are presented and
discussed.

Following that, is a discussion of techniques for query expansion without user
relevance judgments in Section 5.3. Several techniques are discussed, and two tech-
niques developed using the language modeling approach are described along with

experimental results.

5.1 Chapter Introduction

The ranking formula developed in Chapter 4 is only part of a complete retrieval
model. Information retrieval researchers have developed several techniques that im-
prove results considerably. For example, the INQUERY inference network model
supports a rich class of query operators including Boolean operators, proximity con-
straints, phrases, and passage level evidence. In addition, query expansion techniques,
such as relevance feedback and local context analysis, have been shown empirically to
be effective, and are an integral part of the INQUERY system. This chapter focuses
on query expansion techniques. The other components of retrieval systems will be

addressed in chapter 6.

109

5.1.1 Term Mismatch

Why query expansion? The fundamental notion of the language modeling ap-
proach to retrieval is that users can choose query terms that will be likely to appear
in documents of interest, and less likely to occur in the collection as a whole. How-
ever, often there will be some vocabulary mismatch between a query and a subset of
the documents of interest. For example, a user interested in documents about can-
cer therapies may enter the query: ‘cancer chemotherapy,” which contains two good
terms. However, documents that described ‘tumors’ or ‘malignancies’ treated with
‘radiation’ would be missed. IR systems can remedy this problem in two ways.

The first is relevance feedback. The query is first run as usual. The user then
marks some of the retrieved documents as relevant. The system then uses these
judgments to improve the initial query, usually by adding some features from the
relevant documents and possibly by re-weighting the initial query terms.

The second technique is to modify the query without relevance information. Fea-
tures can be selected according to the degree of co-occurrence with the initial query
terms. Several different techniques have been developed for co-occurrence based query
expansion and several of them will be discussed. For a more detailed discussion of

query expansion techniques see [67].

5.1.2 Query Expansion in the Language Modeling Approach

Query expansion techniques have a natural interpretation in the language model-
ing approach. Recall that the underlying assumption of this approach is that users
can choose query terms that are likely to occur in documents in which they would
be interested, and that separate these documents from the ones in which they are
not interested. Also note that this notion has been developed into a ranking formula

by means of probabilistic language models. Since probabilities can be estimated as

110

shown in Chapter 4 to, in some sense, evaluate terms chosen by the user, the same

probabilities can be used by the system to ‘choose’ terms in much the same way.

5.1.2.1 Interactive Retrieval with Relevance Feedback

Consider the relevance feedback case, where a small number of documents are
judged relevant by the user. The relevance of all of the remaining documents is
unknown to the system. The system can estimate the probability of producing terms
from each document’s probability distribution. From this, a random sample could
be drawn from that distribution, but this would be undesirable since, of course, the
most common terms would tend to be drawn.

However, it is also possible to estimate the probability of each term in the collection
as a whole using the term counts. The log ratio of the two can then be used to do
as the user does: choose terms likely in documents of interest but unlikely in the

collection as a whole. The details of this process are discussed in Section 5.2

5.1.2.2 Document Routing

In the routing case, a training collection is available with a large number of rel-
evance judgments, both positive and negative, for a particular query. The task is to
use the training collection to construct a query to be used on a second collection for
which relevance information is not available.

Since both relevant and non-relevant documents are known, the ratio method can
utilize this additional information by estimating probabilities for both sets. This
process is described in more detail in section 5.2.2. Once again, the task is to choose
terms associated with documents of interest and to avoid those associated with other

documents. The ratio method provides a simple mechanism to do that.

111

5.2 Relevance Feedback

As mentioned, modern retrieval systems can provide improved retrieval effective-
ness by the process of relevance feedback. In an interactive setting, the user poses an
initial query and then marks several documents in the resulting ranked list as relevant
to the query. The system then chooses features from these relevant documents to add

to the query based on the collection statistics and reruns the modified query.

5.2.1 The Ratio Method

Incorporating relevance feedback into the INQUERY model was a very difficult
problem and the subject of a PhD dissertation by Haines [17]. The solution developed
by Haines was to enhance the inference network model with a new class of nodes
called annotation nodes. For each query term, a structure consisting of three new
nodes, along with associated inferences, was added to the original query network.
The resulting network can be calculated in an efficient manner as shown by Haines
[17]. The only drawback with this formulation is that is quite complex.

Incorporating relevance feedback into the language modeling approach is consid-
erably easier. Recall that in the language modeling approach, the prototypical user
considers the documents of interest and chooses terms that will separate these doc-
uments from the rest of the collection. An analogous method will be used to choose
terms for relevance feedback. The judged documents can be used to estimate a lan-
guage model of the documents of interest using the method described in Chapter 4.
The probability of a term ¢ in the collection as a whole can be estimated, as before,
by %’;t, the collection frequency of ¢ normalized by the total number of tokens in the
collection.

These two probability models can then be used in manner similar to that used

by Beeferman et al. [8] for the purposes of topic boundary prediction. Recall from

112

section 2.3.4 that the method they used was to take the log ratio of a long range
language model vs. a short range language model in order to predict topic shifts.

In the relevance feedback case, the two estimates from above will be used in a
similar manner to predict useful terms. Terms can then be ranked according to the
probability of occurrence according to the relevant document models as compared to
the collection as a whole, i.e. terms can be ranked according to the sum of the log

ratio of each relevant model vs. the collection model.

Ly=> log (%)

deR .

where R is the set of relevant documents, P(t|My) is the probability of term ¢ given
the document model for d as defined in Chapter 4, cf; is the raw count of term ¢ in
the collection and cs is the raw collection size. Terms are ranked according to this
ratio and the top N are added to the initial query.

The results of feeding back one relevant document and adding five terms to the
initial query are shown in Figure 5.1. The baseline result was obtained using Rocchio
weighting [49] as described in Section 2.2.7.2. The language modeling approach is
slightly better at the top of the ranking but Rocchio is better at most of the points.

Also see Table 5.1. Notice the increased precision at the top of the ranking for
both techniques over the baseline reported in Table 4.2. Overall, the two techniques
tend to track each other reasonably well, though the Rocchio method outperforms
the language modeling approach at most levels of recall and on average.

The results of feeding back two relevant documents and adding five terms to the
initial query are shown in Figure 5.2 Once again, the baseline technique is Rocchio.
With two documents, the drop off in average performance that occurred with a single
document no longer occurs.

The alternative view of these results is shown in Table 5.2. Notice that the im-

provements of the language modeling approach over Rocchio are not statistically

113

\ LMRF —+-
09 4

08 |\ —

07 F | .

0.6 | \ —

Precision

05 | \ -
0.4 | + _
03 F \\\h\\ _
02 .

01 -

S
0 1 1 1 1 I —+

0 0.2 0.4 0.6 0.8 1
Recall

Figure 5.1. Comparison of Rocchio to the Language modeling approach using 1
document and adding 5 terms on TREC queries 202-250 on TREC disks 2 and 3.

significant. Again, as with a single document, the two techniques provide similar
performance at most levels of recall.

Figure 5.3 and figure 5.4 both show results of feeding back ten relevant documents
adding five and ten terms respectively. The tabular views are also included as tables
5.3 and 5.4. As in the previous experiments, the baseline technique is Rocchio.

Note that for five terms, recall, average precision and precision at several levels
of recall are significantly better using the language modeling approach. However,
it should be noted that ten relevant documents is a large number to expect from a
typical user. The results for ten terms are similar. Also note that both techniques
show improved results by the addition of more terms, as expected.

The main point to take away from this series of experiments is that a relevance

feedback technique that follows directly from the language modeling approach works

114

Table 5.1. Comparison of Rocchio to the Language modeling approach using 1
document and adding 5 terms on TREC queries 202-250 on TREC disks 2 and 3.

Rocchio | LMRF | % chng. | I/D [Sign | Wilcoxon

Relevant: 6501 6501

Rel. ret.: 3366 3270 —2.85 | 16/39 | 0.1684 | 0.3004

Precision
at 0.00 0.9694 | 0.9932 +2.5 2/2 | 0.2500 | undef
at 0.10 0.5346 | 0.4822 —9.8 | 21/44 | 0.4402 0.0707
at 0.20 0.4209 | 0.4070 —3.3 | 22/44 | 0.5598 | 0.2997
at 0.30 0.3484 | 0.3082 —11.5 | 19/43 | 0.2712 0.1413
at 0.40 0.2694 | 0.2365 —12.2 | 15/40 | 0.0769 | 0.1323
at 0.50 0.2156 | 0.1757 —18.5 | 12/36 | 0.0326x | 0.0434%
at 0.60 0.1478 | 0.1224 —-17.2 9/29 | 0.0307x | 0.0355%
at 0.70 0.0890 | 0.0633 —28.8 7/22 | 0.0669 | 0.0412%
at 0.80 0.0519 | 0.0281 —45.9 4/12 | 0.1938 | 0.0680
at 0.90 0.0135 | 0.0094 —-29.9 2/6 | 0.3438 | undef

at 1.00 0.0047 | 0.0060 +26.4 2/3 | 0.5000 undef
Avg: 0.2410 | 0.2147 —10.91 | 22/49 | 0.2841 0.0841
Precision at:

5 docs: 0.5878 | 0.5551 —5.6 | 13/30 | 0.2923 | 0.3036

10 docs: 0.5102 | 0.4776 —6.4 | 15/35 | 0.2498 | 0.2041

15 docs: 0.4803 | 0.4367 —9.1 | 15/37 | 0.1620 | 0.0861

20 docs: 0.4490 | 0.4102 —8.6 | 13/37 | 0.0494x | 0.0873

30 docs: 0.3891 | 0.3667 —5.8 | 21/43 | 0.5000 | 0.2024
100 docs: 0.2537 | 0.2327 —8.3 | 19/43 | 0.2712 | 0.0961
200 docs: 0.1835 | 0.1788 —2.6 | 20/42 | 0.4388 | 0.3399
500 docs: 0.1119 | 0.1070 —4.4 | 19/42 | 0.3220 | 0.1976
1000 docs: 0.0687 | 0.0667 —2.9 | 16/39 | 0.1684 | 0.3004
R-Precision: 0.2930 | 0.2647 —9.66 | 18/43 | 0.1802 | 0.0626

well without any ad hoc additions. This is further proof of concept of the language
modeling approach to IR.

Note that in most IR systems, relevance feedback techniques make use of term
weighting. No attempt was made to use term weighting in these experiments. This

matter is discussed in more detail in section 6.4.

5.2.2 Information Routing
Recall that, in the routing task, a training collection with relevance judgments,
positive and negative, is provided. The task is to develop a query that will perform

well on a test set of new documents. The language modeling approach to informa-

115

\ LMRF —+-
09 F .

08 | \\ i
07+ .
0.6 | b i

05 | D -

Precision

04 F + |
03 | .
0.2 | + i

01} N -

O 1 1 1 1
0 0.2 0.4 0.6 0.8 1
Recall

Figure 5.2. Comparison of Rocchio to the Language modeling approach using 2
documents and adding 5 terms on TREC queries 202-250 on TREC disks 2 and 3.

tion routing will use similar techniques to those used for relevance feedback. The
experiments described will show two different ratio methods. The first is identical
to the relevance feedback method described in section 5.2 where documents were ei-
ther relevant or unknown. The second method uses models of both the relevant and
non-relevant sets of documents. It will be shown that the negative information is
very useful in the context of the language modeling approach, just as it is in existing

approaches to routing.

5.2.2.1 Ratio Methods With More Data
In Section 5.2, the ratio method of relevance feedback was described. In this
section, the ratio method will be described in the context of the routing task. In

addition, a second ratio method will be developed to make use of the additional

116

Table 5.2. Comparison of Rocchio to the Language modeling approach using 2
documents and adding 5 terms on TREC queries 202-250 on TREC disks 2 and 3.

Rocchio | LMRF | % chng. | I/D [Sign | Wilcoxon

Relevant: 6501 6501
Rel. ret.: 3650 | 3590 | —1.64] 24/44] 0.7743 | 0.4351
Precision

at 0.00 0.9864 | 0.9908 +0.4 2/3 | 0.5000 | undef
at 0.10 0.5679 | 0.5874 +3.4 | 22/45 | 0.6170 0.2882
at 0.20 0.4703 | 0.5072 +7.8 | 26/46 | 0.2307 0.1361
at 0.30 0.3889 | 0.4013 +3.2 | 26/45 | 0.1856 0.2473
at 0.40 0.3115 | 0.3186 +2.3 | 23/40 | 0.2148 0.2726
at 0.50 0.2494 | 0.2652 +6.4 | 22/39 | 0.2612 0.2173
at 0.60 0.1778 | 0.1888 +6.2 | 17/33 | 0.5000 0.3116
at 0.70 0.1215 | 0.1099 —-9.6 7/25 | 0.0216% | 0.1264
at 0.80 0.0551 | 0.0608 +10.4 8/15 | 0.5000 0.4548
at 0.90 0.0156 | 0.0222 +42.2 4/6 | 0.3438 | undef
at 1.00 0.0093 | 0.0184 +98.6 2/3 | 0.5000 | undef
Avg: 0.2739 | 0.2825 +3.16 | 27/49 | 0.2841 0.2003
Precision at:
5 docs: 0.6735 | 0.7061 +4.8 | 21/36 | 0.2025 0.1853
10 docs: 0.5939 | 0.6102 +2.7 | 24/43 | 0.2712 0.2710
15 docs: 0.5388 | 0.5537 +2.8 | 21/40 | 0.4373 0.2218

20 docs: 0.5092 | 0.4939 —3.0 | 18/41 | 0.2664 | 0.4053
30 docs: 0.4456 | 0.4367 —2.0 | 19/44 | 0.2257 | 0.4744
100 docs: 0.2890 | 0.2853 —1.3 | 25/46 | 0.7693 | 0.5737
200 docs: 0.2067 | 0.2120 +2.6 | 27/43 | 0.0631 | 0.1509
500 docs: 0.1225 | 0.1200 —2.1 | 24/42 | 0.8600 | 0.4502
1000 docs: 0.0745 | 0.0733 —1.6 | 24/44 | 0.7743 | 0.4351

R-Precision: 0.3238 | 0.3264 +0.79 | 25/45 | 0.2757 | 0.3258

information available in the routing task. Empirical results will be shown in section
5.2.2.2.

As in the relevance feedback case, terms are ranked by the log ratio of the proba-
bility in the judged relevant set vs. the collection as a whole. These two term sets will
be used to construct queries as described below. In the results section, this method
will be referred to as ratio 1.

The second ratio method, referred to as ratio 2 in the results section, uses the
log ratio of the average probability in judged relevant documents vs. the average

probability in judged non-relevant documents as shown.

117

LMRF —+-
09 4

.
.
.
08 F '\ 4
.
.
\\
0.7 . .
\\
.
.
\\
0.6 .

05 | T -

Precision

0.4 | T]
03 F -
0.2 | .

01 i

0 1 1 1 1 I
0 0.2 0.4 0.6 0.8 1
Recall

Figure 5.3. Comparison of Rocchio to the Language modeling approach using 10
documents and adding 5 terms on TREC queries 202-250 on TREC disks 2 and 3.

L oy (Puoltld € R)
t T 8\ Putld e R)

P d Yaer P(t| M,

avg(t| € R) = d€|—(“d)
P D > = P(t|M
avg(t|d € R) = (1611—(“'1)

Recall that in the relevance feedback case, a small number number of documents
were known to be relevant but the relevance of the rest of the collection was unknown.
In the routing case, complete relevance judgments are available for the training col-

lection. Ratio method 2 makes use of this additional information.

118

LMRF —+-
09 F\ .

08 F]
0.7 .
06 - \\ -

05 F -

Precision

04 .
03 i
0.2 .

01t S -

O 1 1 1 1
0 0.2 0.4 0.6 0.8 1
Recall

Figure 5.4. Comparison of Rocchio to the Language modeling approach using 10
documents and adding 10 terms on TREC queries 202-250 on TREC disks 2 and 3.

5.2.2.2 Routing Results

Experiments were performed on the TREC 2 routing task. The training data was
TREC disks 1 and 2 and the test set was TREC disk 3. The queries were derived
from TREC topics 51-100. The initial queries consisted of the terms from the concept
fields. These queries were augmented by adding the top 20 terms as ranked by each
of the ratio methods. The results for these two augmented query sets are shown in
Figure 5.5. Notice that ratio 2 outperforms ratio 1, which is to be expected, since ratio
2 makes use of the non-relevance judgments in addition to the relevance judgments.
For purposes of comparison, the official UMass TREC 2 results are also included in
the graph. Notice that ratio method one performs better than the UMass run at the
high precision end of the curve, is approximately equal in the middle and drops below

at the high recall end of the curve. Ratio method 2 is better for most of the curve

119

Table 5.3. Comparison of Rocchio to the Language modeling approach using 10
documents and adding 5 terms on TREC queries 202-250 on TREC disks 2 and 3.

Rocchio | LMRF | % chng. | I/D [Sign | Wilcoxon

Relevant: 6501 6501
Rel. ret.: 3834 4124 +7.56 | 28/44 | 0.0481« | 0.0168%
Precision

at 0.00 0.9064 | 0.9083 +0.2 | 9/18 | 0.5927 | 0.6763

at 0.10 0.6134 | 0.7117 +16.0 | 32/42 | 0.0005+ | 0.0005%
at 0.20 0.5317 | 0.5701 +7.2 | 28/45 | 0.0676 | 0.0431x
at 0.30 0.4151 | 0.4875 +17.4 | 27/46 | 0.1510 | 0.0200%
at 0.40 0.3257 | 0.4054 +24.5 | 29/46 | 0.0519 | 0.0037%
at 0.50 0.2706 | 0.3198 +18.2 | 24/39 | 0.0998 | 0.0194%
at 0.60 0.2120 | 0.2384 +12.5 | 26/38 | 0.0168x | 0.0355%

at 0.70 0.1374 | 0.1364 —0.7 | 19/32 | 0.8923 | 0.7728
at 0.80 0.0731 | 0.0658 —10.0 | 12/20 | 0.8684 | 0.8047
at 0.90 0.0173 | 0.0175 +1.2 2/8 | 0.9648 | undef
at 1.00 0.0103 | 0.0051 —50.0 0/3 | 0.1250 | undef

Avg: 0.2943 | 0.3279 | +11.44 | 31/49 | 0.0427% | 0.0186%

Precision at:
5 docs: 0.7061 | 0.7347 +4.0 | 14/28 | 0.5747 0.2545

10 docs: 0.6306 | 0.6878 +9.1 | 23/36 | 0.0662 0.0176%

15 docs: 0.5728 | 0.6218 +8.6 | 25/33 | 0.0023% | 0.0160x

20 docs: 0.6337 | 0.5796 +8.6 | 29/40 | 0.0032% | 0.0110%

30 docs: 0.4810 | 0.5156 +7.2 | 26/39 | 0.0266% | 0.0230%

100 docs: 0.3169 | 0.3408 +7.5 | 26/41 | 0.0586 0.0284%
200 docs: 0.2251 | 0.2457 +9.2 | 25/42 | 0.1400 0.0576

500 docs: 0.1290 | 0.1367 +6.0 | 27/46 | 0.1510 0.0452%

1000 docs: 0.0782 | 0.0842 +7.6 | 28/44 | 0.0481x | 0.0168%

R-Precision: 0.3474 | 0.3773 +8.61 | 29/43 | 0.0158x | 0.0181%

dropping below the Umass run at the high recall end of the curve. Also see Table 5.5.
For purposes of comparison, the average precision of ratio method 1 approximately
ties the UMass results in TREC 2, one of the top performing systems that year.
Also notice that the average precision for ratio 2 is competitive with the best
systems in TREC to date. For purposes of comparison, the best routing average
precision result in any of the TREC evaluations is approximately 41% [26]. This
best ever result was obtained using a search based optimization of term weights. The
results presented here did not require any term weighting at all, nor were other sources
of evidence, such as proximity information, often used by systems in TREC. These

techniques may improve results further, but this question will be left for future work.

120

Table 5.4. Comparison of Rocchio to the Language modeling approach using 10
documents and adding 10 terms on TREC queries 202-250 on TREC disks 2 and 3.

Rocchio | LMRF | % chng. | I/D [Sign | Wilcoxon

Relevant: 6501 6501
Rel. ret.: 3933 4210 +7.04 | 35/45 | 0.0001% | 0.0013%
Precision

at 0.00 0.9478 | 0.9354 -1.3 6/10 | 0.8281 0.4392

at 0.10 0.6882 | 0.7242 +5.2 | 24/42 | 0.2204 0.1482
at 0.20 0.5509 | 0.5873 +6.6 | 27/45 | 0.1163 0.1169
at 0.30 0.4766 | 0.4789 +0.5 | 25/46 | 0.3294 0.3819
at 0.40 0.3608 | 0.4138 +14.7 | 30/46 | 0.0270x | 0.0037%
at 0.50 0.2829 | 0.3193 +12.9 | 30/45 | 0.0178x | 0.0153%
at 0.60 0.1973 | 0.2439 +23.6 | 28/39 | 0.0047x | 0.0164%
at 0.70 0.1242 | 0.1559 +25.5 | 22/35 | 0.0877 0.0442x
at 0.80 0.0650 | 0.0961 +47.9 | 13/21 | 0.1917 0.0315%
at 0.90 0.0203 | 0.0263 +29.4 5/9 | 0.5000 | undef
at 1.00 0.0094 | 0.0090 —4.6 0/2 | 0.2500 | undef
Avg: 0.3138 | 0.3393 +8.11 | 33/49 | 0.0106x | 0.0190%
Precision at:
5 docs: 0.7469 | 0.7837 +4.9 | 13/23 | 0.3388 0.2421
10 docs: 0.6653 | 0.6878 +3.4 | 20/37 | 0.3714 0.1709
15 docs: 0.6150 | 0.6354 +3.3 | 22/37 | 0.1620 0.1066
20 docs: 0.5755 | 0.5939 +3.2 | 27/46 | 0.1510 0.0987
30 docs: 0.5150 | 0.5306 +3.0 | 23/40 | 0.2148 0.1519
100 docs: 0.3300 | 0.3396 +2.9 | 31/44 | 0.0048x | 0.0405%
200 docs: 0.2356 | 0.2415 +2.5 | 26/43 | 0.1110 0.1102
500 docs: 0.1327 | 0.1391 +4.9 | 29/45 | 0.0362% | 0.0346%
1000 docs: 0.0803 | 0.0859 +7.0 | 35/45 | 0.0001x | 0.0013%
R-Precision: 0.3550 | 0.3813 +7.43 | 30/45 | 0.0178x | 0.0431%

These results provide more evidence that the language modeling approach is a good
model for retrieval since a technique that follows from this approach yields routing

performance competitive with the best results in the field.

5.3 Query Expansion Without Relevance Information

Query expansion techniques that do not make use of relevance information are
used to automatically add terms to a query in order to improve retrieval performance.
In the standard probabilistic models of IR, unsupervised query expansion techniques

are often justified by the association hypothesis. Essentially, if two terms s and ¢

121

0.9 T T T T

Ratiol -+-
0.8 F . Ratio2 -8-- 4

AR

O
5

07 | N -

0.6 4

Precision

04 \\\\\?“\ B

03 S]

S
ol

02 | -

*
/

0 1 1 1 1 B
0 0.2 0.4 0.6 0.8 1
Recall

Figure 5.5. Comparison of ratio methods one and two on TREC 93 routing task.

co-occur frequently, one can infer that documents about the concept represented by
term s are likely to be about the concept represented by term ¢ as well [67].

In the language modeling approach, inferences are not made as to what documents
are about and so the standard association hypothesis does not apply. However, what-
ever the documents are about, the language models being estimated can be used to
generate additional terms to augment the initial query. These terms should be highly
probable according to models of interest relative to their occurrence probability in
the collection as a whole if they are chosen from the top retrieved documents.

Query expansion techniques fall into two broad classes, namely global methods
and local methods. Global methods include association thesauri such as PhraseFinder
[31] and Latent Semantic Indexing [50]. Local methods include local feedback and

Local Context Analysis (LCA). The distinction between these two classes is that

122

Table 5.5. Comparison of ratio methods one and two on TREC 93 routing task.

One | Two | % chng. | I/D | Sign | Wilcoxon
Relevant: | 10485 | 10485
Rel. ret.: 7246 7599 +4.87 | 28/39 | 0.0047% | 0.0039%
Precision

at 0.00 | 0.8300 | 0.8525 +2.7 | 8/14 | 0.3953 | 0.1653
at 0.10 | 0.6712 | 0.7026 +4.7 | 28/42 | 0.0218% | 0.0047%
at 0.20 | 0.5752 | 0.6241 +8.5 | 32/48 | 0.0147x | 0.0020%
at 0.30 | 0.4953 | 0.5350 +8.0 | 30/48 | 0.0557 | 0.0060x
at 0.40 | 0.4259 | 0.4605 +8.1 | 27/50 | 0.3359 | 0.0535
at 0.50 | 0.3613 | 0.3983 +10.2 | 29/48 | 0.0967 | 0.0424%
at 0.60 | 0.2909 | 0.3229 +11.0 | 28/44 | 0.0481x | 0.0499x
at 0.70 | 0.2159 | 0.2411 +11.7 | 23/37 | 0.0939 | 0.0228x
at 0.80 | 0.1273 | 0.1575 +23.7 | 18/28 | 0.0925 | 0.0065%
at 0.90 | 0.0594 | 0.0639 +7.7 | 9/16 | 0.4018 | 0.2190
at 1.00 | 0.0055 | 0.0047 —14.9 1/3 | 0.5000 | undef
Avg: | 0.3543 | 0.3839 +8.36 | 34/50 | 0.0077x | 0.0007%
Precision at:
5 docs: | 0.6880 | 0.7040 +2.3 | 12/18 | 0.1189 | 0.2040
10 docs: | 0.6680 | 0.7020 +5.1 | 18/29 | 0.1325 | 0.0536
15 docs: | 0.6440 | 0.6840 +6.2 | 22/32 | 0.0251x | 0.0158%
20 docs: | 0.6360 | 0.6590 +3.6 | 21/36 | 0.2025 | 0.0720
30 docs: | 0.5987 | 0.6260 +4.6 | 22/34 | 0.0607 | 0.0246%
100 docs: | 0.4612 | 0.4888 +6.0 | 29/43 | 0.0158x | 0.0036%
200 docs: | 0.3660 | 0.3865 +5.6 | 28/41 | 0.0138% | 0.0063*
500 docs: | 0.2337 | 0.2452 +4.9 | 25/41 | 0.1055 | 0.0150%
1000 docs: | 0.1449 | 0.1520 +4.9 | 28/39 | 0.0047x | 0.0039x
R-Precision: | 0.3901 | 0.4171 +6.92 | 29/43 | 0.0158% | 0.0071x

global methods analyze the entire collection, while local methods concentrate on the
top retrieved documents for an individual query. It is local information that will
be focused on here. Specifically, the techniques of local feedback and Local Context

Analysis.

5.3.1 Local Context Analysis (LCA)

It was shown by Xu [67] that global methods, such as association thesauri, are
effective precisely because they find concepts from the top ranked documents. In other
words, local information is more useful than global information for query expansion.
Also, it was shown by Xu and Croft [68] that LCA is more robust than local feedback

with regards to the number of top documents to feed back.

123

Briefly, LCA can be described as follows. The initial query is run against a passage
database and the top N passages are retrieved. The value of N must be determined
empirically but, in experiments, LCA appears to be very effective over a very wide
range of values (anywhere from 30 to 100 passages works well) [67].

Given these top N passages, concepts (terms and phrases) will be chosen based
on their co-occurrence with the query terms in the top N passages. The formula used

to rank the concepts is the following [67]:

bel(Q, c) = H (0 + log(af(c, t;)) idf./ log(n))z’df,-

t;,€Q
with
af(c,ts) = ;j ftij fe;
idf; = min(1.0,log10(N/N;)/5.0)
idfe. = min(1.0,log10(N/N,)/5.0)

¢ a concept
fti; occurrences of t; in p;
fe; occurrences of ¢ in p;
N passages in the collection
N; passages containing %;
N, passages containing c

0 0.1 —small constant to prevent zero

This formula will rank concepts that co-occur with more query terms higher than
those that occur with fewer, and will give higher weight to rarer concepts co-occurring

with rarer query terms than for more common concepts and query terms. This formula

124

is clearly heuristic in nature, but it works very well. In Section 5.3.3, a probabilistic
technique similar to LCA will be developed. Note that LCA as developed by Xu
and Croft uses phrase and passage information [68]. The version developed here is
somewhat simplified and uses only document and term information. The starting
point of this method will be probabilistic local feedback which is outlined in the next

section (5.3.2).

5.3.2 Local Feedback

As mentioned in Section 2.2.8, the query expansion technique of local feedback
[5] is performed by assuming that the top n documents in the initial ranked list are
relevant and performing relevance feedback as usual. In Section 5.2 the ratio method
of relevance feedback was introduced where terms in the relevant set of documents

are ranked according to:

(t|Mq)
z log (o
deTy, cs
where T, is the set of the top n retrieved documents, P(t|M,) is the probability of
term ¢ given the document model as defined in Chapter 4, cf; is the raw count of

term ¢ in the collection and c¢s is the raw collection size. This formula will also be

used to choose terms for local feedback.

5.3.2.1 Local Feedback Results

The first experiment ranks the terms according to ratio method 1 (described in
Section 5.2). Table 5.6 shows the results of feeding back the top ten documents and
adding the top five terms to the initial query. Results improve at most levels of recall
and average precision is improved by 23% over the baseline result. The same result

is shown graphically in Figure 5.6.

125

Notice the slight drop in performance at the top of the ranking. This often hap-
pens in local feedback because some of the original top ranked documents were not
relevant, and so feeding them back introduces some bad terms to the query. A second
experiment was done that attempted to correct this problem.

Table 5.6. Comparison of baseline to unweighted local feedback.

Orig. LF | % chng. | I/D | Sign | Wilcoxon
Relevant: 6501 6501
Rel. ret.: 3364 3912 | +16.29 | 37/43 | 0.0000% | 0.0000%
Precision

at 0.00 | 0.7590 | 0.7396 —2.6 | 14/26 | 0.7214 | 0.5051
at 0.10 | 0.4910 | 0.5629 +14.6 | 32/43 | 0.0010% | 0.0007x
at 0.20 | 0.4045 | 0.4707 +16.4 | 30/45 | 0.0178% | 0.0033x
at 0.30 | 0.3342 | 0.4047 +21.1 | 33/44 | 0.0006x | 0.0004x
at 0.40 | 0.2572 | 0.3422 +33.0 | 30/42 | 0.0040% | 0.0000%
at 0.50 | 0.2061 | 0.2715 +31.7 | 29/39 | 0.0017x | 0.0003x
at 0.60 | 0.1405 | 0.2056 +46.3 | 24/33 | 0.0068% | 0.0003x
at 0.70 | 0.0760 | 0.1347 +77.2 | 24/28 | 0.0001x | 0.0000%
at 0.80 | 0.0432 | 0.0757 +75.2 | 15/19 | 0.0096x | 0.0010%

at 0.90 | 0.0063 | 0.0112 +79.1 5/6 | 0.1094 | undef

at 1.00 | 0.0050 | 0.0049 -1.9 2/3 | 0.8750 | undef
Avg: | 0.2233 | 0.2754 | +23.33 | 36/49 | 0.0007= | 0.0000
Precision at:
5 docs: | 0.5020 | 0.5714 +13.8 | 19/28 | 0.0436x | 0.0153x

10 docs: | 0.4898 | 0.5327 +8.7 | 18/30 | 0.1808 | 0.0510
15 docs: | 0.4435 | 0.4993 +12.6 | 24/37 | 0.0494x | 0.0058x
20 docs: | 0.4051 | 0.4704 +16.1 | 26/36 | 0.0057% | 0.0004x
30 docs: | 0.3707 | 0.4252 +14.7 | 26/38 | 0.0168x | 0.0010%
100 docs: | 0.2500 | 0.2994 +19.8 | 32/43 | 0.0010x | 0.0001%
200 docs: | 0.1903 | 0.2201 +15.7 | 30/42 | 0.0040% | 0.0004%
500 docs: | 0.1119 | 0.1284 +14.8 | 33/41 | 0.0001x | 0.0000x
1000 docs: | 0.0687 | 0.0798 +16.3 | 37/43 | 0.0000% | 0.0000
R-Precision: | 0.2876 | 0.3280 | +14.03 | 32/43 | 0.0010% | 0.0008x

The second experiment uses the model probability to weight the contribution
of each ratio to the sum. Table 5.7 shows the results of feeding back the top ten
documents and adding the top five terms to the initial query. Also see Figure 5.7.
Again, results improve at most levels of recall. The top point is slightly better but,
the average precision has only improved by approximately 9 percent over baseline,
so the additional weighting has caused the results to improve much less than the

unweighted local feedback on average. This means that while this method helps to

126

0.8 T T T T

\ LF —+-
0.7 |\ .

\
\\
0.6 \ .
\

~
N
~
- ~ -
. N
N
~

Precision
o
S
T
¥
1

03+ .

02+ \\+\\\ .

O 1 1 1 1 b
0 0.2 0.4 0.6 0.8 1
Recall

Figure 5.6. Comparison of baseline to unweighted local feedback.

correct the problem at the top of the ranking, it hurts performance overall. The
next experiment will augment local feedback in a different way that will correct the

problem at the top of the ranking, while maintaining good performance on average.

5.3.3 Extending Local Feedback with Co-Occurrence Information

The technique of local context analysis is arguably the most successful method
for unsupervised query expansion available. A complete language modeling analog to
LCA is beyond the scope of this work, but the technique described here takes a step
in that direction. One of the important differences between local feedback and LCA
is that LCA uses additional information about the co-occurrence of concepts with the
query terms. The starting point of the technique developed here is the ratio method

of local feedback described in Section 5.3.2, where each term is weighted by L;, the

127

Table 5.7. Comparison of baseline to weighted local feedback.

Orig. LF | % chng. | I/D | Sign | Wilcoxon
Relevant: 6501 6501
Rel. ret.: | 3364 | 3608 | +7.25 [31/44 | 0.0048x [0.0002*
Precision

at 0.00 | 0.7590 | 0.7567 —0.3 | 11/19 | 0.8204 | 0.4520
at 0.10 | 0.4910 | 0.5244 +6.8 | 28/42 | 0.0218x | 0.0092%

at 0.20 | 0.4045 | 0.4065 +0.5 | 22/44 | 0.5598 | 0.2456
at 0.30 | 0.3342 | 0.3485 +4.3 | 27/42 | 0.0442x | 0.0439x
at 0.40 | 0.2572 | 0.2918 +13.4 | 24/39 | 0.0998 | 0.0088x
at 0.50 | 0.2061 | 0.2356 +14.3 | 23/34 | 0.0288% | 0.0103x
at 0.60 | 0.1405 | 0.1807 +28.6 | 22/28 | 0.0019x | 0.0009x
at 0.70 | 0.0760 | 0.1037 +36.4 | 21/26 | 0.0012x | 0.0027x
at 0.80 | 0.0432 | 0.0618 +43.0 | 12/16 | 0.0384x | 0.0170%

at 0.90 | 0.0063 | 0.0126 | +100.8 4/5 | 0.1875 | undef

at 1.00 | 0.0050 | 0.0058 +16.8 2/3 | 0.5000 | undef
Avg: | 0.2233 | 0.2424 +8.55 | 33/49 | 0.0106 | 0.0035%
Precision at:
5 docs: | 0.5020 | 0.5551 +10.6 | 16/22 | 0.0262x | 0.0310%

10 docs: | 0.4898 | 0.5000 +2.1 | 15/29 | 0.5000 | 0.2411

15 docs: | 0.4435 | 0.4558 +2.8 | 19/32 | 0.1885 | 0.1798
20 docs: | 0.4051 | 0.4296 +6.0 | 20/32 | 0.1077 | 0.0444%
30 docs: | 0.3707 | 0.3939 +6.2 | 21/34 | 0.1147 | 0.0421x
100 docs: | 0.2500 | 0.2714 +8.6 | 29/43 | 0.0158x | 0.0107*
200 docs: | 0.1903 | 0.2024 +6.4 | 28/43 | 0.0330% | 0.0271x
500 docs: | 0.1119 | 0.1179 +5.4 | 27/40 | 0.0192x | 0.0032x
1000 docs: | 0.0687 | 0.0736 +7.3 | 31/44 | 0.0048% | 0.0002x
R-Precision: | 0.2876 | 0.2967 +3.14 | 25/44 | 0.2257 | 0.0376%

sum of the log ratio of the document probabilities in the top n documents vs. the
collection probabilities.

In order to incorporate co-occurrence information, a co-occurrence language model
will be estimated for the top retrieved documents. The event space of term co-
occurrences will be defined as the set of events consisting of token pairs occuring in
the top n documents. For example, if a query term ¢ occurs 5 times in a document
and a candidate expansion term c occurs 5 times this will count as 25 co-occurrences.
This is similar to Xu’s co-occurrence count [67]. These counts will be summed for
each (g,t) pair, i.e., for each query term paired with every other term in the top

retrieved documents, and for each query term ¢. The totals #(q,t) and #q will be

128

0.8 T T T T

WLF -+
0.7 |\ -

\
\\
0.6 \ .
\

\
05_ \ —
. \
N
\
\

Precision
o
S
T
<'£
1

0.3 | e .

02 | .

O 1 1 1 1
0 0.2 0.4 0.6 0.8 1
Recall

Figure 5.7. Comparison of baseline to weighted local feedback.

used to estimate p(t|q), the probability of ¢ occurring given an occurrence of ¢, as

follows:

#(q,1)
#q

p(tlg) =

This probability is used to weight the candidate terms as follows:

wy = HLt x p(tlq)
q

This product essentially adds a constraint to the local feedback technique used
earlier. Each term is weighted according to the co-occurrence probability. Again,
it should be pointed out that LCA has additional components not present in this

technique. These components include passage level, rather than document level, co-

129

occurrence statistics, phrases, and within-query weighting of the added features. It is
hoped that further development of this technique will eventually lead to a complete,

rigorous probabilistic description of LCA. However, this is left for future work.

5.3.3.1 Harper and van Rijsbergen’s Co-Occurrence Model

A related use of co-occurrence information was that developed by Harper and
van Rijsbergen, previously discussed in section 2.2.7.1. This work was an attempt to
relax the assumption of the independence of query terms in the estimation of the joint
distribution of query terms in relevant documents. The event space was the occurrence
of a term one or more times in a given document, i.e., within document term frequency
was not modeled. In order to approximate the dependence relationships in a tractable
manner, a tree was built with nodes representing each of the query terms. The edges
of the tree were weighted by the expected mutual information and the tree was chosen
that spanned all of the nodes and maximized the total expected mutual information
[27].

The extended local feedback technique described here differs from Harper and
van Rijsbergen’s work in ways. First, while Harper and van Rijsbergen used the
probability estimates to re-rank documents in the context of relevance feedback, the
task in extended local feedback was to choose new terms for query expansion without
relevance information. Second, the co-occurrence model used here accounts for the
number of within document co-occurrences, rather than just the presence or absence

of one or more co-occurrences in a document.

5.3.3.2 Extended Local Feedback Results

To test the new technique, TREC queries 202-250 were run against TREC disks
2 and 3 as before. The top ten documents were fed back and the top ten terms were
added to the query and the expanded query was rerun. The results are shown in

graphical form in Figure 5.8. and in tabular form in Table 5.8.

130

0.8 T T T T

\ EXILF -
07 F '\ .

~
N
N
05 ~ —
. ~
N

0.4 F g -

Precision

03t -

01|]

O 1 1 1 1 &
0 0.2 0.4 0.6 0.8 1
Recall

Figure 5.8. Comparison of baseline to extended local feedback.

Notice the improvement in recall, average precision and precision at all levels of
recall. Also notice that in comparison to the original local feedback run shown in
Table 5.6 the drop in precision at the top point has been eliminated and the results
have improved on average. The 24% improvement in average precision is lower than
the improvements reported by Xu for LCA, but, as mentioned, the current technique
does not use within-query term weighting, passage level evidence, or phrases. It is
likely that this information would improve the results, but this matter will be left for

future work.

5.3.4 Non-query Terms as Evidence
An alternative to query expansion in the language modeling approach is to use
co-occurring terms to obtain better estimates of the probability of each term. This

would require a language model to estimate p(¢q|D) where ¢ is a query term and D

131

Table 5.8. Comparison of baseline to extended local feedback on TREC queries
202-250 on TREC disks2 and 3.

Orig. | ExtLF | % chng. | I/D [Sign | Wilcoxon
Relevant: 6501 6501
Rel. ret.: 3364 3711 | +10.32 | 30/42 | 0.0040x | 0.0002%
Precision

at 0.00 | 0.7590 | 0.7654 +0.8 | 12/24 | 0.5806 | 0.3187
at 0.10 | 0.4910 | 0.5682 +15.7 | 29/42 | 0.0098% | 0.0012x
at 0.20 | 0.4045 | 0.4737 +17.1 | 29/42 | 0.0098% | 0.0033x
at 0.30 | 0.3342 | 0.3983 +19.2 | 30/42 | 0.0040x | 0.0003%
at 0.40 | 0.2572 | 0.3213 +24.9 | 27/39 | 0.0119x | 0.0007*
at 0.50 | 0.2061 | 0.2645 +28.4 | 27/36 | 0.0020% | 0.0005%
at 0.60 | 0.1405 | 0.2042 +45.4 | 27/33 | 0.0002% | 0.0001x
at 0.70 | 0.0760 | 0.1383 +81.9 | 19/24 | 0.0033% | 0.0005%
at 0.80 | 0.0432 | 0.0864 +99.7 | 13/17 | 0.0245% | 0.0011x

at 0.90 | 0.0063 | 0.0232 | +271.2 8/8 | 0.0039x | undef

at 1.00 | 0.0050 | 0.0100 | +102.8 2/3 | 0.5000 | undef
Avg: | 0.2233 | 0.2772 | +24.12 | 35/49 | 0.0019% | 0.0000%
Precision at:
5 docs: | 0.5020 | 0.6082 +21.1 | 20/26 | 0.0047x | 0.0021%
10 docs: | 0.4898 | 0.5490 +12.1 | 24/33 | 0.0068x | 0.0068%
15 docs: | 0.4435 | 0.5143 +16.0 | 26/37 | 0.0100% | 0.0015%
20 docs: | 0.4051 | 0.4745 +17.1 | 29/42 | 0.0098% | 0.0006x
30 docs: | 0.3707 | 0.4333 +16.9 | 28/45 | 0.0676 | 0.0021x
100 docs: | 0.2500 | 0.2922 +16.9 | 30/46 | 0.0270% | 0.0015%
200 docs: | 0.1903 | 0.2144 +12.7 | 30/46 | 0.0270% | 0.0016%
500 docs: | 0.1119 | 0.1251 +11.8 | 29/43 | 0.0158% | 0.0007x
1000 docs: | 0.0687 | 0.0757 +10.3 | 30/42 | 0.0040x | 0.0002%
R-Precision: | 0.2876 | 0.3186 | +10.76 | 29/45 | 0.0362% | 0.0115x

is a representation of the set of observed documents. One model that could be used
for this purpose is the exponential family studied by Della Pietra et al. [18]. Recall

from Chapter 2 that this family of models takes the following form:

erP)py(q|D)
2wD e)"f(D)Pd(Q|D)

p(g|D) =

In this case, pg(g|D) is a default estimate for the probability of a term given the
observation of a set of documents. Presumably this would be some function of the
estimates for p(q|My), the probability of generating ¢ from each document model as
described in Chapter 4, perhaps the average over the set in question. The feature

functions f(D) would take the form “term t occurs in document d with probability

132

p(t|My).” These features would be induced according to the algorithm described in
[18] and the parameter vector A would need to be estimated from the data.
Currently, the estimation problem for this distribution is too time consuming to
be practical for query expansion in an interactive or routing environment. In order
to develop this idea, a tractable approximation would need to be developed, or a
tractable multiple predictor model would need to be developed, but these matters are

beyond the scope of this thesis.

133

CHAPTER 6
ADDITIONAL ASPECTS OF RETRIEVAL

This chapter begins with an introduction to additional features used by retrieval
systems and additional problems associated with retrieval.

Following that, the use of proximity information is discussed and then, in Sec-
tion 6.2, a distinction is made between two different types of proximity information,
phrasal evidence and passage level evidence. These two sources of evidence will be
discussed in the context of the language modeling approach in sections 6.2.2 and 6.2.4
respectively.

Section 6.3 addresses the issue of Boolean queries and their interpretation in the
context of the language modeling approach. In addition, generalizations of Boolean
operators are discussed.

Finally, Section 6.4 discusses the problem of within query term weighting and the

implications that the language modeling approach has for this problem.

6.1 Chapter Introduction

So far, the language modeling approach to retrieval has been developed using only
single word features. This is more reasonable than one might first expect since query
terms tend to disambiguate each other. For example, given the query, “base ball bat
pitcher,” it is very likely that the user wished to retrieve documents about baseball,
even though each of the four words is ambiguous individually.

Nevertheless, retrieval systems use additional features including phrases, passage

level evidence, and Boolean operators to provide more effective retrieval. Making

134

use of these features requires, in general, a method of assigning appropriate weights.
Most retrieval system use some variant of ¢f.edf weighting. Recall that, for single
term features, tf is a function of the within document frequency of a term and idf is
a function of the number of documents in which a term occurs.

In the context of the language modeling approach to retrieval, the choice of feature
weights will often have a natural interpretation in terms of probability models. This
will be discussed for proximity features of various types and for Boolean features.
In addition, the problem of query term weighting, used in most modern retrieval

systems, will be discussed from a probabilistic perspective.

6.2 Proximity Information

The view taken here is that proximity information is used in two different ways
in information retrieval. For the purposes of discussion, these will be referred to as
phrasal evidence and passage level evidence. Both of these phrases can be somewhat
misleading and so more precise definitions are given below.

Both sources of evidence being referred to are statistical in nature, i.e. phrases
refer to combinations of words identified by occurrence statistics as opposed to actual
linguistic phrases. Likewise, passages refer to identifiable units of text which can be
either identified statistically as was done in Chapter 3, or simply fixed sized windows

of text.

6.2.1 New Features vs. New Models

These sources of evidence are distinguished by the following. Phrases will refer to
additional features of the documents. Their probabilities will be estimated in much
the same way as term probabilities are estimated now. On the other hand, passages
will be used to reduce ‘false hits’ in multi-topic documents by requiring query terms

to appear in proximity. That is, passage level evidence reflects the uncertainty about

135

topical cohesion in documents or, in some sense, the uncertainty about quality of the
segmentation imposed by the document boundaries.

These differences can be summed up as follows: phrasal evidence refers to the
estimation of the probabilities of an expanded set of features while passage level
evidence refers to the estimation of feature probabilities from an enhanced set of

document models. The methods of estimation will now be defined.

6.2.2 Phrasal Evidence

Phrasal evidence should be regarded as an extended feature set. In the language
modeling approach, this would mean that the probability of generating the query
would be the probability of generating each phrase rather than each word (or perhaps
in addition to each word).

For example, consider the phrase ‘black ice’ meaning a very thin coating of ice
on pavement. The phrase can be thought of as a lexeme, i.e., the two words to-
gether make up a single lexical item, because its meaning cannot be derived from the
meanings of the individual words. If one had a way of identifying phrases in queries
(including asking the user to identify them), they may be better features than the
words themselves.

In order to incorporate phrasal evidence, one needs a way of combining it with
the term based evidence. There are two ways one might do this. First, phrase
identification can be viewed as a segmentation problem analogous to the Chinese
segmentation problem [42]. The collection can be indexed by the segmented lexical
items that will treated in exactly the same way as terms. This may be acceptable
in a routing environment where the query is determined by system based on prior
relevance judgments. In this case, if a better feature set can be produced, the system
may be able to take advantage of it. Indexing in this manner follows one of the

indexing recommendations of Salton, previously described in Section 4.2. However,

136

indexing by phrasal features is only a good idea under the assumption that queries
and documents are fundamentally the same kind of object. When users are involved,
indexing by phrasal features is not a good idea, since it is likely that users will
not always agree with the automatic segmenter with respect to words and phrases.
Instead, an approach based on backoff models can be used. This approach would be

reasonable in both routing and interactive environments.

6.2.3 Backoff Models

One may wish to include phrasal information in order to enhance precision. For
example, if a user were to identify the phrase “South Africa,” in a query, it is likely
that the phrase would help the system return fewer false hits than the words “South”
and “Africa” individually. On the other hand, consider the phrase “information re-
trieval.” If one were to place a strict requirement on the phrase, documents mention-
ing “retrieval in text-based information systems” would be missed if they did not also
contain the phrase “information retrieval.” This problem was identified by Krovetz
as the “partial credit” problem.

Krovetz recommended linguistic analysis to determine cases where credit should
be assigned to individual components of a phrase [35]. Linguistic analysis may well
be appropriate, but it is not entirely clear how one would assign tf.2df weights to
the individual components, as well as to the phrase as whole, to maximize retrieval
effectiveness.

This is a difficult problem, but the language modeling approach suggests a solu-
tion. Backoff models allow the system to use the extra evidence in the phrase without

being hurt by it. The model is defined as follows for a two term phrase:

Plwywy| My) = Bop(wiwe| My) + B1p(wi| My) + B1p(w2|Mg) + Bop(default)

137

In this formula, p(w,wy|My) is the estimated probability of the two word phrase
given the document model. The probabilities p(w;|My) and p(ws|My) are the in-
dividual word probabilities given the document model and the (3; are the backoff
parameters. For a non-occuring phrase, this estimate “backs off” to the individual
word probabilities and, similarly, for non-occuring words, it “backs off” to a default
estimate. This model is analogous to the current single word method described in
chapter 4 where the collection probability is used as the default estimate.

The phrase probability will be a weighted average of the estimate of the phrase
as a whole, along with each term individually. This method has the advantage that
documents will score higher for containing the phrase but will still receive some credit
for the individual terms. Standard methods for the estimation of backoff model
parameters can be used to determine the weighting, as described in section 2.1.3. It
should be pointed out that any sort of proximity feature would fall under the heading
of what has been referred to here as phrasal evidence, and a backoff model could be
defined similarly for any of these features.

If one wished to perform linguistic analysis, as recommended by Krovetz, one
could incorporate this knowledge into the language models. For example, Krovetz
refers to words that appear in many semantically unrelated phrases as promiscuous
words, and recommends against assigning partial credit to such words when they
appear in a query as part of a phrase. If one had a method of identifying words
with this property (perhaps using mutual information statistics), one could build this
knowledge into the backoff scheme. The interpolation weights for the promiscuous

words would be lower than those for the less promiscuous words as follows:

Plwiwa| My) = Bop(wiwa|Mg) + Bipp(wi|Ma) + Bip(we|Ma) + Bop(default)

where, w; is a promiscuous word and w, is a non-promiscuous word. The in-

terpolation weight for wi, (i,, would be lower than $; the interpolation weight for

138

ws, as determined by the counts in related phrases normalized by the counts in all
phrases. Whether the promiscuity of phrase components is possible to identify, or
whether this property is useful for retrieval, is unknown. The point of this example
is that when one has knowledge about the characteristics of language, or perhaps
just an interesting idea, one can easily incorporate this knowledge, or this idea, into a
language model and, by means of the language modeling approach, into the process of
retrieval. This allows the idea to be evaluated in a controlled manner by comparing,
in this example, the results of the promiscuity model to the model that treats all

words identically.

6.2.4 DPassage Level Evidence

This section discusses a range of possible probabilistic techniques for the incorpo-
ration of passage level evidence into the retrieval process. Empirical studies will be
left for future work, and are discussed further in Section 7.2.6.

In order to incorporate passage level evidence, each document model can be viewed
as a mixture of individual passage models. The probability of producing the query
given the document model can then be a simple sum of the probabilities of producing
the query given each passage, divided by the number of passages, or it can be a
more complex mixture giving, for example, additional weight to the better passages.
Much like the phrasal evidence problem, one can view passage identification as a
segmentation problem. Using the method described in Chapter 3, one can identify
cohesive passages in the text and use a language model for each. One could also use

fixed sized passages which have been shown to perform well in practice [12, 1].

6.2.4.1 Sliding Window Passages
A natural extension to the fixed sized passage technique is to use shifting windows
in order to prevent error due to incorrect boundaries. This can be improved further

by means of a kernel style estimator where the width of the kernel is determined by

139

the desired passage size and the probability of individual words occurring in the same
passage will be determined by the kernel function.

As mentioned, it is also possible to use a weighted sum where better passages
contribute more to the score so that multi-topic documents with interesting sections
will still receive reasonable scores. In order to make this method more robust, a
backoff scheme can be implemented where the passage scores will be mixed with the
document score.

A related problem is that of passage retrieval where the task is to retrieve only
relevant passages rather than full documents. The techniques discussed here may
provide the means for effective passage retrieval. In order to test them, test collections
with passage level judgments would need to become available. This matter is discussed

further in Section 7.2.6.

6.3 Boolean Queries

It should be noted that the language modeling approach as currently defined es-
sentially implements a probabilistic Boolean AND over the query terms and a prob-
abilistic AND NOT over the non-query terms, assuming independence of terms. The
probabilistic AND is implemented as the product of the individual probabilities of
the event and the probabilistic NOT is defined as one minus the probability of the
event.

Implementation of probabilistic OR over two terms a and b takes the form:

(1.0 = ((1.0 = p(a)) x (1.0 —p(b))))

Arbitrarily complex Boolean features could, in principle be constructed from these
three operators, but it is not likely that users will have good intuitions for the likeli-

hoods of arbitrary Boolean features in documents of interest.

140

In order to support Booleans queries without being hurt by poor user intuitions,
one can give credit to documents that do not strictly match the Boolean query.
Previously, in Section 6.2.3, a similar problem was addressed for phrasal features.
In order to estimate the probability of a phrase, the use of a backoff model was
discussed which estimates the phrase probability from both the phrase statistics and
the statistics of the individual components.

In the current implementation, the query probability can be regarded as an AND.
For non-occuring terms, the collection probability is used as a backoff estimate for
each term. In general, one may wish to define backoff models for the different Boolean
combinations in order to prevent overly strict Boolean queries from excluding too
many documents, while still favoring those documents that conform to the strict

interpretation of the operators. This will be discussed further in Section 7.2.3.

6.4 Query Term Weighting

Within-query term weighting is used by most modern retrieval systems. The
language modeling approach, as currently defined, does not include term weighting.
However, there are extensions that can be made to the model to incorporate query
term weighting in a probabilistically justified manner. Two possibilities will be con-

sidered here.

6.4.1 Risk Functions

The current method of probability estimation uses the maximum likelihood proba-
bility and the average probability, combined with a geometric risk function. A simple
implementation of term weighting is to modify the risk function. This can be accom-
plished by means of a Bayesian prior over the term distribution which forces the less
important terms to be weighted more heavily by the average probability. This makes

the documents less distinguishable from each other based on occurrences of the less

141

important terms. For more important terms, the maximum likelihood term will be
allowed to dominate, making the more important terms better able to distinguish
between documents. The implementation of this idea would change the ranking for-
mula slightly. For a non-occurring term, the current ranking function estimates the
probability as CC—J;t, where cf; is the raw count of term ¢ in the collection and cs is the
the total number of tokens in the collection.

The change will be to mix the estimate for non-occuring terms with the mean in
the same way the maximum likelihood estimator is currently for terms that do occur.
The intuitive meaning of this idea is that the current risk function treats all terms
equally, but with prior knowledge (or prior belief) about the relative importance of
terms, one can vary the risk of relying on the mean according to the prior belief
of the term importance. For example, suppose a term is deemed to be completely
useless, the risk function would be modified so that all of the weight is assigned to
the mean. The result is that this term is assigned an equal probability estimate for
every document, causing it to have no effect on the ranking. A stopword such as ‘the’
would fall into this category. One can regard the differences in observed values as

pure noise in this case.

6.4.2 User Specified Language Models

Currently, queries are treated as a specific type of text produced by the user. One
could also allow the user to specify a language model for the generation of query text.
The term weights are equivalent to the generation probabilities of the query model.
In other words, one would generate query text according to the probabilities and,
conceptually, the query is the result of generating a large amount of query text which
could then could be processed using the current method. This probably makes more
sense in a routing environment where there is enough data from which to estimate

the probabilities, but it could conceivably be used for ad hoc retrieval if users have

142

intuitions about the probabilities. See Section 7.2 for additional remarks on this

point.

143

CHAPTER 7
CONCLUSIONS AND FUTURE WORK

This chapter begins with a discussion of topic segmentation. Following that,
future work regarding the retrieval model is discussed in Section 7.2. First, some
comments about user preferences regarding retrieval systems is presented in section
7.2.1. Following that, a discussion of probability estimators, a key concept for the
language modeling approach, is presented in Section 7.2.2. Boolean retrieval, first
discussed is Section 6.3 is discussed further in Section 7.2.3.

Next, additional comments regarding feature selection and weighting in general
are made in Section 7.2.4. Following that, a specific example is presented in Section
7.2.4.2. The chapter continues with a discussion of relevance feedback and routing in
section 7.2.5. Finally, the chapter concludes with a discussion of passage retrieval in

Section 7.2.6.

7.1 Text Segmentation

The new event detection task appears to be robust to the level of error in the
segmentation process. Further work is needed to determine whether this is true in
general. In any event, it may be desirable to achieve a lower error rate for user
interface purposes. In addition, the data for the study consisted of text and hand-
transcribed audio data. The segmentation of automatically transcribed audio data
may be more difficult. In the text case, it was shown that this problem can be

be solved by purely statistical means without resorting to expensive knowledge-based

144

approaches and it is likely that this would also be the case for automatically recognized
speech.

During the study, two complementary feature sets were identified: discourse fea-
tures and content features. Discourse features are any features that predict a break
regardless of the actual topic being discussed. Content features measure changes in
topic specific language. It was shown that these features are complementary and that
in combination they are more effective than either of them used alone.

It was also shown that Local Context Analysis can be used to provide an improved
set, of content features that do not require repeated words in order to predict topic
changes, whereas a technique such as text tiling [29] clearly does require repeated

words to predict boundaries effectively.

7.2 Information Retrieval

A novel way of looking at the problem of text retrieval based on probabilistic lan-
guage modeling has been developed. This model is simpler than many of the existing
probabilistic models because it does not require a separate model of indexing apart
from the retrieval model itself. This approach does not require heuristic methods of
estimation. The performance of this model on the retrieval task indicates that it per-
forms well and that improving the estimation techniques leads to improved retrieval
performance. In this model, the study of information retrieval becomes the study of
probability estimates. This allows the full power of probability theory and statistical
inference to be brought to bear on the retrieval task.

It was also shown that a relevance feedback technique derived from the language
modeling approach works as well as existing approaches to relevance feedback and
does so without relying on ad hoc or heuristic approaches. Similar results were shown

for the technique of local feedback. The language modeling approach will provide

145

effective retrieval and can be improved to the extent that the following conditions

can be met:

1. The language models are accurate representations of the data.
2. Users understand this approach to retrieval.

3. Users have some sense of term distribution.

Condition one has been met reasonably well by the approach described in Chapter
4. However, it is likely that the estimation can be improved.

Regarding point two, the language modeling approach can be explained to users
at an intuitive level and the understanding of it will facilitate the formation of bet-
ter queries. Users are typically instructed to pose natural language descriptions of
their information needs as queries. A user that understands the language modeling
approach will tend to think in terms of which words will help the system distinguish
the documents of interest from everything else. If users think in this manner they
will be able to formulate queries that will better express their information needs in a

manner useful to the retrieval system.

7.2.1 User Preference

It should be pointed out that while modern partial match retrieval systems con-
sistently outperform Boolean systems in terms of retrieval effectiveness, some expert
users do not like them. For example, reference librarians have reported that they do
not understand why some documents were retrieved by partial match systems [11].
Boolean systems give users a sense of control over the retrieval process. As men-
tioned, users are typically instructed to compose a query describing their information
need in natural language and the system will do the rest. Instructing users in the
art of choosing good query terms both gives them a sense of control, and helps them

provide the system with better queries.

146

Regarding point three, in order for users to identify useful words, they would
benefit from a sense of how the words are distributed in the collection. A variety of
both textual and graphical tools could be developed to help users get a better sense

of the distribution of terms and, if desired, of more general features.

7.2.2 Estimators

In the future, the estimation problem should be looked into further. For example,
in place of the histogram estimator, perhaps a kernel estimator [41] would be better.
Also the use of a geometric risk function, while a reasonable choice, could perhaps
be improved upon. A data transformation technique may be appropriate since the
maximum likelihood estimates are not normally distributed.

Finally the estimate of default probability should be addressed. As mentioned,
the current estimator could in some strange cases assign a higher probability to a non-
occurring query term. This could only happen in cases of very commonly occuring
terms, i.e., terms which are not likely to be useful, however, this problem should
be addressed in order to insure the robustness of the estimator in such cases. The
approach will be to apply a smoothing based estimator [6] that will guarantee a default
probability estimate that cannot exceed the lowest estimate assigned to a document

in which a given term occurs.

7.2.3 Generalized Boolean Operators

Section 6.3 discussed Boolean queries and introduced the idea of backoff models in
the context of Boolean queries to prevent overly strict Boolean queries from hurting
performance.

In Section 2.2.3, two classes of generalized Boolean operators were discussed. The
first was the P-Norm model, developed to support generalized Boolean retrieval for

the vector space model by Salton et al. [53]. The second was a family of similar

147

operators for the support of generalized Boolean retrieval for the INQUERY model,
known as the PIC operators, developed by Greiff et al. [24].

The P-Norm model is not a probabilistic model. The reason for its effectiveness
is that it adds an additional degree of freedom to the ranking formula. With an
appropriately set parameter, one can get better results unless the current ranking
formula is exactly optimal for the data in question. However, there is no principled
way to set the parameter or any justification as to why a parameter value determined
empirically on one data set should work on a new data set. On the other hand, the
PIC operators combine the ‘aboutness’ probabilities of features in a probabilistically
justifiable way. However, as with the P-Norm model, the parameters have to be set
empirically. Recall/precision experiments are done and the parameters are chosen
according to the results of those experiments.

Viewing generalized Boolean operators from the perspective of backoff modeling,
one could estimate the interpolation parameters from a set of Boolean queries with
relevance judgments. The statistics of the actual term occurrences vs. the strict
Boolean combination specified by the user can be used to determine an appropriate
weighting for partially satisfied Boolean queries. The resulting model would have the
intuitive meaning of accounting for the difference between the user’s intuition about
the presence of Boolean features in documents of interest vs. the actual occurrence.
Collecting a sufficient population of Boolean queries with relevance judgments would

be necessary to estimate a reasonable model.

7.2.4 Feature Selection and Weighting

Over the long term, the language modeling approach may prove useful for the
evaluation of feature selection and weighting techniques. For example, consider the
problem of Chinese text retrieval. The Chinese language is written without inter-word

delimiters such as whitespace. Most Chinese information retrieval systems make use

148

of a segmenter to predict the word boundaries. However one could also use a character
n-gram approach. The question is whether the added complexity of segmentation will

yield improved retrieval performance.

7.2.4.1 Recall/Precision Experiments

In order to answer that question, one could run recall /precision experiments com-
paring the segmenter to the baseline character n-gram approach. In running this ex-
periment, if the segmenter does not outperform the n-gram approach, the researcher
might conclude that segmentation is not useful. However, that is not the only pos-
sible explanation. Perhaps a different weighting scheme is needed to take advantage
the segmenter. The result of the recall/precision experiment does not inform the
researcher which of those two alternatives is correct, nor does it suggest how to deter-
mine the optimal weighting scheme for the segmentation based approach. However,
using the language modeling approach, one could determine the usefulness of the

word segmentation algorithm and the optimal weighting as follows.

7.2.4.2 Mixture Models

Assuming a probabilistic segmenter, the segmenter distribution can be used as
a language model. This model can be combined with a probabilistic n-gram model
(the baseline technique in the recall/precision experiment mentioned earlier) using,
for example, linear interpolation. The interpolation parameters can be adjusted us-
ing recall/precision experiments to determine if the segmenter is useful and, if so,
how to weight the features. Of course, linear interpolation may be the wrong tool
for the job. Exploratory analysis will be required to determine reasonable methods
of evidence combination for this class of experiments. When that has been deter-
mined, if segmentation is useful, there will be some range of parameters for which
retrieval performance improves. Moreover, that range will determine the optimal

feature weighting thereby answering both questions.

149

Using a similar approach with existing retrieval models is more difficult. When
one uses a mixture model in this manner, the feature set is an aggregate of character
n-grams of different lengths. Each character of the text can contribute to the score of
a document in more than one way, depending on the model. It is no longer clear how
one calculates the ‘term’ frequency or document frequency of these more complex
features but with the language modeling approach, the models themselves determine

the weighting for each document without further effort.

7.2.4.3 Stemming

A similar analysis could be done for any feature selection technique that can be
described by means of a probability model and most natural language processing
techniques can be described in this manner. For example, stemming is typically done
by conflating variant word forms to a single stem. This is certainly not the only way
to do stemming. Word morphology is an uncertain process due to sense ambiguity
among other considerations.

One question that has arisen in the work of Krovetz [35] is the optimal level of
‘aggressiveness’ of a stemmer i.e., given a word with multiple suffixes (or perhaps
prefixes), one can choose how many to remove. By removing suffixes aggressively, the
effect is to conflate more words to the same stem. Any choice one makes in this regard
is arbitrary. A more principled approach is to stem at all levels of aggressiveness and
to learn a backoff model of the stem and suffix space. This model can then be
combined with a character n-gram backoff model in much the same way as previously
described for the Chinese experiment and the results will indicate the usefulness of
the technique of stemming, an open question in the field of information retrieval to

date, as well as the appropriate feature weighting.

150

7.2.5 Relevance Feedback and Routing

The experiments already performed show that the language modeling approach
to relevance feedback and routing is a reasonable alternative to existing methods. In
the future, additional empirical study will need to be done to determine practical
considerations such as the number of terms to add to a query. In addition, the term
weighting methods discussed in section 6.4 will be incorporated into the relevance
feedback method and additional empirical studies will be performed to determine the

utility of these techniques in practice.

7.2.6 Passage Level Evidence and Passage Retrieval

Previous experiments with passage retrieval showed that considering the best pas-
sage in a document as an additional source of evidence improves retrieval effectiveness
[12, 1]. However, since the incorporation of Robertson’s tf, passage level evidence has
not yielded much of an improvement over baseline in experiments with the INQUERY
system [2]. It is not clear why a new if score would make passage level evidence less
useful. In order to answer this question, the techniques of passage retrieval sketched
in Section 6.2.4 will need to be fully developed.

Recall that in Section 6.2, passage level evidence was presented as a method of
modeling the uncertainty about topical cohesion in documents. Part of the difficulty
of determining the effectiveness of passage level evidence is that this uncertainty
cannot, in general, be measured. The approach taken in the TDT pilot study was to
assume that the original document boundaries were the ground truth for evaluation
of the segmenters, but, of course, it is the degree to which the boundaries are not

ground truth that would need to be modeled.

7.2.7 Simulating Passage Retrieval
Sanderson has developed an elegant solution to a different problem of uncertainty

modeling. The problem investigated was the effects of word sense ambiguity on re-

151

trieval. Sanderson investigated this question not by resolving word sense ambiguity, a
difficult problem, but by introducing additional ambiguity by means of what he called
‘pseudo-words.” A pseudo-word is a conflation of n random words. By performing
these conflations one can add a measurable amount of additional ambiguity to a
collection of documents to study the effects of sense disambiguation in a controlled
manner [56].

One could use a similar approach to add the ‘boundary ambiguity’ described ear-
lier. For example, starting with a set of documents judged relevant to a query, remove
the boundaries on either side of each document thereby adding a known amount of
unrelated text. One can then study the effects of passage retrieval in this controlled
setting to fully develop the methods described in section 6.2.4 and to determine their
relative effectiveness. Once conclusions have been drawn about passage level evidence
in the controlled setting, the question can be addressed empirically in the general set-
ting.

The same technique can be used for the evaluation of passage retrieval. The results
would only be approximate since the original documents might themselves not be
entirely cohesive, but such uncertainty can be modeled using an error metric such as
the one discussed in Section 3.2.3.1. These matters will be left for future work. It is
hoped that data with relevance judgments at the passage level will become available

in the future so that simulations will not be necessary.

152

BIBLIOGRAPHY

[1] Allan, James. Relevance feedback with too much data. In Proceedings of the
Nineteenth Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (1995), pp. 337-343.

[2] Allan, James. Personal communication, 1997.

[3] Allan, James, Carbonell, Jaime, Doddington, George, Yamron, Jonathan, and
Yang, Yiming. Topic detection and tracking pilot study: Final report. In Proceed-
ings of the Broadcast News Transcription and Understanding Workshop (1998),
pp- 194-218.

[4] Allan, James, Papka, Ron, and Lavrenko, Victor. On-line new event detection
and tracking. In Proceedings of the 21st Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (1998).

[6] Attar, R., and Fraenkel, Aviezri S. Local feedback in full-text retrieval systems.
Journal of the ACM 24, 3 (July 1977), 397-417.

[6] Bahl, Lalit R., Jelinek, Frederick, and Mercer, Robert L. A maximum likeli-
hood approach to continuous speech recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence (1983), 179-190.

[7] Barnett, James. Personal communication, 1995.

[8] Beeferman, Douglas, Berger, Adam, and Lafferty, John. Text segmentation using
exponential models. In Proceedings of Empirical Methods in Natural Language
Processing (1997).

[9] Bookstein, Abraham, and Swanson, Donald. Probabilistic models for automatic
indexing. Journal for the American Society for Information Science 25,5 (1976),
312-318.

[10] Buckley, Chris, Singhal, Amit, Mitra, Mandar, and Salton, Gerard. New retrieval
approaches using smart: Trec 4. In Proceedings of the TREC 4 Conference
(1995).

[11] Byrd, Donald. Personal communication, 1998.

[12] Callan, James P. Passage-level evidence in document retrieval. In Proceedings of
the Seventeenth Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (July 1994), pp. 302-310.

153

[13] Cleverdon, C. W., Mills, J., and Keen, M. Factors determining the performance
of indexing systems. Tech. rep., College of Aeronautics, Cranfield, 1966.

[14] Cooper, William S., Gey, Frederick C., and Dabney, D. P. Probabilistic retrieval
based on staged logistic regression. In Proceedings of the Nineteenth Annual
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (1992), pp. 198-210.

[15] Croft, W. Bruce, and Harper, David J. Using probabilistic models of document
retrieval without relevance information. Journal of Documentation 37 (1979),
285-295.

[16] Darroch, J., and Ratcliff, D. Generalized iterative scaling for log-linear models.
Annals of Mathematical Statistics 43 (1972), 1470-1480.

[17] David, Haines, and Croft, W. Bruce. Relevance feedback and inference networks.
In Proceedings of the Sizteenth Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (1993), pp. 2-11.

[18] Della Pietra, Stephen, Della Pietra, Vincent, and Lafferty, John. Inducing fea-
tures of random fields. IEEE PAMI 19, 3 (1997).

[19] Doddington, George. Topic detection and tracking evaluation. In Proceedings of
the Topic Detection and Tracking Workshop (October 1997).

[20] Dumais, Susan T. Latent semantic indexing (lsi), trec-3 report. In Proceedings
of the 3rd Text Retrieval Conference (TREC-3) (1994).

[21] Elliot, Robert J., Aggoun, L., and Moore, John B. Hidden Markov Models -
Estimation and Control. Springer-Verlag, 1995.

[22] Fuhr, Norbert. Models for retrieval with probabilistic indexing. Information
Processing and Management 25, 1 (1989).

[23] Ghosh, M. J., Hwang, T., and Tsui, K. W. Construction of improved estima-
tors in multiparameter estimation for discrete exponential families. Annals of
Statistics 11 (1983), 351-367.

[24] Greiff, Warren R., Croft, W. Bruce, and Turtle, Howard R. Pic matrices: A
computationally tractable class of probabilistic query operators. submitted to
ACM TOIS (1998).

[25] Harman, Donna. Overview of the fourth text retrieval conference. In Proceedings
of the 4th Text Retrieval Conference (TREC-4) (1996), pp. 1-24.

[26] Harman, Donna. Routing results. In Proceedings of the 4th Text Retrieval Con-
ference (TREC-4) (1996), pp. A53—A81.

154

[27] Harper, David J., and van Rijsbergen, Cornelius J. An Evaluation of Feedback
in Document Retrieval Using Co-occurrence Data. Journal of Documentation
34, 3 (Sept 1978), 189-216.

[28] Harter, S. P. A probabilistic approach to automatic keyword indexing. Journal
of the American Society for Information Science (July-August 1975).

[29] Hearst, Marti. Multi-paragraph segmentation of expository text. In Proceedings
of the 32nd Annual Meeting of the Association for Computational Linguistics
(June 1994).

[30] Hearst, Marti, and Plaunt, Christian. Subtopic structuring for full-length docu-
ment access. In Proceedings of the sizteenth Annual International ACM/SIGIR
Conference (1993), pp. 59-68.

[31] Jing, Yufeng, and Croft, W. Bruce. An association thesaurus for information
retrieval. Tech. Rep. 94-17, University of Massachusetts Computer Science De-
partment, 1994.

[32] Kalt, Thomas. A new probabilistic model of text classification and retrieval.
Tech. Rep. 78, CIIR, 1996.

[33] Knaus, Daniel, Mittendorf, Elke, and Shauble, Peter. Improving a basic retrieval
method by links and passage level evidence. In Proceedings of the 3rd Text
Retrieval Conference (TREC-3) (1994), pp. 241-246.

[34] Krovetz, Robert. Viewing morphology as an inference process. In Proceedings
of the Sizteenth Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (1993), pp. 191-203.

[35] Krovetz, Robert. Word sense disambiguation for large text databases. Tech.
rep., University of Massachusetts Ph.D. dissertation, 1995.

[36] Kupiec, Julian. Robust part-of-speech tagging using a hidden markov model.
Computer Speech and Language 6 (1992).

[37] Lafferty, John. Personal communication, 1997.

[38] Margulis, E. L. Modeling documents with multiple poisson distributions. Infor-
mation Processing and Management 29, 2 (1993), 215-227.

[39] Mittendorf, Elke, and Shéuble, Peter. Document and passage retrieval based on
hidden markov models. In Proceedings of the Seventeenth Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
(July 1994), pp. 318-327.

[40] Moffat, Alstair, and Zobel, Justin. Self-indexing inverted files for fast text re-
trieval. ACM TOIS 14, 4 (1996), 349-379.

155

[41] Parzen, Emmanuel. On estimation of a probability density function and mode.
Annals of Mathematical Statistics 33 (1962).

[42] Ponte, Jay M., and Croft, W. Bruce. Useg: A retargetable word segmentation
procedure for information retrieval. In Symposium on Document Analysis and
Information Retrieval 96 (SDAIR) (1996).

[43] Ponte, Jay M., and Croft, W. Bruce. Text segmentation by topic. In Proceed-
ings of the First European Conference on Research and Advanced Technology for
Digitial Libraries (1997), pp. 120-129.

[44] Rabiner, Lawrence. A tutorial on hidden markov models with selected applica-
tions in speech recognition. Proceedings of the IEEE 77 (1989), 257-285.

[45] Rabiner, Lawrence, and Juang, Biing-Hwang. An introduction to hidden markov
models. IEEE ASSP Magazine (January 1986), 4-16.

[46] Robertson, Stephen E. The probability ranking principle in ir. Journal of Doc-
umentation (1977).

[47] Robertson, Stephen E., and Sparck Jones, Karen. Relevance weighting of search
terms. Journal of the American Society for Information Science 27 (1977).

[48] Robertson, Stephen E., and Walker, S. Some simple effective approximations to
the 2-poisson model for probabilistic weighted retrieval. In ACM SIGIR (1994),
pp- 232-241.

[49] Rochio, Joseph J. Relevance Feedback in Information Retrieval. Prentice-Hall
Inc., 1971, ch. 14, pp. 313-323.

[50] S., Deerwester, Dumais, Susan T., Furnas, G. W., Landauer, T. K., and Harsh-
man, R. Indexing by latent semantic analysis. Journal of the American Society
for Information Science 41 (1990), 391-407.

[51] Salton, Gerard. Automatic Text Processing. Addison Wesley, 1989.

[52] Salton, Gerard, Allan, James, and Buckley, Chris. Approaches to passage re-
trieval in full text information systems. In Proceedings of the Sixzteenth Annual
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (1993), pp. 49-58.

[53] Salton, Gerard, Fox, Edward A., and Wu, Harry. Extended Boolean information
retrieval. Communications of the ACM 26, 12 (Dec. 1983), 1022-1036.

[54] Salton, Gerard, and Singhal, Amit. Automatic text theme generation and the
analysis of text structure. Tech. Rep. 94-1438, Cornell University Computer
Science Department, 1994.

156

[55] Salton, Gerard, Singhal, Amit, Buckley, Chris, and Mitra, Mandar. Automatic
text decomposition using text segments and text themes. In Proceedings of the
Seventh ACM Conference on Hypertext (March 1996), pp. 41-55.

[56] Sanderson, Mark. Word sense disambiguation and information retrieval. In
Proceedings of the Seventeenth Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (1994).

[57] Silverman, Bernard W. Density Estimation for Statistics and Data Analysis.
Chapman and Hall, 1986.

[58] Sproat, Richard, Shih, C., Gail, Willian, and Chang, N. A stochastic finite state
word segmentation algorithm for chinese. Computational Linguistics 22 (1990).

[59] Titterington, D. M., Makov, U. E., and Smith, A. F. M. Statistical Analysis of
Finite Mixture Distributions. John Wiley and Sons, 1985.

[60] Turtle, Howard, and Croft, W. Bruce. Efficient probabilistic inference for text
retrieval. In Proceedings of RIAO 8 (1991).

[61] Turtle, Howard Robert. Inference networks for document retrieval. Tech. rep.,
University of Massachusetts Ph.D. dissertation, 1991.

[62] van Rijbergen, Cornelius J. A theoretical basis for the use of co-occurrence data
in information retrieval. Journal of Documentation (june 1977), 106-119.

[63] Viterbi, Andrew J. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Transactions on Information Theory 13, 2
(1967), 260-2609.

[64] Wayne, Charles. Topic detection and tracking introduction. In Proceedings of
the Topic Detection and Tracking Workshop (October 1997).

[65] Wong, S. K. M., and Yao, Y. Y. A probability distribution model for information
retrieval. Information Processing and Management 25, 1 (1989), 39-53.

[66] Wu, Z., and Tseng, G. Chinese text segmentation for text retrieval achieve-
ments and problems. Journal for the American Society for Information Science

(October 1993).

[67] Xu, Jinxi. Solving the word mismatch problem through automatic text analysis.
Tech. rep., University of Massachusetts Ph.D. dissertation, 1997.

[68] Xu, Jinxi, and Croft, W. Bruce. Query expansion using local and global doc-
ument analysis. In Proceedings of the Nineteenth Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (Au-
gust 1996), pp. 4-11.

157

[69] Zelen, Martin, and Severo, Norman C. Probability functions. In Handbook
of Mathematical Functions with Formulas, Graphs, and methematical Tables:
National Bureau of Standards Applied Mathematics Series No. 55. U. S. National
Bureau of Standards, 1964, ch. 26, pp. 925—996.

158

