
A Patent Search and Classification System
Leah S. Larkey

Center for Intelligent Information Retrieval
Department of Computer Science

University of Massachusetts
Amherst, Mass 01003

larkey@cs.umass.edu

ABSTRACT
We present a system for searching and classifying U.S. patent
documents, based on Inquery. Patents are distributed through
hundreds of collections, divided up by general area. The system
selects the best collections for the query. Users can search for
patents or classify patent text. The user interface helps users
search in fields without requiring the knowledge of Inquery query
operators. The system includes a unique “phrase help” facili ty,
which helps users find and add phrases and terms related to those
in their query.

Keywords
Digital li braries, systems, information retrieval, text categoriza-
tion, classification, patents, applications.

1. INTRODUCTION
At the Center for Intelli gent Information Retrieval (CIIR) at the
University of Massachusetts we are working with the U.S. Patent
and Trademark Office (USPTO) on a project involving the re-
trieval and classification of U.S. Patent texts, patent images, and
trademark images.

This paper describes a web-based system for the retrieval and
classification of patent text that we have implemented for the
USPTO. The intended users for the system are patent examiners
and classifiers at the USPTO. The goal is to partially automate
two aspects of the routine work done by patent off ice personnel:
(1) searching for prior art, that is, finding existing patents related
to a claimed new invention and (2) assigning the appropriate pat-
ent class and subclass to patents to be issued.

Notable features of the system include:

• Large, Distributed Collection. The collection has about 1.5
milli on patents, about 55 Gigabytes of raw data, distributed
across 400 collections.

• Collection Selection. Collection selection technology chooses
the best collections for a query so only a limited number of
collections have to be searched.

• Fields. 50 fields are indexed, so users can search for patents
by a particular inventor, or assigned to a particular company,

etc.

• Choice of query syntax. The user interface allows users to
search via “natural language” queries, or boolean and field
operators, or form fill -ins to do field searches and boolean
combinations of them.

• Choice of text sources. A user can enter queries by typing
into the form, by browsing and selecting text from an ascii
file, or selecting a patent from the collection to use as a query.

• Choice of actions on text. The system can search or classify
the query.

• Phrase Help. A unique “phrase help” facilit y provides users
lists of phrases and terms related to query phrases, and allows
them to choose items from the list to add to their query.

• Phrase and Compound Handling. Automatic processing of
queries to handle compounds and phrases in natural language
queries.

In what follows we will first describe U.S. patent documents and
the USPTO’s patent classification scheme. Next, we will describe
the user interface and query modification our system carries out.
Finally, we will describe the search and classification components
of our system.

2. U.S. PATENTS
There are over 5 milli on U.S. patents, consisting of 100-200 giga-
bytes of text. (There are also more than 40 milli on pages of
bitmap images, making up 4-5 terabytes of data which we are not
searching here). The multidatabase system we describe here in-
cludes 1.5 milli on patents from 1980-1996. This is a lit tle over
one fourth of all U.S. utilit y patents, and fill s about 100 gigabytes,
55 of text and 45 of indexes. Our system also includes a smaller
single database covering two years of patents, 1995 and 1996,
consisting of around 220,000 documents and about 16 gigabytes
in text and indices.

Patents range in size from a few kilobytes to 1.5 megabytes. They
are represented in Greenbook format [11], which tags hundreds of
fields at two levels. We represent about 50 of these fields. A large
number of these fields are small and not text-li ke, containing
information like application number, patent number, dates of ap-
plication, of issue, number of figures. Another large number of
fields are small and contain specific pieces of text information,
like the names and addresses of the authors, assignees, patent
examiners, and patent attorneys. There are a few large narrative
text fields, which dominate the influence on natural language
queries:

• Abstract

• Background Summary

Copyright © 1999 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page or initial screen of the docu-
ment. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, re-
quires prior specific permission and/or a fee. Request permissions from
Publications Dept., ACM Inc., fax +1 (212) 869-0481, or permis-
sions@acm.org.

• Detailed Description

• Claims

As in many other real-world classification and retrieval domains,
patents present a severe vocabulary mismatch problem. Patents or
patent applications about similar inventions can contain very dif-
ferent terminology. To compound the problem, some inventors
intentionally use nonstandard terminology so their invention will
seem more innovative and to prevent search systems from finding
prior art. The claims in a patent are written in legalistic language
and can be quite different in style from the rest of the patent.
Idiosyncratic legal styles and terminology can lead to spurious
similarities between patents based on style rather than content.

2.1 U.S. Patent Classes and Subclasses
U.S. Patents have been manually classified by the USPTO into a
scheme containing around 400 classes and around 135,000 sub-
classes. The classes and subclasses form a hierarchy, with sub-
classes of subclasses of subclasses, etc. The tree goes as deep as
15 levels, but the depth varies greatly. In some domains there is
only one level of subclasses below a class, and in many places
there are only three or four levels. Subclasses at any level can be
assigned to patents. That is, even if a subclass has subclasses of
its own, the parent subclass can be assigned to a patent. The pat-
ents that USPTO personnel place into higher level, more general
nodes in the subclass tree, tend to be unusual patents that don’ t fit
well i nto a more specific subclass.

A patent belongs to one class/subclass called its original refer-
ence. In addition, it can have cross-references to other
class/subclasses. The average patent has three cross-references.
In the present system, we are attempting only to place patents into
their unique original reference subclass. The techniques we use
to classify patents are discussed in the Classification section be-
low.

Class Description
2 Apparel
4 Baths, Closets, Sinks, and Spittoons
5 Beds
7 Compound Tools
8 Bleaching and Dyeing: Fluid Treatment and Chemi-

cal Modification of Textiles and Fibers
12 Boot and Shoe Making
14 Bridges
15 Brushing, Scrubbing, and General Cleaning
16 Miscellaneous Hardware
19 Textiles: Fiber Preparation
23 Chemistry: Physical Processes
24 Buckles, Buttons, Clasps, etc.
… …
395 Information Processing System Organization
396 Photography
399 Electrophotography
… …

Table 1: A sample of patent classes

Table 1 shows a small part of the list of 400 patent classes. Table
2 shows some of the subclasses of one of those classes. In Table
2, hierarchical level is indicated by indentation. Note that the
subclass numbering scheme does not reflect the hierarchical rela-

tions among subclasses. In our classification research (reported
elsewhere [7]), we have been focusing on these speech-related
subclasses of class 395, Information Processing System Organi-
zation because they are particularly difficult. In the current sys-
tem, however, we use all 135,000+ subclasses.

The set of classes and subclasses is dynamic. A subclass can
contain up to 2000 patents. The patent off ice tries to keep it down
to a maximum of 200 by making new subclasses. In fact, the vast
majority of subclasses have fewer than 20 patents in them, which
makes training classifiers difficult. New inventions require the
continual creation of new subclasses. Periodically, the PTO car-
ries out a reclassification. Sometimes existing classes are subdi-
vided into new subclasses. Sometimes a set of subclasses of a
class are merged together, then subdivided again in a different
manner. After new subclasses are formed, the patents involved
may or may not be assigned to the new subclasses.

2.090 SPEECH SIGNAL PROCESSING
2.1 For storage or transmission

…
2.4 Recognition

2.41 Neural network
2.42 Detect speech in noise
2.43 Normalizing
2.44 Speech to image
2.45 Specialized equations or comparisons

2.46 Correlation
2.47 Distance
2.48 Similarity
2.49 Probabilit y
2.50 Dynamic time warping
2.51 Viterbi trelli s

2.52 Creating patterns for matching
2.53 Update patterns
2.54 Clustering

2.55 Voice recognition
2.56 Preliminary matching
2.57 Endpoint detection
2.58 Subportions
2.59 Specialized models

2.6 Word recognition
2.61 Preliminary matching
2.62 Endpoint detection
2.63 Subportions
2.64 Specialized models

2.65 Markov
2.66 Natural language

2.67 Synthesis
…

2.79 Application

…

Table 2: Some subclasses of class 395

Because of the dynamic nature of the subclass system, we ignore
the subclass information inside the Greenbook format documents,
and refer instead to an associated set of data files from the
USPTO. These files can be easily replaced with updated versions
in order to keep the subclass system current, without changing the
data in the collections of patents.

3. SYSTEM ARCHITECTURE
The system has a client/server architecture, with the data and
server software currently residing on a 4-processor Sun Ultra-
Enterprise running Solaris 2.5. The data consist of 401 collec-
tions of patents. One collection (the single database system) con-
tains all the patents from the years 1995 and 1996. The other 400
collections (the multidatabase system) cover the years 1980-1996,
divided up according to patent class. Different collections could
be at different sites, but they happen to be on the same server at
present. The Inquery client software (including the web server) is
also currently running on a Sun Solaris system. The user interface
runs in a web browser (Netscape or Internet Explorer), communi-
cating with the web server via CGI (Common Gateway Interface).

The user interface is written in Javascript and dynamic HTML.
The underlying search, collection selection, and classification
engines are written in C. The CGI portions of the system are
written in C, Perl, gawk, and shell scripts.

4. USER INTERFACE
The system includes a user interface that allows users to search
for patents or find subclasses in several different ways. Figure 1
shows the main screen of this interface. First, the user can issue a
query in so-called natural language, for example, “ I want tech-
nology that parents can use to control television content,” or “en-
ergy-eff icient windows.” Users can also enter a query using In-
query query operators, such as:

scroll bar #field(INVT Smith) #field(ASSG Microsoft)

to look for patents mentioning scroll bars assigned to Microsoft,
invented by Smith. The same query could otherwise be entered
using field fill -ins as shown in Figure 1. Other alternatives are to
enter a patent number or to take text from a file, via a browsing
mechanism.

The main screen in Figure 1 is what the user sees when the system
starts up, providing for a standard search. The user can click ra-
dio buttons to choose to search the single database for the years
1995 and 1996, or the multiple database system covering 1980-
1996. The tabs along the top allow them to select alternate ways
to search. Advanced search is li ke standard search, except that the
screen shows a larger number of specific fields. The patent num-
ber tab provides a form for the user to enter a particular patent
number.

To enter a query, the user either types the query into the text box
labeled “enter query below,” or clicks “ load from file” to browse
for a file. They can further constrain the query by specifying
terms in the illustrated field fill -ins. They can select various op-
erators for the field fill -ins, prefer, require, or reject.

Underneath the field fill -ins is a pop-up menu for the user to se-
lect how many documents they want displayed at a time. The
default is 10.

Once a user enters a query by any of the above means, any of
three actions can be taken. They can either search for related
patents, or attempt to find the correct patent subclass for the
query, or they can request “phrase help,” to help them get addi-
tional phrases for their query.

4.1 Query Processing
Recent research on automatic query expansion has shown slight
improvements, on average, when terms related to query terms are
automatically added to queries. For individual queries, however,
these techniques help in some cases and hurt in others [10][15].
In the present system, we decided to take a conservative approach
to query expansion and provide two separate query expansion
components, one automatic and one user-guided, as shown in
Figure 2.

Figure 1: Main Screen

The automatic component adds only phrases and compounds
whose terms are already in the query. The user-guided compo-
nent presents a wider-ranging set of additional terms and phrases
related to the query, but only adds them to the query if the user
explicitly selects them.

Both classes of additions depend upon data structures in which
information about phrases and their cooccurrences have been
precompiled, as explained below.

4.2 Automatic phrase and compound proc-
essing

Automatic additions take place only if the query in the query
window contains no explicit Inquery operators. The system con-
sults a compound dictionary and a phrase dictionary. If the query
contains a word sequence like eye glass that can be found in the
phrase dictionary, the phrase is added to the query, e.g. #phrase
(eye glass). The operator #phrase gives a higher score to docu-
ments in which the terms occur in proximity. If the word se-
quence can be found as a single word in the compound dictionary
(eyeglass), then the compound is added to the query inside a
synonym operator, indicating that either the compound or phrase
form would satisfy it. The right hand side of Figure 2 shows this
processing.

The phrase and compound dictionaries were built automatically
from patent text, using a set of heuristics aimed at finding noun

phrases. First, a large sample of text was extracted from the cor-
pus of 17 years of patents, consisting of titles, abstract, part of the
background summary, and the claims from each patent. The text
was segmented wherever items from a special list of delimiters
were found. The delimiters included stopwords, punctuation,
irregular verbs, company names, auxiliary verbs, and many other
categories. The terms in the resulting sequences were assigned
parts of speech using WordNet [5]. The sequences were retained
as phrases only if they satisfied rules defining noun phrases, and
met certain other criteria.

The dictionary of compounds was made from the phrase dic-
tionary by checking every two-word phrase and every hyphenated
term. If the combined form (without space or hyphen) was in the
WordNet dictionary, the combined form was added to the com-
pound dictionary.

4.3 User-guided Phrase Help
User-guided phrase help was added at the request of the patent
office. They were interested in a facility that would suggest class-
specific related phrases for a phrase or term that the user typed. If
the user clicks the Phrase Help button on the main screen, a
phrase help window appears, showing the patent class the system
selected for the phrase. (Class selection is based on the collection
selection algorithm described below and can be overridden by the
user). The user can choose to see phrases containing their query
phrase, or phrases associated with their query phrase. Check

Original Query

Add Phrases
glass
pair of glasses
eyeglass frame

eye glasses User-guided
Query
Expansion

eye glasses
pair of glasses
#syn(#1(eye glasses)
 eyeglasses)
#phrase(eye glasses)
#phrase(pair of glasses)

eye glasses
pair of glasses Automatic

Query
Processing

Final Query

Compound
Dictionary

Phrase
Dictionary

Phrase
Cooccurrences

Figure 2: Query Processing

boxes allow them to choose phrases from the list to add to their
main query. Examples are shown in Figure 3.

These lists come from a set of data structures made offline. These
structures allow us to access any phrases containing a query
phrase, and any phrases cooccurring with a query phrase. The
phrase cooccurrence data structures were built for each class as
follows. Any phrases from the global phrase dictionary described
above and any single terms and subphrases in those phrases were
candidates for inclusion. The phrases were subjected to “simple
stemming,” which combined upper and lower case, hyphenated
and non-hyphenated forms, and singular and plural forms. Each
patent in the class was divided into three sections: (1) title and
abstract (2) background summary and (3) claims. We accumu-
lated a list of all the phrase pairs that occurred together in a
document section and a count of how many times the pair oc-
curred. A cooccurrence score was then computed for each pair:

Cab-OaOb /N

Oa+Ob

where Cab is the number of occurrences of the phrase pair in the
class, Oa is the number of occurrences of one of the phrases in the
class, Ob is the number of occurrences of the other phrase in the
class, and N is the number of passages (sections) in the class.

Cooccurrence information was stored in Inquery databases of
pseudo-documents. The title of each pseudo-document was a
phrase, and the body text of each pseudo-document was a list of
phrases that cooccurred with the title phrase, provided the pair
met a frequency of occurrence threshold and a cooccurrence score
threshold. This implementation allowed us to find all the phrases
related in two different ways to a query phrase: phrases containing
the query phrase, and phrases cooccurring with a query phrase.

After the user has formulated a query and expanded it with
help if desired, they are ready to search for patents, or classify the
text of the query. (Classifying a query may seem strange, but the
subclass found in this way can provide an alternate way to find
patents relevant to a query.)

5. PATENT SEARCH
Both retrieval and classification components use Inquery, a prob-
abili stic information retrieval system based on Bayesian networks
that uses tf⋅idf weighting [2]. Inquery can take structured queries,
as exemplified in section 4. In addition to the #field operator
shown in that example, there are operators available to specify
Boolean operations, proximity and other constraints. The system
allows users to search either the single collection containing the
200,000 patents from 1995 and 1996, or the larger set of 1.5 mil-
lion patents from the years 1980-1996. This set is distributed
across 400 collections, divided up by patent class.

Figure 3: Phrase Help Screens

In searching a single collection, the query is submitted to the
server. The requested number of documents is returned and dis-
played in a ranked list, according to their tf⋅idf scores. The dis-
play includes links that the user can click to see parts of the text of
the patent.

5.1 Indexing Individual Collections
Searching by fields is made possible by the manner in which the
collections are indexed. Around 50 of the more important Green-
book tags were processed to mark fields in the patents. In addi-
tion to the usual index which stores the locations of each term in
the text, each collection also has a field index. The field index
stores information about terms in fields, so a user can look for a
query term (e.g. a name) in the Inventor field, for example. We
also took the standard steps of eliminating words on Inquery’s
standard 418 word stopword list, and combining related forms by
stemming the remaining words using the kstem stemmer [6].

5.2 Collection Selection
A search of the larger corpus is really a search of 400 different
collections. It would be too costly and time consuming to actually
perform a search on each of 400 collections. Instead, we use col-
lection selection, a technique for selecting the best collections for
a query.

Collection selection has grown out of the need to search large
numbers of collections distributed across networks [3][12]. How-
ever, the techniques are useful in dealing with large numbers of

collections whether they are distributed across many sites or at a
small number of sites. Collection selection attempts first to rank
collections according to their relevance to a query in much the
same way that documents are ranked according to relevance.
Then, documents are retrieved from only a small number of the
top-ranking collections.

This ranking of collections requires that a collection selection
index be constructed, in which each collection is treated as a vir-
tual document. The virtual document lists each term in the col-
lection with a count of how many documents in that collection
contain the term. The virtual documents are indexed as if they
were actual documents.

In searching the large corpus of 400 collections, the query is sub-
mitted to collection selection, which ranks the collections in order
of relevance to the query. Then documents are retrieved from the
best 10 collections via the same query, and ranked. Figure 4 il lus-

trates this two-stage search using collection selection.

6. CLASSIFICATION
The classification part of the system uses a k-nearest-neighbor
algorithm, in much the same form as we have used it in our re-
search on assigning of diagnostic codes to patients’ medical rec-
ords [9]. In general, the k-nearest-neighbor algorithm assigns a
category to an item by computing a distance (similarity measure)
between the item and a corpus of items of known category. It
assigns the new item to the majority category among the closest k

Ranked
List of
Retrieved
Patents

Select Best
Collections

Collection
of

Collections

MergeRetrieveQuery

Figure 4: Collection Selection

Figure 5: k-nearest-neighbor classification

Ranked
List of
Retrieved
Patents
with sub-
classes

Test
Doc
Rep

Search Retrieve

. .

.

Assign
Subclass

Rank Sub-
classes

Known
Subclasses

Patent
Collec-
tion(s)

known items [4]. Various refinements can be used to avoid ties
and take into account the ranks and distances to the nearest neigh-
bors. We use k-nearest-neighbor because it does not require much
training up front, and because it scales up well from small to large
data sets [13]. In the case of our patent system, the distance met-
ric is Inquery’s belief score.

After a query is formulated from a document to be classified, the
initial stages of k-nearest-neighbor classification are identical to
those for searching. The query is submitted to Inquery. The re-
trieval engine returns a ranked list of documents and scores.
Rather than simply counting the number of neighbors in each
subclass, we sum the scores of the neighbors in each subclass, and
then rank the subclasses by this sum. We then assign the top-
ranking subclass to the test document. This process is ill ustrated
in Figure 5.

The user sees a ranked list of patent subclass codes and the name
of the subclass.

6.1 Representation of Patent Documents for
k-nearest neighbor classification
A crucial component of k-nearest classification of patent text is
the formulation of a query from a patent or patent application.

One example of a query made from a patent for a motorcycle theft
alarm can be seen in Figure 6. It illustrates the use of two Inquery
operators, #wsum, a weighted sum, and #1, a proximity operator
requiring that terms occur adjacent to each other.

#wsum (1 11 alarm 10 switch 10 horn 10 device
6 motorcycle 6 kickstand 5 vehicle 5 button 4 lock
4 invention 4 circuit 4 battery 3 theft 3 require
3 cycle 3 close 2 weight 2 warn 2 usually
5 #1(kickstand switch) 5 #1(horn button)
5 #1(alarm device) 4 #1(lock switch) 3 #1(theft alarm)
3 #1(cycle theft alarm) 3 #1(cycle theft))

Figure 6: A Query Formed from a Patent

We have been investigating the following choices in converting
the document to such queries:

• What part of the patent to use,

• whether features should be single terms only, or terms and
phrases,

• how to determine which terms (or phrases) are the best ones,

• how many terms or phrases to include,

• how to weight the features in the vector,

• how to discover and represent the relative importance of dif-
ferent sections of the document.

In our previous work classifying patient medical records [9] and
student essays [8], we used the entire test document as a query.
For classifying medical records we used Inquery operators to
differentially weight different sections of the document. For pat-
ents we do not use the entire document, or even entire sections,
because many of them are too large and full of detail that does not
aid classification. Instead, the system selects certain sections
(fields) and portions of sections, then removes stopwords and
stems the remaining terms, as in indexing the documents. Then a
vector of terms and phrases is made from the reduced document,

and assign term weights that reflect both the relative importance
of the different sections the terms come from and the term fre-
quency in those sections.

The weights on features (stemmed terms and phrases) depend
upon what section of the patent it came from, and how many
times it occurred in that section. A weight for the section is mul-
tiplied by the number of occurrences of the feature in the section
to get a per-section feature weight; then the weights for that fea-
ture are summed across sections. The features are then ranked by
this weight, and a threshold (maximum number of terms) is ap-
plied to retain up to the threshold number of terms which have a
weight of at least 2.

When phrases were included as features, they were chosen as
follows. First, part-of-speech tags were assigned to the original
document via the jtag tagger [13], and any noun phrases were
flagged as potential phrases. As with the single terms, each
phrase received a weight consisting of the section weight multi-
plied by the number of occurrences of the phrase in that section,
and the weights for each phrase were summed across sections.
The phrases were ranked by this weight and a threshold (possibly
different from the threshold for single terms) was applied to retain
up to the threshold number of phrases with a weight of at least 2.

Concerning representation of patents for k-nearest-neighbor clas-
sification, we have settled for the present on a very small portion
of each patent document. Our research has shown the best per-
formance using a vector made up of the most frequent terms from
the title, the abstract, the first twenty lines of the background
summary, and the exemplary claim(s), with the title receiving
three times as much weight as the rest of the text. We are includ-
ing only single terms because we have not found that the addition
of phrases is better than using just single terms. This somewhat
surprising result is in contrast with what we have found for
searching, where phrases do improve performance, at least on
very short queries.

7. SYSTEM PERFORMANCE
7.1 Speed
Retrieval time depends upon many factors, including the load on
the server and the speed of the network, and the size of the query.
In our environment, it usually takes around 2 or 3 seconds to re-
trieve a list of documents from the single database in response to a
normal, short query. It takes around 5-10 seconds to retrieve a list
of documents from the multidatabase. The first query after a long
hiatus can take much longer – up to 30 seconds - when some large
data structures are not cached. This retrieval time includes re-
trieving and ranking the documents, and for the top-ranked docu-
ments, getting class and subclass information from an auxili ary
database, getting all the text of the documents, and formatting the
text for display, for example, highlighting query terms. If a user
then clicks on a link to see the text of a particular patent, the re-
sponse is well under a second.

Classification time is comparable to retrieval time because it is
dominated by the retrieval of k documents required for k-nearest-
neighbor classification. We currently use the single 1995-1996
collection for classification, so classification of a short query
takes 2 or 3 seconds. Classification of a patent-length document
takes around 45-60 seconds.

7.2 Accuracy
It is diff icult to measure how well the retrieval side of the system
performs. There is no corpus of queries with manual relevance
judgments to allow the measurement of recall and precision. We
are presently developing such a set of queries and judgments for
our work on collection selection.

We have not yet measured this system’s accuracy in classifying
patents into the complete set of 135,000 subclasses. We have
done a large amount of research measuring the accuracy of k-
nearest-neighbor classification on smaller sets of patent sub-
classes, and in comparing k-nearest-neighbor accuracy with that
of Bayesian independence classifiers, to be reported elsewhere.
On small sets (4 to 6 subclasses) we get performance on the order
of 80-100%. Usually the Bayesian classifiers perform a littl e
better than the k-nearest-neighbor on these sets.

The largest set we have tested so far is the entire set of 76 speech
signal processing subclasses under subclass 2.09 of class 395.
This is a very difficult set in the same way that the complete set is
diff icult. Many of the subclasses are extremely similar to each
other, and many of the subclasses have very littl e training data.
On this set, we get classification accuracy ranging from 25% to
32%, depending on many different factors in how the classifiers
are built . On the k-nearest-neighbor classifiers comparable to
those used in the present system, accuracy is 30.9%. It is diff icult
to interpret these numbers, however, because they take no account
of near misses. A misclassification accrues the same penalty re-
gardless of how close the automatically-assigned subclass is to the
correct subclass.

We often find that several subclasses closely related to the correct
assignment appear on the ranked list of subclasses presented to
the user. Such a list may be still be a significant aid to a classifier
even when the correct subclass is not ranked first. For this reason,
accuracy is not the best evaluation metric.

8. FUTURE WORK
We are currently engaged in evaluating the accuracy of this sys-
tem, as mentioned in the previous section.

In addition, there are several parts of this system which we be-
lieve could be improved, involving the phrase help subsystem and
the text classification subsystem.

We believe that building the phrase cooccurrence databases class
by class was too fine-grained. Some of the classes are very
closely related, and hence cover many of the same concepts. If
we were to combine some of them we would have a more stable
and reliable set of cooccurrence statistics. This combination
could be based either upon clustering, or could be done manually
with the PTO’s guidance about what classes can go together.

We are currently experimenting with Bayesian classifiers, and
intend eventually to combine these with the k-nearest-neighbor
classifiers, as in Larkey and Croft [9]. The Bayesian classifiers
should be able to distinguish closely related subclasses, due to the
selection of negative training examples from closely related sub-
classes. They can refine the selection made by the k-nearest-
neighbor classifier, which tries to distinguish each subclass from
all the other subclasses at once.

There are additional available sources of information that could be
used to aid text classification. In particular, each classification
schedule includes a classification index, which is a li st of phrases
and a pointer to an appropriate subclass. The list is far from ex-

haustive, but we believe that in cases of a short query which hap-
pens to match one of the index items, this might be a more accu-
rate means of finding the subclass.

9. Acknowledgments
Many people contributed to this system. Donald Byrd helped in
the design of the user interface, Kamal Souccar and Michael Phil-
lips contributed to the design and implementation of the user in-
terface. Margie Connell incorporated collection selection into the
system. Jinxi Xu and Fang-fang Feng contributed to the query
processing and phrase help faciliti es.

This material is based on work supported in part by the National
Science Foundation, Library of Congress and Department of
Commerce under cooperative agreement number EEC-9209623,
and also supported in part by United States Patent and Trademark
Office and Defense Advanced Research Projects Agency/ITO
under ARPA order number D468, issued by ESC/AXS contract
number F19628-95-C-0235.

Any opinions, findings and conclusions or recommendations ex-
pressed in this material are the author’s and do not necessarily
reflect those of the sponsors.

10. References
[1] Allan, J., Callan, J., Croft, W. B., Ballesteros, L., Broglio, J.,

Xu, J., and Shu, H. 1997. INQUERY at TREC-5. In Pro-
ceedings of The Fifth Text REtrieval Conference (TREC-5),
119-132. Gaithersburg, MD: NIST special publication 500-
238.

[2] Callan, J., Croft, W. B., and Broglio, J. 1994. TREC and
TIPSTER Experiments with INQUERY. Information Proc-
essing and Management, 31(3):327-343.

[3] Callan, J., Lu, Z., and Croft, W.B. 1995. Searching distrib-
uted collections with inference networks. In Proceedings of
the 18th Annual ACM-SIGIR International Conference on
Research and Development in Information Retrieval, 21-28.

[4] Duda, R.O, and Hart, P.E. 1973. Pattern Classification and
Scene Analysis. New York: John Wiley & Sons.

[5] Fellbaum, Christiane. 1998. WordNet: An Electronic Lexi-
cal Database, Cambridge: MIT Press.

[6] Krovetz, R. 1993. Viewing Morphology as an Inference Pro-
cess. In Proceedings of the 16th Annual International ACM-
SIGIR Conference on Research and Development in Infor-
mation Retrieval, 191-203. Pittsburgh: ACM Press.

[7] Larkey, L. S. 1998. Some Issues in the Automatic Classifi-
cation of U.S. Patents. In Learning for Text Categorization.
Papers from the 1998 Workshop. AAAI Press, Technical
Report WS-98-05, pp. 87-90.

[8] Larkey, L. S. 1998. Automated Essay Grading using Text
Categorization Techniques. In Proceedings of the 21st An-
nual International ACM-SIGIR Conference on Research and
Development in Information Retrieval, 90-95.

[9] Larkey, L. S., and Croft, W.B. 1996. Combining Classifiers
in Text Categorization. In Proceedings of the 19th Annual
International ACM-SIGIR Conference on Research and De-
velopment in Information Retrieval, 289-297.

[10] Mitra, M., Singhal, A., and Buckley, C. Improving Auto-
matic Query Expansion. In Proceedings of the 21st Annual

International ACM-SIGIR Conference on Research and De-
velopment in Information Retrieval, 206-214.

[11] U.S. Patent and Trademark Office. 1985. Patent Full-Text
APS File. Technical Report, Office of Information Products,
Administrator for Dissemination.

[12] Xu, J. and Callan, J. 1998. Effective Retrieval with distrib-
uted collections. In Proceedings of the 21st Annual Interna-
tional ACM-SIGIR Conference on Research and Develop-
ment in Information Retrieval, 112-120.

[13] Yang, Y. 1997. An Evaluation of Statistical Approaches to

Text Categorization. Technical Report, CMU-CS-97-127,
Computer Science Department, Carnegie Mellon University.

[14] Xu, J. and Croft, W. B. 1994. The Design and Implementa-
tion of a Part of Speech Tagger for English. CIIR Technical
Report, IR-52, Dept. of Computer Science, Univ. of Massa-
chusetts.

[15] Xu, J. and Croft, W.B. 1996. Query Expansion using Local
and Global Document Analysis. In Proceedings of the 19th

Annual International ACM-SIGIR Conference on Research
and Development in Information Retrieval, 4-11.

