
A General Language Model for Information Retrieval
Fei Song

Dept. of Computing and Info. Science
University of Guelph

Guelph, Ontario, Canada N1G 2W1

fsong@uoguelph.ca

W. Bruce Croft
Dept. of Computer Science
University of Massachusetts

Amherst, Massachusetts 01003

croft@cs.umass.edu

ABSTRACT
Statistical language modeling has been successfully used for
speech recognition, part-of-speech tagging, and syntactic parsing.
Recently, it has also been applied to information retrieval.
According to this new paradigm, each document is viewed as a
language sample, and a query as a generation process. The
retrieved documents are ranked based on the probabilities of
producing a query from the corresponding language models of
these documents. In this paper, we will present a new language
model for information retrieval, which is based on a range of data
smoothing techniques, including the Good-Turing estimate,
curve-fitting functions, and model combinations. Our model is
conceptually simple and intuitive, and can be easily extended to
incorporate probabilities of phrases such as word pairs and word
triples. The experiments with the Wall Street Journal and
TREC4 data sets showed that the performance of our model is
comparable to that of INQUERY and better than that of another
language model for information retrieval. In particular, word
pairs are shown to be useful in improving the retrieval
performance.

Keywords
Statistical language modeling, Good-Turing estimate, curve-
fitting functions, model combinations.

1. INTRODUCTION
Information retrieval systems can be classified by the underlying
conceptual models [3, 4]. Some of the commonly used models
are the Boolean model, the vector-space model [12], probabilistic
models (e.g., [11]), and the inference network model [3].
Recently, the statistical language modeling approach has also
been applied to information retrieval. In a statistical language
model, the key elements are the probabilities of word sequences,
denoted as),,,(21 nwwwP � or)(,1 nwP for short. Such

sequences can be phrases or sentences, and their probabilities
can be estimated from a large corpus of documents. Statistical
language modeling has been successfully used for speech
recognition, part-of-speech tagging, and syntactic parsing [2].

However, estimating the probabilities of word sequences can be
expensive, since sentences can be arbitrarily long and the size of
a corpus needs to be very large. In practice, the statistical
language model is often approximated by N-gram models.

Unigram:)()()()(21,1 nn wPwPwPwP �=

Bigram:)|()|()()(1121,1 −= nnn wwPwwPwPwP �

Trigram:)|()|()|()()(1,22,13121,1 −−= nnnn wwPwwPwwPwPwP �

The unigram model makes a strong assumption that each word
occurs independently, and consequently, the probabilit y of a
word sequence becomes the product of the probabiliti es of the
individual words. The bigram and trigram models take the local
context into consideration: for a bigram, the probabilit y of a new
word depends on the probabilit y of the previous word, while for
a trigram, the probabilit y of a new word depends on the
probabiliti es of the previous two words.

Several people have applied statistical language models to
information retrieval, including Ponte and Croft [10], Hiemstra
[5], and the BBN group [6, 8]. Although the detail s differ
between these approaches, the basic idea is the same. More
specificall y, we view each document as a language sample and
estimate the probabiliti es of producing individual terms in a
document. A query is treated as a generation process. Given a
sequence of terms in a query, we compute the probabiliti es of
generating these terms according to each document model. The
multipli cation of these probabiliti es is then used to rank the
retrieved documents: the higher the generation probabiliti es, the
more relevant the corresponding documents to the given query.

One obstacle in applying statistical language modeling to
information retrieval is the sparse data problem, since a
document is often small and its size and content are fixed. Our
solution is to propose a new language model based on a range of
data smoothing techniques, including the Good-Turing estimate,
curve-fitti ng functions, and model combinations. Our model is
conceptuall y simple and intuiti ve, and can be easil y extended to
incorporate probabiliti es of word pairs and word triples. The
experiments with the Wall Street Journal and TREC4 data sets
showed that the performance of our model is comparable to that
of INQUERY and better than that of Ponte and Croft’ s language
model for information retrieval. In particular, word pairs are
shown to be useful in improving the retrieval performance.

In the rest of the paper, we explain why the maximum li kelihood
estimate will not work for information retrieval due to the sparse
data problem. After that, we describe in detail our new language
model for information retrieval in section 3 and report our
experimental results on two test collections in section 4. In

section 5, we compare our model with the other language models
for information retrieval. Finally, we conclude our paper and
mention some of the future directions.

2. MAXIMUM LIKELIHOOD ESTIMATE
Given a document as a language sample, the question is how to
estimate the probabilities of individual terms? A straightforward
solution is to use the maximum likelihood estimate:

d

dt
mle

N

tf
dtP ,)|(=

where dttf , is the number of occurrences of term t in document d,

and dN is the total number of term occurrences in document d.

Such a simple solution is unli kely to work due to the sparse data
problem. It is common in statistical language modeling, but
more serious in information retrieval for two important reasons.
First, a document size is often too small . As a result, many terms
would be missing in a document, which imply that their
probabiliti es are zero. If such a term were used in a query, we
would always get zero probabilit y for the entire query, not
helpful for ranking the documents. A solution to this problem is
to allocate some probabilit y mass to the missing terms so that
their probabiliti es will always be greater than zero.

The other problem is that a document is fixed in size and
content. Unli ke a corpus, we can extend it with more documents
if we want. A document is just a document: once it is written, its
size and content are fixed. This makes it diff icult to distinguish
the effects of different missing terms in a document. As
mentioned in [5], a document about information retrieval may
have both terms “keyword” and “crocodile” missing, but for
different reasons. When allocating probabilit y mass to these
terms, somehow we feel that the term “keyword” should have
higher probabilit y than the term “crocodile”, since “keyword”
plays an important role in information retrieval. In other words,
not all missing terms are equall y li kely but we cannot do much
about them with the document itself.

The sparse data problem lead Ponte to explore the use of corpus
data to stabili ze a document model [9, 10]. More specificall y,
when a term does not appear in a document, the probabilit y of
the term in the corpus can be used as default. In cases where a
term does appear in a document, an average probabilit y is used to
further smooth the document model. The average probabilit y of
a term is the sum of all the probabiliti es of the term across the
documents in which the term occurs, divided by the number of
documents in which the term occurs. After that, the probabilit y
of a term in a specific document is combined with the average
probabilit y of the term through a geometric distribution (called
the risk factor). The intuiti on is that if a term occurs less
frequent than the average probabilit y in a document, we should
make an adjustment to bring to it closer to the average. The
advantage of this approach is that the risk factor is individuali zed
for each term, but the disadvantage is that it is ad hoc and leaves
littl e room for optimization. In addition, there is a potential
problem with the default probabiliti es: some missing terms (e.g.,
words with the characteristics of a stopword) may be assigned
higher values than the terms that actuall y appear in a document.

3. A NEW LANGUAGE MODEL FOR
INFORMATION RETRIEVAL
Our solution is to propose a new language model for information
retrieval based on a range of data smoothing techniques. First of
all , we smooth each document model with the Good-Turing
estimate, which is a discount model that allocates some
probabilit y mass to the missing terms. The current practice
shows that the Good-Turing estimate often gives the best result
among the available discount methods [7]; so it is also the
method of our choice. Secondly, we expand each document
model with the corpus model. The intention is to differentiate
the contributions of different missing terms. For example, in a
corpus about information retrieval, the term “keyword” will
li kely to happen more often than the term “crocodile”, so such
information can be used to adjust the probabiliti es for the
missing terms. Thirdly, we want to consider term pairs and
expand the unigram model of a document with the bigram model.
The intuiti on is that phrases such as term pairs would be useful
in information retrieval, but unfortunately the existing research
often did not show much improvement in the retrieval
performance [1]. We would li ke to see that in the context of
language modeling whether term pairs would bring any better
results. Finall y, there is the issue of combining different models.
As we have just explained, we have the models for each
document and the corpus, and further for each document, we
have the unigram model and the bigram model. Instead of
combining them in an ad hoc manner, we intentionall y keep them
separate and consider general ways of combining them.

3.1 Smoothing a Document Model with the
Good-Turing Estimate
To address the sparse data problem, we need to allocate some
probabilit y mass to the missing terms. In the Good-Turing
estimate [7], this is done by adjusting the raw tf scores:

Here, Ntf is the number of terms with frequency tf in a document,
and E(Ntf) is the expected value of Ntf. Then, the probabilit y of
a term with frequency tf is defined as tf* /Nd, where Nd is the total
number of terms occurred in document d. In particular, when tf
= 0, tf* is reduced to E(N1)/E(N0) and the probabilit y mass
allocated to a missing term becomes E(N1)/E(N0)Nd.

Since a document is fixed in size and content, obtaining E(Ntf) is
almost impossible. In practice, we may hope to substitute the
observed Ntf for E(Ntf). This creates two problems. For the
terms with the highest frequency tf, their probabiliti es will be
zero, since Ntf+1 will always be zero. Furthermore, due to the
small size of a document, the number of terms in some middle
frequency levels may also be too small or even zero, resulting in
an unstable or anomaly distribution.

One solution to these problems is to use a curve-fitti ng function
to smooth the observed Ntf’ s for the expected values. Table 1
shows a typical term distribution for a large corpus, taken from
[7]. Obviously, a li near li ne will not fit the distribution properly.
On the other hand, a simple geometric (exponential) curve will
not fit the distribution either: Although Ntf decreases very quickly
at the beginning, it slows drown considerably as tf gets much

)(

)(
)1(1*

tf

tf

NE

NE
tftf ++=

higher. After a number of experiments, we have developed a
greedy algorithm that uses a geometric distribution with a nested
logarithmic exponent. The level of nesting is optimized for each
document model until no further improvement can be made.
Thus, curve-fitti ng and Good-Turing estimate together provide us
with the first smoothing step towards building a suitable
language model for a document.

Table 1. A Typical Term Distribution for a Large Corpus

tf Ntf tf Ntf

0 74,671,100,100 5 68,379

1 2,018,046 6 48,190

2 449,721 7 35,709

3 188,933 8 27,710

4 105,668 9 22,280

Using a smoothed function S(Ntf) for E(Ntf), the probabilit y of a
term t with frequency tf in document d can be computed as
follows:

3.2 Expanding a Document Model with the
Corpus Model
A document model is not stable in the sense that there is a large
number of missing terms, and there can be anomaly distributions
of certain known terms. Using the same Good-Turing estimate,
we can also build a model for the entire corpus. Such a corpus
model will be stable, since it is obtained from a large number of
documents. Furthermore, it can help us differentiate the
contributions of different missing terms in a document. In a
corpus about information retrieval, for example, the term
“keyword” will li kely happen more often than the term
“crocodile”. As a result, it will be helpful to extend a document
model with the corpus model.

There are two general ways of combining language models: the
weighted sum approach (also called interpolation) and the
weighted product approach:

where ω is a weighting parameter between 0 and 1. Both
methods have been used in statistical language modeling for
information retrieval. The advantage of the weighted sum is that
the resulting probabiliti es are normali zed, that is, the total
probabilit y mass for the combined model is still equal to one,
whereas the weighted product is not normali zed.

As will be discussed in section 5, there are two important
differences between our model and the other language models.
First, we acquire document models independently according to

different sources and intentionall y keep these models separate.
Second, we consider generall y ways of combining different
models of a document by introducing parameters, which can be
further individuali zed and optimized for each document. We
believe that such a fine-tuning step for each document is an
attractive feature of our model, since it has a potential in further
improving the retrieval performance and is not available in most
of the existing retrieval models.

3.3 Modeling a Query as a Sequence of Terms
With reasonably smoothed document models, we can now
consider the process of query generation. This time we have a
choice of treating a query as a set of terms or a sequence of
terms. Treating a query as a set of terms is common in
information retrieval and is also used in Ponte and Croft’ s model
[10]:

Here, the first part is the probabilit y of producing the terms in a
query, and the second part is the probabilit y of not producing
other terms. Including the second part in the evaluation is
important, since the probabiliti es for each document model are
not normali zed.

Alternatively, we can treat a query as a sequence of terms. Each
term is viewed as an independent event, and the query as the
joined event. As a result, we can get the query probabilit y by
multiplying the individual term probabiliti es.

where t1, t2, …, tm is the sequence of terms in query Q. This is
our choice for two reasons. First, by treating a query as a
sequence of terms, we will be able to handle the dupli cate terms
in a query. Of course, one can introduce weights into the set
treatment of a query, but that will compli cate the computation.
Secondly, we want to be able to model phrases with local
contexts, and this can only be done by viewing a query as a
sequence of terms. This implies that we need to consider
bigrams and possibly trigrams as well i n our general language
model for information retrieval.

3.4 Combining the Unigram Model with the
Bigram Model
The combination of unigrams and bigrams is commonly handled
through interpolation in statistical language modeling:

where λ1 + λ2 = 1. This formula can be easil y extended to
include trigrams. The general idea is that by choosing
appropriate values for λ’ s, we will not lose information and the
performance may be further improved. In fact, such
interpolations can be modeled by hidden-Markov models, and
there exists an automatic procedure, called EM (Expectation
Maximization), that will l earn the λ’ s from a training corpus [7].
Thus, we can potentiall y individuali ze and optimize the
combination process by choosing suitable λ’ s for each document

)()1()|()|(tPdtPdtP corpusdocumentsum ×−+×= ωω

)1()()|()|(ωω −×= tPdtPdtP corpusdocumentproduct

∏ ∏
∈ ∉

−×=
Qt Qt

set dtPdtPdQP))|(0.1()|()|(

∏
=

=
m

i
isequence dtPdQP

1

)|()|(

)|,()|()|,(122111 dttPdtPdttP iitii −− ×+×= λλ

dtf

tf
GT NNS

NStf
dtP

)(

)()1(
)|(1++

=

model. In the following experiments, λ's are set empiricall y, but
in future we intend to use the EM algorithm to optimize these
parameters.

4. EXPERIMENTAL RESULTS AND
DISCUSSIONS
To demonstrate the effectiveness of our general language model,
we conducted experiments on two test collections. The Wall
Street Journal (WSJ) data is a medium-sized homogeneous
collection, with over 250 megabytes of information and 74,520
documents. The TREC4 data is a large heterogeneous collection,
with over 2 gigabytes of information and 567,529 documents.
The TREC4 queries were used for evaluating both collections,
since WSJ is actuall y part of the TREC4 collection. Table 2
below li sts the detailed statistics of these two test collections.

Four different retrieval systems are used in our experiments.
The baseline is the INQUERY system, and for the purpose of
comparison, we also implemented Ponte and Croft’ s language
model (LM). GLM(40) is the unigram version of our general
language model, where the combination between a document
model and the corpus model is handled through a weighted sum,
with the weighting parameter set to be 40% for the document
model. GLM2(40+90) is the combined model for unigrams and
bigrams, with the weighting parameter between a document
model and the corpus model set to be 40%, and the weighting
parameter for the bigram model set to be 90%.

Table 2. Statistics of the WSJ and TREC4 Data Sets

Collections WSJ TREC4

Data Size 253+ MB 2+ GB

#Documents 74,520 567,529

#Queries 49 49

Term Types 119,854 466,651

Term Tokens 20,061,761 144,714,632

Pair Types 5,606,265 23,654,736

Pair Tokens 19,987,241 144,147,212

As shown in table 3, the results of all the language models are
comparable to that of INQUERY. In addition, our unigram
model GLM(40) did 8.44% better than Ponte and Croft’ s LM
and our combined unigram and bigram model GLM(40+90) did
16.38% better than LM. This is a clear indication that phrases of
word pairs can be useful in improving the retrieval performance
in the context of language modeling.

Table 3. Experimental Results on the WSJ Data Set

Retrieval Methods 11-pt Average %Change %Change

INQUERY 0.2172 -

LM 0.2027 - 6.68% -

GLM(40) 0.2198 + 1.20% + 8.44%

GLM2(40+90) 0.2359 + 8.61% + 16.38%

For the large TREC4 data set, the results of the language models
are once again comparable to that of INQUERY, as shown in
table 4. However, the improvement of our models over Ponte
and Croft’ s LM is not as significant as that for the WSJ data set.
This is probably due to the heterogeneous nature of the TREC4
collection. In Ponte and Croft’ s model, there is a pathological
problem in using the default probabilit y: missing terms with
relatively high frequencies in a corpus are often assigned with
high default values, which could be problematic for a
homogeneous collection, but less serious for a heterogeneous
collection. Nevertheless, our models still did better than Ponte
and Croft’ s and the word pairs are still shown to be useful in
improving the retrieval performance.

Note that in [10], a significant improvement of LM model over
INQUERY was reported for the TREC4 data set. This is,
however, not observed in our experiments. One reason for this
difference may be the variation in preprocessing the raw TREC4
data set (e.g., different choices of SGML sections, stop words,
and stemming). A similar comment was also made in [8]
regarding the differences in retrieval performance.

Table 4. Experimental Results on the TREC4 Data Set

Retrieval Methods 11-pt Average %Change %Change

INQUERY 0.1917 -

LM 0.1890 - 1.41% -

GLM(40) 0.1905 - 0.63% + 0.79%

GLM2(40+90) 0.1923 + 0.31% + 1.75%

The 11-point average precision represents the average case. To
see the detailed changes, we also plot the precision values at the
different recall l evels. As shown in figure 1, our language
models improve the performance consistently across all the recall
levels. Note that our model has much potential for further
improvement, since all the combination parameters can be
individuali zed and optimized instead of setting them to be the
same for all the documents.

Figure 1. Detailed Results on the WSJ Data Set

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

LM

GLM(40)

GLM2(40+90)

5. COMPARISONS TO OTHER
LANGUAGE MODELS
Our model is similar to Hiemstra’s model [5] in that we also use
interpolation to expand a document model with the corpus
model. The difference is that Hiemstra did not smooth each
document model before the interpolation. In addition, Hiemstra
used the inverted document frequency (idf) to estimate a term
probabilit y in the corpus. This allows him to relate his model to
the well -known tf-idf formulation. However, the idf-based
estimation will l oose information about the corpus, since a term
may appear different times in different documents.

Our work was originall y motivated by Ponte and Croft’ s model
[9, 10]. However, instead of combining a document model with
the corpus model in an ad-hoc manner, we intentionall y keep
them separate and consider general ways of combining them. In
Ponte and Croft’ s model, the corpus term probabiliti es are used
as default for those terms that do not appear in a document. One
potential problem is that some missing terms (i.e., a word with
the characteristics of a stopword) may be assigned with higher
scores than the terms that actuall y appear in the document. Such
a pathological problem was recognized by Ponte and Croft, and
was left as future work. In cases when the terms do appear in a
document, they introduced the average probabiliti es to further
smooth a document model. The probabilit y of a term in a
specific document is combined with the average probabilit y of
the term through a geometric distribution (called the risk factor).
The advantage of this approach is that the risk factor is
individuali zed for each term, but the disadvantage is that it is ad
hoc and leaves littl e room for optimization. Finall y, a query is
treated as a set of terms rather than a sequence of terms, mostly
due to the fact that the probabiliti es are not normali zed.
Although the frequency information can be added by introducing
weights to different terms, that will compli cate the process and
make it diff icult to expand for phrases.

The BBN model [6, 8] uses a simple hidden-Markov model for
combining a document model and the corpus model. No
smoothing was used for individual documents, but the weighting
parameter between a document model and the corpus model
(called the general environment) can be trained and optimized
through a learning procedure. For the TREC data, they can use
the relevance judgement in the previous years for training, but
such training data may not be easil y available for other data sets.
Nevertheless, an idea similar to this may be borrowed in our
language model to individuali ze and optimize the weighting
parameters between a document model and the corpus model.

6. CONCLUSIONS AND FUTURE WORK
We have proposed a simple yet intuiti ve language model for
information retrieval. It is based on a range of data smoothing
techniques, including the Good-Turing estimate, curve-fitti ng
functions, and model combinations. Models obtained from
different sources are intentionall y kept separate, and as a result,
our model is easy to understand and expand. We also conducted
experiments on two test collections, and the results showed that
the performance of our model is comparable to that of INQUERY
and better than that of Ponte and Croft’ s language model. In
particular, word pairs are shown to be useful in improving the
retrieval performance. Our model can potentiall y be improved

by individuali zing and optimizing the parameters for combining
models of different sources. Furthermore, our model is rooted on
the solid foundation of statistical natural language processing.
Any new techniques developed for data smoothing can be easil y
incorporated into our model. In this sense, our model serves as a
general framework for language-based information retrieval.

For the future work, we are planning to add a number of
extensions to our language model for information retrieval. First
of all , we can individuali ze and optimize the combination of the
unigram and bigram models of a document through the hidden-
Markov training algorithm. Secondly, we can identify word pairs
within different boundaries of a document such as paragraphs or
sentences. In the current experiments, we simply take all the
word pairs in a document, which may not be meaningful for
those pairs that cross sentence boundaries. Thirdly, we can
explore automatic methods for combining a document model
with the corpus model so that the weighting parameters can be
individuali zed and optimized. Finall y, due to the simpli city of
our model, it opens up the door for many other extensions, such
as relevance feedback (also discussed in [9]), syntactic
preprocessing, and possibly sense-based information retrieval. In
particular, the syntactic preprocessing may involve spelli ng
correction, phrase normali zation (e.g., convert “ information
retrieval of biological science” and “ retrieval of biological
science information” to “biological science information
retrieval”), and possibly syntactic parsing to selectively apply
higher order N-grams to some longer phrases.

ACKNOWLEDGMENTS
The authors would li ke to thank Jay Ponte, Stephen Harding,
Margaret Connell , Mark Sanderson, Jinxi Xu, Jeremy Pickens,
and Lisa Ballesteros for their help and support.

This material is based on work supported in part by the National
Science Foundation, Library of Congress and Department of
Commerce under cooperative agreement number EEC-9209623.
Any opinions, findings and conclusions or recommendations
expressed in this paper are the authors and do not necessaril y
reflect those of the sponsors.

REFERENCES
[1] Callan, J.P., Croft, W.B., and Broglio, J. TREC and

TIPSTER experiments with INQUERY. Information
Processing and Management, 31(3): 327-343, 1995.

[2] Charniak, E. Statistical Language Learning. The MIT Press,
Cambridge MA, 1993.

[3] Croft, W.B., and Turtle, H.R. Text Retrieval and Inference.
In Text-Based Intelli gent Systems, edited by Paul S. Jacob,
pages 127-155, Lawrence Erlbaum Associates, Publi shers,
1992.

[4] Frakes, W.B., and Baeza-Yates, R. (editors). Information
Retrieval: Data Structures and Algorithms. Englewood
Cli ffs, New Jersey: Prentice Hall , 1992.

[5] Hiemstra, D. A Linguisticall y Motivated Probabili stic Model
of Information Retrieval. Second European Conference on
Digital Libraries, pages 569-584, 1998.

[6] Leek, T., Mill er, D.R.H., and Schwartz, R.M. A Hidden
Markov Model Information Retrieval System. TREC-7
Proceedings, 1998.

[7] Manning, C., and Schütze, H. Foundations of Statistical
Natural Language Processing. The MIT Press, 1999.

[8] Mill er, D.R.H., Leek, T., and Schwartz, R.M. A Hidden
Markov Model Information Retrieval System. In Proceedings
of SIGIR'99, pages 214-221. University of Cali fornia,
Berkeley, Aug., 1999.

 [9] Ponte, J.M. A Language Modeling Approach to Information
Retrieval. Ph.D. thesis, University of Massachusetts at
Amherst, 1998.

[10] Ponte, J.M., and Croft, W.B. A Language Modeling
Approach to Information Retrieval. In Proceedings of
SIGIR’98, pages 275-281. Melbourne, Australia, 1998.

[11] Robertson, S.E. The probabilit y ranking principle in IR.
Journal of Documentation, 33(4): 294-304, December 1977.

[12] Salton, G. Automatic Information Organization and
Retrieval. McGraw-Hill , 1968.

