
Discovering and Comparing Topic Hierarchies

Dawn Lawrie and W. Bruce Croft
Department of Computer Science

University of Massachusetts
Amherst, MA 01003 USA

Abstract

Hierarchies have been used for organization, summarization, and access to information, yet a lin-
gering issue is how best to construct them. In this paper, our goal is to automatically create domain
specific hierarchies that can be used for browsing a document set and locating relevant documents.
We examine methods of automatically generating hierarchies and evaluating them. To this end, we
compare and contrast two methods of generating topic hierarchies from the text of documents: one,
subsumption hierarchies, uses subsumption relations found within document sets, and the other, lex-
ical hierarchies, utilizes frequently used words within phrases. Our evaluation shows that subsump-
tion hierarchies divide documents into smaller groups, allowing one to find all relevant documents
without looking at as many non-relevant documents. However, such hierarchies are more likely to
contain no path to a relevant document.

1 Introduction
Hierarchies are an intuitive way to describe information. One can find organizational systems that utilize
hierarchies in the Library of Congress, Yahoo, and the personal file cabinet. They have been used as
a tool for classification, as in the field of Biology. They are also the structural basis of newspapers.
Because people find them easy to understand, finding ways to automatically generate hierarchies would
be advantageous, since such hierarchies can be used for summarizing and browsing large document sets.

Currently most hierarchies are created manually. Because so much work goes into their generation,
hierarchies are very general in order to meet the needs of a large number of users. Let us briefly consider
an individual with interests in gold mining, who uses Yahoo! (YAHOO), a typical general-purpose
hierarchy. There are two main locations in the hierarchy where interesting documents might be found
“Home � Recreation � Hobbies � Rocks, Gems, and Minerals � Prospecting” and “Home � Business
and Economy � Companies � Mining and Mineral Exploration � Precious Metals and Diamonds �
Gold”. The former is further classified into Organizations and Equipment. The latter is further classified
into Organizations; however, there are 98 documents under “Gold”, and only a short description, if
that, to distinguish them. As a general hierarchy, Yahoo! cannot afford to spend a disproportionate
amount of resources on organizing gold mining because that would mean another topic would have to
be neglected. From the user’s point of view, however, further classification would improve information
search. Automatically generating the hierarchy from the “gold mining” documents is one solution to this
problem.

Generating hierarchies is not a new goal for information retrieval, and there have been past attempts
using automatic techniques. One example is Crouch (1988), which automatically generates thesauri;
however, the generated thesaurus was not “human usable”. Another example is Scatter/Gather (Cutting
et al., 1992) in which clustering is used to create document hierarchies. However, because of the nature
of clustering, fully explaining the contents of each level in the hierarchy is difficult.

Recently, new types of hierarchies have been introduced that rely on the terms used by a set of documents
to expose some structure of the document collection. One such technique is lexical modification (Nevill-
Manning et al., 1999; Anick & Tipirneni, 1999; Anick, 1999) and another is subsumption, (Sanderson



& Croft, 1999). These two techniques are promising because they give fairly complete summaries of the
document set. However, the two methods use very different techniques to create the hierarchies. Lexical
modification relies on phrases within a document, and creates a hierarchy by using frequently used terms
within the phrases as parents. The full phrases are treated as children. Subsumption looks at both words
and phrases in the document set. It determines the probability that one term co-occurs with another. If a
term normally occurs with another term, then the latter term subsumes the former term.

These techniques work well for fairly homogeneous sets of documents, yet are less effective for larger
document sets. This is especially true for lexical modification because the number of key terms can
be immense. By choosing any most frequent subset, important relationships can be left out. However,
when the document set is more homogeneous, this becomes less of a problem. Subsumption finds more
subsuming relations in homogeneous groups of documents. This is probably because terms are more
likely to be used in the same way within similar documents.

Clustering has long been used to group documents. In this paper, we investigate the use of clustering to
improve hierarchies constructed with subsumption and lexical relationships.

Another focus of this paper is to address the issue of evaluation. As previous work has shown, evaluating
such hierarchies is a challenging task (Sanderson & Croft, 1999). Although hierarchies are designed
to be used by people, user studies generally give ambiguous results. Alternative methods of evaluation
would be very useful. In this paper, we develop two metrics of evaluation. The first measures the speed
with which relevant documents can be found, and the other quantifies the similarity among different
techniques of generating hierarchies.

In the next section we discuss previous work on clustering techniques and topic hierarchies. In Section 3,
an example is given of how topic hierarchies could be used to find relevant documents. In Section 4, the
creation of the hierarchies is explained. Our evaluation methods are discussed in Section 5, and results
are given in Section 6.

2 Background
2.1 Clustering methodologies
Clustering is a method of organization that has been practiced for many years and applied to many fields.
Within the field of information retrieval, two types of clustering have been developed: the clustering of
documents and the clustering of terms. Document clusters are created on the basis of common terms
among the documents. Term clusters are based on the documents in which they co-occur (Willett, 1988).
Clustering has been used within two different environments—browsing and retrieval. Scatter/Gather
(Cutting et al., 1992) is an example of using document clustering for browsing where users are presented
with clusters in order to locate relevant documents. Document clusters have been used for retrieval in
the SMART environment (Salton & McGill, 1983), where queries are first compared to document cluster
centroids and then with the individual documents of the clusters whose centroid similarity is sufficiently
large. Sparck Jones (1971) and Crouch, Crouch, & Nareddy (1990) are examples of using term clusters
for retrieval. Sparck Jones (1971) uses term clusters to find similarities among keywords in order to
identify terms that could be substituted in a query. In Crouch, Crouch, & Nareddy (1990) documents are
first clustered using the content term vector, a vector of the terms in the original query. The cluster that
is most similar to the content term vector is used to extend the query with non-content-term sub-vectors
from the documents in the selected cluster.

In this paper we use document clustering to create more homogeneous groups of documents. Two types
of document clustering have been explored: non-hierarchic and hierarchic. Non-hierarchic clustering
methods partition a document set into groups where similar documents are found in the same cluster and
are separated from dissimilar documents. The only way to be assured of achieving an optimal partition
in the non-hierarchic instance is to compare all possible partitions and choose the best. Because this



task is infeasible for any realistic document set, heuristics have been developed that produce sub-optimal
partitions. Generally this is done by partitioning a set of N objects into C clusters while minimizing
the total within-cluster sum of squares for each cluster. One example of this technique is the k-means
algorithm (Jain & Dubes, 1988). Hierarchic clustering methods incrementally divide or combine clusters.
This creates small clusters of very similar documents within larger clusters. One method is hierarchic
agglomerative clustering, where document clusters begin as singleton clusters and join in N-1 operations
to form a single cluster (van Rijsbergen, 1979).

2.2 Use of hierarchies for browsing
As in clustering, hierarchies can be created that are document oriented or term oriented. A document-
oriented hierarchy is one in which the documents are divided at each level in the hierarchy. A term-
oriented hierarchy uses terms within the documents to form a hierarchical structure. Documents are
attached to nodes in some predetermined fashion.

Document clusters such as those created using agglomerative clustering have been used to try to com-
municate information about document sets. Scatter/Gather (Cutting et al., 1992) is one such example
where users search for relevant documents by selecting multiple high level clusters. At each level in
the hierarchy, fewer documents remain to be re-clustered. The problem with this approach is that the
polythetic clusters used have, by definition, many terms in common but no specific term is required
for membership. Because of this, it is difficult to communicate the contents of a cluster. For example,
in Cutting et al. (1992) three clusters are identified: one about the Gulf War, one about oil sales and
stock markets, and a third about East and West Germany. When these three clusters are re-clustered, it
is revealed that somewhere within one of these clusters are documents about Pakistan, Trinidad, South
Africa, and Liberia.

Term-oriented hierarchies have been much more common and make up a large portion of the manually
created hierarchies such as MeSH (Medical Subject Headings) and Yahoo!. One area of research has
been finding ways to automatically index documents once the hierarchies are created. Examples of such
work include Koller & Sahami (1997) and Fuhr et al. (1993). Koller & Sahami (1997) uses Bayesian
classifiers to classify documents under pre-existing topics in the hierarchy. Fuhr et al. (1993) determines
the terms that should be used to index a document.

A drawback of using predefined hierarchies is that they are not adaptable to varying interests or to
changes in the document collection. It would be of great value to develop a way to create hierarchies
that would both fully communicate to people the contents of a document set, and not be predefined.
Term-oriented hierarchies seem better suited to this task.

2.3 Subsumption Hierarchies
One way to create a hierarchy of terms is using the notion of subsumption. Given a set of documents,
some terms will frequently occur among the documents, while others will only occur in a few documents.
Some of the frequently occurring terms will be ones that provide a lot of information about the topics
within the documents. In fact, there are some terms that broadly define the topics, and others that co-
occur with a general term and explain aspects of a topic. Subsumption attempts to harness the power of
these words.

A subsumption hierarchy as described in Sanderson & Croft (1999) has the following characteristics:

� a means of associating terms so that it reflects the topics covered within the documents,

� within the association, a parent term is more general than its child,

� a term subsumes all of its descendents so that transitivity holds,



A � B (pcfgs)
B � probabilistic C
C � D grammars
D � context free

Figure 1: Production rules for “probabilistic context free grammars (pcfgs)”.

� a child may have more than one parent.

These characteristics are achieved by defining subsumption as

�����	� 
��������� 1 and
����
�� �����������	� 
����

(1)

Thus x subsumes y if the documents in which y occurs are a subset or nearly a subset of the documents
in which x occurs. The second rule ensures that if both terms occur together more than 80% of the time,
the most frequently occurring term will be chosen as the parent. If the terms co-occur exactly the same
number of times, the two terms are combined into a single unit.

Once one has defined a notion of subsumption, the candidate terms must be selected. Sanderson & Croft
(1999) intended subsumption hierarchies to be used after retrieving documents using a query. In this case,
terms can be selected from both the document and the query. Query terms and terms from an automatic
expansion are a very good way to focus the hierarchy in this situation, since they describe the interest of
the user. Local Context Analysis(LCA) (Xu & Croft, 1996) is used for automatic expansion. Document
terms are selected by comparing a term’s frequency of occurrence in the set of retrieved documents
with its occurrence in the collection as a whole. Terms that are ‘unusually frequent’ in the retrieved set
compared to their frequency in the collection are selected. This list of terms is sorted based on score,
and the top N terms are designated for use in the subsumption hierarchy. Subsumption relationships are
found using O( ��� ) comparisons. Finally, extraneous relationships are removed. Because of the transitive
nature of subsumption, there will be some terms where a subsumes b, a subsumes c, and b subsumes c.
The relation a subsumes c can be eliminated because it is redundant. Relations are also eliminated if the
terms co-occur together in two or fewer documents.

2.4 Lexical Hierarchies
Another way to create a hierarchy is by using the hierarchical structure of phrases that appear frequently.
Creating such a hierarchy has been explored by many people including Nevill-Manning et al. (1999)
and Anick & Tipirneni (1999). Both of these cases rely on frequently occurring words within phrases or
noun compounds of a document set to expose the topics of that document set. Anick & Tipirneni (1999)
introduces the lexical dispersion hypothesis which states that “a word’s lexical dispersion – the number
of different compounds that a word appears in within a given document set – can be used as a diagnostic
for automatically identifying key concepts of that document set.”

There are many ways of selecting the phrases that will be used for candidates in the lexical hierarchy.
Nevill-Manning et al. (1999) breaks all sequences into hierarchies in such a way that each branch refers
to a rule in a context free grammar. The highest level of the sequence generates the entire sequence,
which consists of unique sequences in the sentence and other rules that must occur at least twice in
the collection. For example, if the phrase “probabilistic context free grammars (pcfgs)” appeared as
a sequence, the rules to generate this sequence appear in Figure 1. In this case, A is the highest level
sequence and “(pcfgs)” is the unique portion of the rule. For the corpus that was tested in Nevill-Manning
et al. (1999), sequences averaged 9.6 non-terminals.

1The threshold 0.8 was determined empirically.



Figure 2: Subsumption hierarchy generated from first cluster of documents for TREC topic 317. The
first of the two numbers associated with a term is the number of documents in which the term occurs.
The second number gives the frequency that the term is subsumed by its parent.

Another way to locate sequences is to match the pattern � ?adjective noun+ � of two to four terms in
length, as was done in Anick & Tipirneni (1999).

Once the phrases are chosen, they are divided into groups based on the terms that appear in the phrases.
The lexical dispersion of each term can then be calculated. Anick & Tipirneni (1999) studied the effects
of ranking the candidate terms based on lexical dispersion and found that in order to study the dispersion
of a term throughout the document collection, it is also necessary to examine the number of documents
that involve phrases using a particular term. Otherwise, a long document that uses the term a large
number of times could make that term seem like a much better candidate than it actually is. As a rule,
Anick & Tipirneni (1999) ranked terms based on the number of documents that contributed at least one
phrase if the dispersion level exceeded five phrases. The remainder were ranked by dispersion.

3 Comparing topic hierarchies based on a single query
Since we would like to use hierarchies to find relevant documents, we compare topic hierarchies as a
demonstration of how they would be used. However, we realize that a user study is required to show the
extent to which these types of hierarchies can be used to find relevant documents. The following is a
proof of concept.

In this illustration, we will compare the hierarchies generated from documents retrieved for the TREC
query (Voorhees & Harman, 1997) 317: “Unsolicited Faxes Description: Have regulations been passed
by the FCC banning junk facsimile (fax)? If so, are they effective?”. The reason this particular example
is chosen is that articles using the phrase “junk fax” are an easy indication of some of the relevant
documents. Five hundred documents were retrieved for this query. They were then clustered to create
more homogeneous document groups. Figure 2 shows a subsumption hierarchy. In order to find relevant
documents, one can follow a path from “fax” to “fax machine” to “junk fax”. For the same group of
documents, Figure 3 shows a lexical hierarchy. One would expect to follow the path “fax” to “junk fax”
in order to find relevant documents. Unfortunately, the level underneath “fax” does not contain the phrase
“junk fax”. It turns out that this is due to the way that phrases are ranked in the lexical hierarchy. Priority
is given to phrases with high dispersion. Since “junk fax” is not part of any larger phrase, it only has a



Figure 3: Lexical hierarchy generated from first cluster of documents for TREC topic 317. In the lexical
hierarchy the first number associated with a term is also the number of documents in which the term
appears. The second number is always 1.00 because a child cannot occur without its parent since the
parent term is part of the child.

dispersion level of one. Another problem is that phrases of the same dispersion level are ranked in order
of the number of documents in which they appear. The phrase “junk fax” appears in only six documents,
giving it a rank of thirty. It is, therefore, too low in the ranking to be displayed.

In the second cluster where documents relating to the California State Legislature are grouped, finding
relevant documents is not as straight forward. Figure 4 shows a second subsumption hierarchy. The
top level has only two choices. Since we are trying to find relevant documents as quickly as possible
with human intuition, “facsimile” is chosen over “D Los Angeles, Sen, SB2”. At the second level, the
choices are “Sen, SB” and “misdemeanor”. Neither seems to be a likely candidate, but given that there
are only two choices, both can be explored quickly. As it turns out “Sen, SB” leads to “Junk Fax”, which

2This cluster contained articles relating to Senate Bills (SB) in the California State Legislature. Within articles that talked
about a bill sponsored by a Democratic (D) Senator (Sen) from Los Angeles were ones that discussed a vote on junk faxes.

Figure 4: Subsumption hierarchy generated from second cluster of documents for TREC topic 317.



Figure 5: Lexical hierarchy generated from second cluster of documents for TREC topic 317.

means that relevant documents have been found. Figure 5 shows a hierarchy generated from the lexical
algorithm using the same document set. In this case, the hard choice is the first one. However, someone
interested in junk faxes would probably think that “advertise” is a promising candidate since junk faxes
are in fact advertisements, even though they did not think of using that word when phrasing their query.
Once “advertise” is chosen, “Junk Fax Advertisements” appears, and relevant documents are found.

4 Creation of Hierarchies
In order to create a hierarchy, several steps must be taken. First, the document set of interest must be
identified. This does not necessarily have to be a retrieved document set. Instead, it could be a personal
collection of papers or even email. These documents are clustered to provide homogeneous document
sets from which topic hierarchies can be made. Candidate terms are then selected. Finally, a hierarchy is
created that can be browsed by people.

4.1 Clustering
We chose to use two different clustering algorithms in order to determine the effectiveness of clustering
documents before creating the hierarchy, and also to see if the type of clustering used had any effect
on the hierarchies created. The two algorithms we chose were a modified k-means and an average-link
hierarchical agglomerative clustering (HAC) algorithm. These were chosen primarily because of their
popularity and ease of implementation.

The k-means algorithm required modification because of its tendency to form singleton and small clus-
ters. Extremely small clusters make it difficult to create subsumption hierarchies. This is because terms
must co-occur in at least three documents to be considered a valid relationship. If there are no interesting
words that meet this restriction, no hierarchy will be created for the cluster. In order to make sure that a
subsumption hierarchy could always be created, a minimum size of seven documents was used. Twelve
documents were then randomly chosen as the seeds for clusters. A threshold was introduced so that
documents that were very different from all cluster centers did not have to be placed within a cluster.



K-means HAC
Average max size 159.1 200.9
Average min size 11.6 5.4
Highest concentration of relevant docs 29.3% 41.3%

Table 1: Characteristics of the average cluster created using k-means and HAC.

After examining the similarities of documents, 2.75 was chosen empirically because an overwhelming
majority of documents fell within this similarity, but it prevented very dissimilar documents from being
included in a cluster. The k-means clustering was repeated up to ten times. With each iteration, clusters
that were too small were added to the leftover cluster and new cluster seeds were chosen from among the
documents in the leftover cluster. All documents were reclustered using the surviving clusters and the
newly seeded clusters. The iteration would stop if no clusters were created that were too small. Table 1
contains information about the average clusters formed.

The HAC clustering algorithm was implemented in the way that is described in Sahami (1998). Each
document began as a singleton cluster and clusters were joined until the correct number of clusters was
formed. In this case, thirteen clusters were created for each document set. Although singleton clusters
were never formed, some larger clusters did not yield any subsuming relationships, in which case no
hierarchies were created. However, 83% of these clusters without hierarchies also did not have any
relevant documents. A lexical hierarchy could always be created, regardless of the number of documents
in the cluster. More information about the average clusters can be found in Table 1.

Overall, HAC did a better job of grouping relevant documents together. Some 55.4% of clusters con-
tained no relevant documents when the HAC algorithm was used, and 47.1% of clusters contained no
relevant documents when the k-means algorithm was used. Unfortunately, 3.5% of the clusters created
using HAC contained no subsuming relations. All clusters created using the k-means algorithm yielded
a subsumption hierarchy.

4.2 Generating Structures
After the clusters are created, a subsumption hierarchy and a lexical hierarchy are formed for each cluster.
Both hierarchies rely on phrases extracted. We use a phrase identification process created for ‘in-house’
use at the CIIR, University of Massachusetts. These phrases are similar to the ones extracted by Anick
& Tipirneni (1999) but do not limit phrases to four words. The subsumption hierarchies created in
Sanderson & Croft (1999) include LCA terms and single terms as well. Because we are interested in
creating hierarchies in situations where a query is not available, we also create hierarchies that do not
make use of LCA terms to measure the contribution of these terms.

Neither Anick & Tipirneni (1999) nor Nevill-Manning et al. (1999) form hierarchies of the type in which
we are interested. In order to form a hierarchy that is more than two levels, we employ a method similar
to what Nevill-Manning et al. (1999) does when creating the rules for a context free grammar. In our
case, single words are located at the highest level in the hierarchy. In the second level, all combinations
of two word phrases are examined. If any other phrase contains the same two-word combination, the
phrases are conflated and appear together at the next level of the hierarchy. All phrases at a given level
are displayed in order of their dispersion. If multiple phrases have the same dispersion level, they are
ranked by the number of documents that include the phrase.

The subsumption hierarchies are created in the same way as described in Section 2.3: candidate terms
are identified, subsumption relations are found, and the relationships are organized into a hierarchy. The
only difference that we employ is in the use the LCA terms. For some hierarchies we exclude the LCA
terms from the candidate terms.



Figure 6: Algorithm assigns a path length to each relevant document.

Once all the relationships are determined, the hierarchies need to be displayed in such a way that people
can easily view them. We chose to use the hierarchical menu system (DHTMLAB) that was used in
Sanderson & Croft (1999).

5 Evaluation
We evaluate the hierarchies from two perspectives. First, we examine how quickly one could find all
relevant documents if one knew which nodes in the hierarchy held relevant documents. This is done
because the intended use of the hierarchies is to find relevant documents. Second, we examine the
similarities of the different hierarchies. By quantifying the similarity, we can learn more about the
strengths and weaknesses of the two methods of creating topic hierarchies.

5.1 Scoring the Hierarchies
The scoring algorithm estimates the time it takes to find all relevant documents by calculating the total
number of menus that must be traversed and the number of documents that must be read. The algorithm
aims to find an optimum route through the hierarchy traveling to nodes that hold the greatest concen-
tration of relevant documents. Since we begin with the knowledge of where the documents are located,
our algorithm iterates through all relevant documents and assigns a path length to each. Any relevant
documents not found in the hierarchy (which is possible) are assigned a path length of negative one as
an error flag. The total path length for a hierarchy is the summation of all non-zero document paths.

Figure 6 shows the path length algorithm. Given that documents often belong to more than one menu, it
is necessary to choose which of these will be used when calculating the path. To do this, we break the
menus into two groups. The first group consists of leaf menus. These types of menus are favored because
they tend to have a smaller number of documents associated with them. Smaller document groups are
also likely to be more homogeneous. From among these leaf menus, we favor the menu with the most
relevant documents because we are computing an optimal path. If there are no leaf menus, then all menus
containing the document are considered. In this case, we favor menus that contain a small number of
documents. The path to a relevant document is composed of the previously unexplored menus that are
traversed to reach it, and the unread documents associated with the final menu. Since the documents
belonging to a particular menu item are not sorted in any way, it is assumed that users will have to read
all new documents in the group in order to find the relevant one(s).



Although this algorithm leads to a succinct analysis of the hierarchy, it is worth noting that it contains
certain simplifying assumptions. First, all documents are regarded as equal despite the expected vari-
ability in document length. Similarly, all menus are treated equally despite the variability in their length.
Finally, when computing the path length, documents and menus are treated the same; i.e. the time and
effort required to read a document is regarded as being the same as that to read a menu.

5.2 Quantifying Similarity
In order to find similarity, we examine all parent-child pairs within two hierarchies. Since the term pairs
define the hierarchy, this comparison provides a way to measure how similar one hierarchy is to another.
It is fairly straightforward to count the number of term pairs that two hierarchies have in common.
The difficulty comes when trying to express this number in a meaningful way. The problem is that no
two hierarchies have the same number of pairs, so comparing the raw number of overlapping pairs is
meaningless. Instead, a ratio comparing the number of overlapping pairs to the total number of pairs in
one of the hierarchies is used. This means that if hierarchy A has 1000 term pairs, hierarchy B has 1500
term pairs, and the hierarchies share 500 pairs, then the ratio with regard to A is �� and the ratio with
regard to B is �� . The problem with this method is that in order to know how each hierarchy relates to all
other hierarchies, one would have to perform �	� comparisons. However, even without comparing every
single hierarchy to every other, one can get an idea of how much the different types of hierarchies have
in common, and how different groupings of document sets affect the hierarchies.

6 Results
Our experiments are designed to reveal two main characteristics about the hierarchies involved. First,
we want to determine the difference between subsumption and lexical hierarchies. Second, we want to
determine what effect clustering the document sets has on the hierarchies. We are also interested in two
other finer details within the creation of the hierarchies. We want to examine the contribution of the
expanded query terms (LCA) to the subsumption hierarchies, and to determine if any preference is given
to the type of clustering performed.

Our experiments make use of TREC topics 301-350 and associated relevance judgments. We have re-
trieved 500 documents using InQuery (Callan, Croft, & Harding, 1992) for each of the 50 queries. We
treat a set of 500 documents for a given query as a document set. A number of hierarchies are gener-
ated for each document set. These include hierarchies of three different groupings of the document sets:
one clustered using k-means, one clustered using HAC, and the other left as a single document group.
For each of these three groupings, subsumption hierarchies are created that make use of LCA terms
and hierarchies that do not use LCA terms. Lexical hierarchies are also created for the three document
groups.

Hierarchies are assigned a path length score using the algorithm described in Section 5.1. A lower score
denotes a superior hierarchy. We compare our hierarchies to those formed through a random subsumption
process, as well as to each other. Random hierarchies are formed in the same manner as subsumption
hierarchies (as described in Section 2.3) except that when all terms are compared to all other terms,
random selection is used to form parent-child pairs instead of the subsumption criteria from Equation 1.

Once all the hierarchies are scored, they are compared on a basis of the average path to a document.
This is used instead of doing a straight comparison of the total path length because it is possible that
some relevant documents are unreachable. The total path length for a particular hierarchy could end up
being shorter simply by leaving out relevant documents. By using the average path length, we neither
reward nor penalize a hierarchy for excluding relevant documents. It was found empirically that ran-
domly generated hierarchies were more likely to leave relevant documents out of the hierarchy than the
other hierarchies, except when a single subsumption hierarchy was generated for the entire document set
without using LCA. This particular group of hierarchies needs the LCA terms because the document set
is less homogeneous than when the document set is first clustered. The average percentages of relevant



Hierarchy % no path
Lexical 5.1%
Clustered Subsumption with LCA 2.5%
Clustered Subsumption without LCA 11.2%
Unclustered Subsumption with LCA 1.90%
Unclustered Subsumption without LCA 28.70%
Random 13.8%

Table 2: The percentage of relevant documents which have no path in the hierarchy with regards to the
total number of relevant documents retrieved for a query. The unclustered subsumption hierarchy without
LCA leaves out a substantial number of the relevant documents because the document set is so large that
it requires the LCA terms to focus it.

Subsumption Lexical
Smaller Avg. difference Smaller Avg. difference Equal

K-means - LCA 38 5.04 11 1.63 1
K-means - no LCA 34 5.03 14 1.63 2
HAC - LCA 39 5.08 10 1.34 1
HAC - no LCA 36 4.28 12 1.50 2
Single - LCA 44 14.93 5 3.40 1
Single - no LCA 40 16.71 9 3.69 1

Table 3: The number of times one hierarchy (subsumption or lexical) had a smaller path length and how
much shorter the path length usually was. For each type of grouping (k-means, HAC, and single), a
lexical hierarchy is compared to both a subsumption hierarchy created using LCA and one that did not
use LCA.

documents in the hierarchies that contain no path to a relevant document are found in Table 2. These
percentages are based on the number of relevant documents excluded compared to the total number of
relevant documents.

6.1 Comparing topic hierarchies
The evaluation of the hierarchies based on the average path lengths reveals extreme differences among
the methods used to create topic hierarchies. Using this measure, lexical hierarchies gave remarkably
poorer results. When comparing clustered document groups, the subsumption hierarchy outperformed
the lexical hierarchy for at least 34 queries. When the subsumption hierarchy had a smaller path, the
difference in average path length was significantly greater than when lexical hierarchies had a smaller
document path length. Exact results can be found in Table 3.

We performed ANOVA (ANalysis Of VAriance) on the twelve variations of hierarchies including random
hierarchies. To linearize the data for the ANOVA, we performed a loglog transform on the average
path length. All multiple comparisons were done using Tukey’s Honest Significant Difference (HSD).
Figure 7 shows how the hierarchies were ranked both absolutely and where significance was found (p

�
0.05). It should be noted that TREC topic 305 was left out of all ANOVA analysis because there were no
relevant documents in the document set. Because this gave a path length of zero, it would only add noise
to the data. See Appendix A.1, Table 7 for ANOVA table.

From the ANOVA analysis, it can be seen how poorly lexical hierarchies perform at this task. The
problem is that lexical hierarchies do not always create small document groups at its leaves. Since the
average path length looks for a leaf cluster with the most relevant documents, it is more likely to pick
larger document clusters, even though the algorithm chooses the smallest cluster from among the clusters
with the most relevant documents. This factor also causes lexical hierarchies to perform worse than those
that were randomly generated. Although random hierarchies consist of randomly related pairs, pairs are



Figure 7: The groups indicate those hierarchies which ANOVA found indistinguishable for p
�

0.05.

still ordered on frequency of occurrence within document sets as in the subsumption hierarchies and
documents are assigned to the hierarchy correctly. This means that clusters at the leaves are smaller
for random hierarchies than they are for lexical hierarchies. Comparing lexical hierarchies to a random
hierarchy that had similar leaf characteristics to the lexical hierarchy would yield more interesting results.

Figure 7 also shows that the clustered subsumption hierarchies are not significantly better than the ran-
dom hierarchy when k-means clustering is used. Further analysis was done comparing the four types
of hierarchies when k-means clustering is used. An ANOVA analysis revealed that the hierarchy with
LCA is significantly better (p

�
0.00005) than random; however, the hierarchy without LCA was indis-

tinguishable, although slightly better (p
�

0.05). The reason that random hierarchies performed nearly
as well as subsumption hierarchies without LCA is that the random hierarchy still divide the document
set up into smaller groups that enable the average path length to perform fairly well. It should be noted
that the a comparison of parent-child pairs reveal almost no similarity between random and non-random
subsumption hierarchies, as shown in Figure 8. The random hierarchy is dividing the document set dif-
ferently, even though it is equivalent to subsumption hierarchies without LCA as far as the average path
length is concerned. However, when all types of hierarchy groupings are combined, there is a significant
difference between random and the two types of subsumption hierarchies. See Appendix A.2, Table 8
for ANOVA table.

When comparing the similarity of the relations used in the two types of hierarchies, there is very lit-
tle overlap between subsumption and lexical hierarchies. For all comparisons of lexical hierarchies to
subsumption hierarchies, there was less than a 10% similarity shown in Figure 8.

6.2 Effectiveness of clustering
Figure 7 shows that for almost all variations, clustering does significantly better than the single group
hierarchy created in the same way. In fact, according to the ANOVA analysis that divided the data among



Figure 8: This represents the percent overlap when one hierarchy type is compared to another.

Cluster Single
Smaller Avg. difference Smaller Avg. difference Equal

K-means - LCA 42 3.04 7 0.82 1
K-means - no LCA 34 3.78 15 1.80 1
HAC - LCA 42 3.37 6 2.54 2
HAC - no LCA 36 3.81 11 4.95 3
K-means - lexical 45 13.21 3 2.07 2
HAC - lexical 44 13.41 3 2.88 3

Table 4: The number times a hierarchy (clustered or single) had a smaller path length and how much
shorter the average path length was.

document grouping methods at a significance of p
�

0.01, clustering outperformed a single hierarchy for
both subsumption and lexical hierarchies. See Appendix A.2, Table 8 for ANOVA table. Clustered
hierarchies had a shorter average path length a majority of the time and usually by a wider margin. These
results are shown in Table 4.

When comparing the similarity of the single and clustered hierarchies, Figure 8 shows that single hierar-
chies have more overlap with clustered hierarchies than clustered hierarchies have with single hierarchies.
This implies that clustered hierarchies discover more relations than single hierarchies.

6.3 LCA contribution
Figure 7 shows only insignificant differences between using LCA and not using LCA. When hierarchies
were compared using ANOVA analysis of only other hierarchies that used the same document groupings,
the only grouping that portrayed a significant difference (p

�
0.04) was k-means. Both single and HAC

revealed there was no significant difference for p
�

0.05. Table 5 shows that the number of times that
one hierarchy has a shorter average path length than another is more evenly distributed than in previous
examples and the difference in the average path length is not as great.

When comparing the similarity of subsumption hierarchies created with the two variations, Figure 8
reveals that two types of hierarchies share at least 40% of the same relations, which is more than when
hierarchies are compared across the different groupings of documents. In fact, 63% of the same relations
are found when HAC is used. This is the most similarity of any comparisons of subsumption hierarchies.

The only significant difference between the two techniques is the number of relevant documents included
in the hierarchy. For single hierarchies, over a quarter of the relevant documents are excluded. This is



LCA no LCA
Smaller Avg. difference Smaller Avg. difference Equal

K-means 25 1.29 21 0.34 4
HAC 29 1.92 18 0.39 3
Single 23 3.41 24 3.07 3

Table 5: The number times a hierarchy (created using LCA or not) had a smaller path length and how
much shorter the average path length was.

K-means HAC
Smaller Avg. difference Smaller Avg. difference Equal

LCA 20 1.06 27 0.99 3
No LCA 23 2.43 25 1.48 2
Lexical 25 3.71 32 3.73 3

Table 6: The number times a hierarchy (clustered using k-means or HAC) had a smaller path length and
how much shorter the average path length was.

particularly unsatisfying. However, when clustering is used this falls to a tenth of the relevant documents.
This is still a fairly large number of relevant documents. Perhaps developing a hybrid of subsumption
and lexical hierarchies would help with the inclusion of more relevant documents

6.4 Comparing clustering methods
The method of clustering also was found to have little effect on the quality of the hierarchies created.
The variation of the number of relevant documents left out of a hierarchy was less than 2% for both.
Figure 7 reveals very little difference based on the type of clustering used. In fact, there was no signif-
icant difference when ANOVA analysis was performed on clusters only. HAC was ranked first for each
variation, but not with significance of p

�
0.05. Table 6 shows the number of times that one hierarchy has

a shorter average path length than another. It is very evenly distributed and the difference in the average
path length is small.

The overlap found when comparing one clustering method to another is moderately high in all three of
the variations used to generate hierarchies. Both methods of clustering find roughly the same number of
comparisons. This is illustrated in Figure 9.

Figure 9: The amount of overlap between methods of clustering when the type of method used to generate
the hierarchy is held constant.



7 Future Work
There remain many open research questions with regards to this work. One is how useful these hier-
archies are for a person to find relevant documents. Given the example in Section 3, these hierarchies
can be useful some of the time, but a user study would need to be conducted in order to evaluate the
usefulness of the hierarchies in general.

A second question involves the integration of subsumption and lexical hierarchies. These two hierarchies
emphasize different relationships. Each could be improved by using information gained from the other
hierarchy. For example, the ordering of the second level of the hierarchy shown in Figure 3 should have
had “Junk Fax” ranked higher so that it would not have been left out of the hierarchy when that particular
level was truncated. Using the information in the subsumption hierarchy might have prevented this from
happening. There might also be way to create a completely merged hierarchy.

Besides using the topic hierarchies to locate relevant documents, many other uses may be found. One
way to utilize the hierarchies would be to use the exposed relationships in specific information tasks
where characterizing a document set is necessary.

8 Conclusion
Hierarchies provide a convenient way to browse a document collection. Automatically generating a topic
hierarchy brings to light information that is specific to the domain of the document set, as opposed to
a manually generated hierarchy, which needs to suit all users and thus must be general. Given that the
methods explored perform better using homogeneous document sets, clustering provides an alternative to
using a ranked list, and also allows one to use these hierarchies in instances where a query is not present.

The evaluation metrics presented in this paper provide a way to begin evaluation of the hierarchies
without requiring user input until well-formed hierarchies have been created, thus enabling a user study
to yield less ambiguous results. The results presented in this paper show that subsumption and lexical
relations are very different, exposing few of the same relations. The strength of subsumption lies in
separating documents into small groups, whereas lexical hierarchies do a much better job of including all
documents in the hierarchy. This research provides some of the foundation needed to continue developing
hierarchies that best allow users to locate relevant documents.

9 Acknowledgments
We would like to thank Mark Sanderson, Jinxi Xu, and Mehran Semri for the use of their algorithms in
this research. We would also like to thank Russell Swan for his help in the experimental analysis, and
Craig Allen for his helpful comments on previous drafts.

This material is based on work supported in part by the National Science Foundation, Library of Congress
and Department of Commerce under cooperative agreement number EEC-9209623. This material is also
based on work supported in part by Defense Advanced Research Projects Agency/ITO under ARPA
order number D468, issued by ESC/AXS contract number F19628-95-C-0235. Any opinions, findings
and conclusions or recommendations expressed in this material are the author(s) and do not necessarily
reflect those of the sponsor.

References

Anick, P. (1999). Automatic construction of faceted terminological feedback for context-based infor-
mation retrieval. Ph. D. thesis, Brandeis University.

Anick, P. & S. Tipirneni (1999). The paraphrase search assistant: Terminological feedback for iterative
information seeking. In M. Hearst, F. Gey, & R. Tong (Eds.), Proceedings on the 22nd annual



international ACM SIGIR conference on Research and development in information retrieval, pp.
153–159.

Callan, J., W. Croft, & S. Harding (1992). The inquery retrieval system. In Proceedings of the 3rd
International Conference on Database and Expert Systems Applications, pp. 77–83.

Crouch, C. (1988). A cluster-based approach to thesaurus construction. In Proceedings on the 11th an-
nual international ACM SIGIR conference on Research and development in information retrieval,
pp. 309–320.

Crouch, C., D. Crouch, & K. Nareddy (1990). The automatic generation of extended queries. In Pro-
ceedings on the 13th annual international ACM SIGIR conference on Research and development
in information retrieval, pp. 369–383.

Cutting, D., D. Karger, J. Pedersen, & J. Tukey (1992). Scatter/gather: A cluster-based approach
to browsing large document collections. In Proceedings of the 15th Annual International ACM
SIGIR conference on Research and development in information retrieval, Copenhagen Denmark,
pp. 318–329.

DHTMLAB. Dhtmlab. www.dhtmlab.com.

Fuhr, N., S. Hartmann, G. Lustig, K. Tzeras, G. Knorz, & M. Schwantner (1993). Automatic indexing
in operation: The rule-based system air/x for large subject fields. Technical report, Technische
Hochschule Darmstadt.

Jain, A. & R. Dubes (1988). Algorithm for Clustering Data. Engelwood Cliffs, N.J.: Pretice Hall.

Koller, D. & M. Sahami (1997). Hierarchically classifying documents using very few words. In Pro-
ceedings of the 14th International Conference on Machine Leaning, pp. 170–178.

Nevill-Manning, C., I. Witten, & G. Paynter (1999). Lexically-generated subject hierarchies for
browsing large collections. International Journal on Digital Libraries 2(2+3), 111–123.

Sahami, M. (1998). Using Machine Learning to Improve Information Access. Ph. D. thesis, Stanford
University.

Salton, G. & M. McGill (1983). Introduction to Modern Information Retrieval. McGraw-Hill Book
Company.

Sanderson, M. & B. Croft (1999). Deriving concept hierarchies from text. In Proceedings of the
22nd annual international ACM SIGIR conference on Research and Development in Information
Retrieval, pp. 206–213.

Sparck Jones, K. (1971). Automatic Keyword Classification. Butterworths.

van Rijsbergen, C. (1979). Information retrieval (second ed.). London: Butterworths.

Voorhees, E. M. & D. K. Harman (Eds.) (1997). The Sixth Text REtrieval Conference (TREC-6).
Department of Commerce, National Institute of Standards and Technology.

Willett, P. (1988). Recent trends in hierarchic document clustering: A critical review. Information
Processing and Management 24(5), 577–587.

Xu, J. & W. Croft (1996). Query expansion using local and global document analysis. In Proceed-
ings of the 19th annual international ACM SIGIR conference on Research and development in
information retrieval, pp. 4–11.

YAHOO. Yahoo. www.yahoo.com.



A ANOVA analysis
A.1 ANOVA for all hierarchies

DF SS MS F P-value
CONSTANT 1 384.03 384.03 5387.81237 0
qf 48 166.15 3.4615 48.56453 0
sysf 11 34.82 3.1654 44.41008 7.9515e-08
ERROR1 2037 145.19 0.071277

Table 7: Summary for the ANOVA analysis for the comparison of all hierarchies. Model used is loglog.

Paired Comparison on all hierarchies, p = 0.05, HSD

�
-0.174 HAC, LCA�
-0.167 K-means, LCA� �
-0.129 HAC, no LCA� �
-0.126 K-means, no LCA� �

-0.0939 K-means, random� �
-0.0387 HAC, random� �
0.00613 HAC, lexical� �
0.00795 Single, LCA� � �
0.0331 Single, no LCA� �
0.0773 K-means, lexical�

0.15 Single, random
0.453 Single, lexical

A.2 ANOVA for split hierarchies
DF SS MS F P-value

CONSTANT 1 384.03 384.03 5332.29411 0
qf 48 166.15 3.4615 48.06411 0
clusf 2 25.197 12.598 174.92976 5.1514e-14
expanf 3 7.6792 2.5597 35.54247 7.989e-08
ERROR1 2043 147.14 0.072019

Table 8: Summary for the ANOVA analysis for the comparison when data is split by document grouping
(K-means, HAC, and single) and by hierarchy type (subsumption and lexical). Model used is loglog.

Paired Comparison on document grouping, p = 0.05, HSD

�
-0.0886 K-means�
-0.0587 HAC

0.147 Single hierarchy (no clustering)

Paired Comparison on hierarchy type, p = 0.05, HSD

�
-0.105 subsumption - LCA�

-0.0662 subsumption - no LCA
-0.000998 random

0.172 lexical


