
Acrophile: An Automated Acronym Extractor and Server

Leah S. Larkey, Paul Ogilvie, M. Andrew Price
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

Email: {larkey, pogil, maprice}@cs.umass.edu

Brenden Tamilio
School of Cognitive Science

Hampshire College
Amherst, MA 01002

Email: bat96@hampshire.edu

ABSTRACT
We implemented a web server for acronym and abbrevia-
tion lookup, containing a collection of acronyms and their
expansions gathered from a large number of web pages by
a heuristic extraction process. Several different extraction
algorithms were evaluated and compared. The corpus re-
sulting from the best algorithm is comparable to a high-
quality hand-crafted site, but has the potential to be much
more inclusive as data from more web pages are processed.

KEYWORDS: Acronyms, information extraction

INTRODUCTION
Acronyms are everywhere; we read and hear them but
rarely think about them, except when we do not know what
they mean. Every content domain has its own acronyms
and abbreviations. In many of these areas, particularly
those that are highly technical or bureaucratic, acronyms
occur frequently enough to make it difficult for outsiders to
comprehend text.

Many acronym and abbreviation dictionaries are available,
both in printed form and on the World Wide Web. Some
attempt to be all inclusive, others are specialized for par-
ticular domains. There are searchable databases and simple
lists. Some general problems in building such collections,
or any dictionaries, are getting comprehensive coverage,
and keeping the collection current. New abbreviations
continually come into use. To keep their dictionaries
growing, some maintainers allow users to submit new acro-
nyms and definitions. This openness, however, can result in
poor-quality data.

Acrophile is an automated system that builds and serves a
searchable database of acronyms and abbreviations using
information retrieval techniques and heuristic extraction. It
was developed and built by students during an NSF REU
(Research Experience for Undergraduates) summer pro-
gram. The current version, available on the web at
http://ciir.cs.umass.edu/ciirdemo/acronym/, contains a set
of acronyms and expansions that were extracted from a

large static collection of web pages. The system can crawl
the web for additional pages, extract additional acro-
nym/expansion pairs, and collect them in a file. Periodi-
cally, the database can be rebuilt, incorporating the addi-
tional new pairs.

Another important goal of this project was to evaluate the
quality of our automatically-built acronym and abbreviation
databases. We developed evaluation techniques to compare
different extraction algorithms and to compare the quality
of our automatically-built databases with manually col-
lected databases.

Our evaluation goals were to test the following hypotheses:

1. It should be possible to use IR techniques and heuristic
extraction to collect a set of acronyms and expansions
which is at least as good and as comprehensive as care-
fully constructed manually built lists available on the
web.

2. In order to collect as many correctly expanded acro-
nyms as possible from an essentially unlimited corpus
like the web, one should choose a strict algorithm that
accepts few errors, even at the cost of missing some
cases in specific documents. It should be possible to
pick up those missed definitions from other contexts by
processing more text, and the resulting lists should
have higher precision than a similar-sized list produced
by a less strict algorithm.

3. We should be able to increase the coverage of our col-
lection more efficiently by searching for acronyms than
by processing random pages.

Related Work
Many acronym and abbreviation dictionaries have been
compiled and published in books and many lists are avail-
able on the web, such as Acronym Finder [1] and the World
Wide Web Acronym and Abbreviation Server
(WWWAAS) [17]. The Opaui Guide to Lists of Acronyms,
Abbreviations, and Initialisms [13] has 124 links to acro-
nym and abbreviation lists, some of them general, and some
as specialized as the Dog fanciers acronym list [4] or the
Mad Cow disease list [10].

All of these web-based lists appear to be built manually
rather than by automatic extraction. The lists range in size
from a few dozen items to over 127,000 acronym defini-

To appear in DL00.
Copyright © 2000 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page or initial
screen of the document. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee.

2

tions in Acronym Finder [1]. The accuracy seems to vary
widely. The primary problem with many large lists on the
web is that they allow people to submit expansions. Some
sites screen submissions carefully [12], others do not. As
far as we can determine, no previous automatic extraction
efforts have resulted in publicly searchable online databases
of acronyms and none have received thorough evaluations.
IBM advertises a tool for abbreviation extraction, IBM In-
telligent Miner for Text, which allows corporations to proc-
ess and categorize text documents [16]. Among the prod-
uct’s features is the ability to extract abbreviation phrases.
But the paper does not present any information on the heu-
ristics used, nor does it present data on the quality of the re-
sults.

Two small-scale acronym extraction projects have been de-
scribed and received limited evaluation in unrefereed lit-
erature. AFP (Acronym Finding Program) [15] is an acro-
nym extraction algorithm which considers strings of from 3
to 10 uppercase letters as an acronym, and looks for candi-
date expansions in windows of twice the number of letters
in the acronym before and after the acronym. It only looks
for matching letters occurring at word beginnings (or after
hyphens) but allows some mismatch between the letters of
the acronyms and the sequence of initial letters of the
words. AFP was tested on 17 documents from the Depart-
ment of Energy. It attained 93% recall and 98% precision
on acronyms in this set with length of three or greater, 86%
recall and 98% precision when two character acronyms
were included.

TLA (Three Letter Acronyms) [18] was developed at the
University of Waikato. It has no case requirements for
acronyms, so that any token is a candidate acronym. The
token is accepted if a matching sequence is found by taking
up to three characters from adjacent words. TLA was
evaluated on ten computer science technical reports, on
which it obtained 91% recall and 68% precision. A newer
approach by the same researchers uses compression models
to identify acronyms and definitions [19]. This approach is
less ad-hoc than a purely heuristic approach like ours, but
requires a corpus of hand-marked training data.

None of these extraction systems have been used to process
a large corpus of text and compile a searchable dictionary
of acronyms.

Automated extraction projects for extracting non-acronym
text relations bear some interesting similarities to the acro-
nym problem. Several email extractors such as Atomic
Harvester 98 [4] and EmailSiphon [6] can be found on the
web. They crawl through every web page at a given site
and extract every email address they can find, to compile
lists to sell commercially. Extracting email addresses is
simpler than finding acronyms and expansions because it
does not require relating pairs of segments found in text. It
is sufficient to search for the general pattern user-
name@location. Higher accuracy can be gained by

checking the suffix of an address for the existence of com-
mon domains such as .edu, .com, and .gov.

The processes of extracting hyponyms [9] and citations [8]
are more similar to the acronym task in that they require
extracting a relation from text. Hearst’s hyponym extractor
[9] finds pairs of noun phrases NP1 and NP2 such that NP1

is a kind of NP2, for example, nutmeg is a hyponym of
spice. Her system finds hyponyms in text by looking for
some simple patterns like “spices, such as nutmeg,”
“spices, including nutmeg and sage”, or “such spices as
nutmeg and sage.” As we find for acronyms, these heuris-
tics provide reliable but not foolproof methods of finding
hyponyms. Hearst ran the extraction algorithm on an ency-
clopedia, and found many correct hyponyms which could
be added to WordNet [1].

CiteSeer [8] is a system that extracts bibliographical cita-
tions and references. Like Acrophile, it uses a set of heu-
ristics to index information extracted from web pages.
CiteSeer searches for pages that might contain PostScript
documents and keywords such as PostScript and publica-
tion. Once the documents are retrieved, the system verifies
that they are legitimate publications by searching for the
presence of a references section. When documents are
parsed, the system saves the title, author, year of publica-
tion, page numbers, and citation tag, a shorthand abbre-
viation for identifying the cited paper in the text body. It
uses a set of canonical rules, for example, that citation tags
always appear at the beginning of references, author infor-
mation generally precedes the title, and the publisher usu-
ally follows the title. The developers of CiteSeer provide a
facility on the web called ResearchIndex where users can
search for references and citation information [14].

Terminology
An acronym is “a word formed from the initial letters or
parts of a word, such as PAC for political action commit-
tee.” An abbreviation is “a shortened form of a word or
phrase used chiefly in writing…” [3]. Thus, an acronym is
an abbreviation whose letters are read as a word. This
definition excludes abbreviations such as FBI and NAACP,
which are pronounced by saying the individual letters in the
abbreviation.

Our project covers a subset of abbreviations which is larger
than the set of acronyms, but smaller than the set of all ab-
breviations. We include abbreviations that do not form
words, as long as their letters come from the words in the
phrase. We also include abbreviations with numbers such
as 4WD, and 3M, although our expansion algorithms can
only deal successfully with cases where the digit stands for
a spelled-out number (Four Wheel Drive), or acts as a mul-
tiplier (Minnesota Mining and Manufacturing). It cannot
handle cases like Y2K. We exclude abbreviations composed
of letters that are not in the words (lb.), and abbreviations
for single words rather than multiword phrases.

We use the term “expansion” for the phrase an acronym
stands for.

3

In the remainder of this paper we describe the Acrophile
system, then the acronym extraction algorithms; finally, we
evaluate the algorithms and compare the resulting collec-
tions with some hand-crafted acronym collections on the
web.

SYSTEM DESCRIPTION
The core of Acrophile is a large collection of acronyms and
expansions, which was automatically extracted from web
pages and indexed using Inquery 3.2, a probabilistic infor-
mation retrieval system developed at the University of
Massachusetts. Users can submit an acronym such as IRS,
and see a list of expansions for that acronym, or they can
submit words (such as Internal Revenue or revenue) and
see the acronyms whose expansions contain those words.
The system returns lists of acronyms and expansions,
ranked by a quality score. One can also submit a URL to
the acronym extractor and get a list of acronyms and expan-
sions found on the page.

We first describe this collection and how it was created,
then we describe the lookup system on the web.

Building and updating the database
Figure 1 outlines the process by which the database was
created and how it can grow. A static collection of around 1

million (936,550) military and government web pages,
comprising around 5 gigabytes of text, was processed in the
manner illustrated in Figure 1.

First, a Perl script performs some simple filtering on the
web pages, to remove all HTML tags. The resulting stream
of text is fed into our acronym extractor, a C program using
flex and yacc, which incorporates the best of the four algo-
rithms we tested in the evaluation reported below. The ac-
ronym extractor produces a list of acronym and expansion
occurrences. These pairs are marked to indicate whether
they came from a parenthetical form such as DUI (Driving
under the Influence), information which is later used in
computing a confidence rating for the expansion.

Acronym/expansion sets are then sorted and merged, ac-
cumulating counts of occurrences. Occurrences in paren-

theses are also counted separately. The output is tagged,
creating pseudo-documents for indexing. Each pseudo-
document has an acronym as its title and an expansion as its
text. A confidence score is also placed in a tagged field.
These data files are then indexed, with no stopping or
stemming performed on acronyms or expansions. The in-
dexing process creates a searchable Inquery database.

The shaded path through Figure 1 shows how the database
can be expanded by crawling for web pages containing
known acronyms. A list of acronyms is submitted as indi-
vidual queries to AltaVista, using a modified version of
Gnu’s wget. For each query, we retrieve the top n match-
ing pages, returned from AltaVista ten at a time. Each re-
sults page is piped through a hand-coded filter which at-
tempts to remove all content except the URLs of the found
documents. These URLs are then crawled in sets of 10 by
another instance of the crawler. This crawling accumulates
a new collection of web pages, which are processed like the
static set, to extract an add-on set of acronym/expansion
pairs. These can be added to the original set, and the data-
base rebuilt.

The Search System
The search process is illustrated in Figure 2, below.

The system uses a client/server architecture which could
accommodate multiple servers across a network, although
at present our client and (single) server run on the same
Unix system. The user types an acronym or phrase into a
text box on the Acrophile search page. This query is sub-
mitted via CGI to a custom Inquery web client developed
for Acrophile. The client creates a network connection to
the Inquery connection server, which issues search com-
mands to an available Inquery server, which retrieves acro-
nym/expansion pairs from the database. A ranked list is
then returned through the connection server and back to the
client. A confidence score is computed for each expansion,
based on the stored occurrence counts. The list is sorted by
this confidence score, filtered, and formatted for display in
the user’s web browser. The user may select how many
expansions they would like to see.

Figure 1: Building and updating Acrophile

Figure 2: Searching for acronyms

������

���	
�
�� ���
	����

����	����
��������

�������
���
	����

����

����
���������

���������
���

���
���

�������� ���
� 	�������

������

�������

���� ��
��������

������� !�����

"#$�
!�����

�������
� �������

$����%
����

#��%
&���

'&�(
���)

*
���

���������
+��

�������

������

��	

����� �������	

���
���

���
����

��	

����� �������	

���

��������

��
���	�

�����
��� ������

�	��

���� ���

!��

"��#	��

��$��� ������

������ ��	

���%������

�����

��$���

�&�

4

Extraction Demonstration
In addition to the searchable acronym collection, the Acro-
phile splash page also contains a link to an online extrac-
tion demonstration, which accepts a URL from the user and
extracts acronyms and expansions from the submitted
document in real time. Currently, the results of this extrac-
tion are not added to the online database.

EXTRACTION ALGORITHMS
The Acrophile extraction algorithms use flex, a lexical
analyzer, and yacc, a parser, to process a text document to
extract acronyms. Expansions for the acronyms are found
in the text using a combination of document context and
canonical rules, which match patterns in which acronyms
are commonly defined in standard written English.

We developed several different versions of extraction algo-
rithms and tested four of them. All versions work on the
general principle of hypothesizing that a sequence is an
acronym if it fits certain patterns, and confirming it as an
acronym if a plausible expansion for it is found nearby.
For all four algorithms, some normalization is performed
after extraction. Two acronyms are considered equivalent if
they differ only in capitalization. Two expansions for an
acronym are considered equivalent if they differ only in
capitalization or in the presence or absence of periods, hy-
phens, or spaces.

Our four algorithms, called contextual, canonical, canoni-
cal/contextual, and simple canonical, differ in what patterns
are taken to indicate potential acronyms, what forms ex-
pansions can be found in, and what text patterns indicate a
possible acronym/expansion pair. The contextual, canoni-
cal, and canonical/contextual algorithms are all related and
arose by modifying an earlier contextual algorithm. The
simple canonical algorithm was designed independently to
try a more limited approach that might yield higher preci-
sion on the acronyms it found. We did some initial tuning
of algorithms based on their performance on a small pilot
set of 12,380 Wall Street Journal articles from 1989.

The simple canonical algorithm (also called simple) is the
strictest of the four. It finds only those acronym/expansion
pairs which fit a small set of canonical forms, such as “ex-
pansion (ACRONYM)”, or “ACRONYM or expansion”.
The contextual algorithm, on the opposite end of the strict-
ness continuum, looks for an expansion in the vicinity of
the potential acronym without requiring any canonical pat-
tern (“or”, parentheses, commas, etc.) indicating their rela-
tionship. The canonical/contextual and canonical algo-
rithms fall in between the other two. The four algorithms
are contrasted in Table 1, which lists their major character-
istics. The columns of the table summarize the four differ-
ent algorithms. The top half of the table lists properties of
hypothesized acronyms. The bottom half covers properties
of the expansions. All four algorithms are described below.

Finding Acronyms
The algorithms identify potential acronyms by scanning
text for the patterns shown in the row labeled Acronym

Patterns in Table 1. This row uses a pseudo-regular-expres-
sion notation in which superscript + indicates one or more
occurrences of a symbol, * indicates 0 or more occurrences,
numbered superscripts indicate a specific number or range
of occurrences. U stands for an uppercase letter, L a lower-
case letter, D a digit, S an optional final s or ‘s, {sep} is a
period or a period followed by a space, and {dig} is a num-
ber between 1 and 9, optionally followed by a hyphen.
Terms in square brackets are alternatives.

The contextual algorithm accepts acronyms that are all up-
percase (USA), with periods (U.S.A.) or which have a se-
quence of lowercase characters either at the end of the pat-
tern following at least three uppercase characters
(COGSNet), or internally following at least 2 uppercase
characters (AChemS). An uppercase pattern can also have
any number of digits, anywhere.

The canonical/contextual and canonical algorithms accept a
wider range of acronym patterns. They have less constraint
on lower case sequences, to allow patterns like DoD.
Slashes and hyphens are allowed in acronyms, to get pat-
terns like AFL-CIO and 3-D. Acronyms are not allowed to
end with lower case characters except for s, and only 1 digit
is allowed in an acronym.

The simple canonical algorithm takes a minimalist ap-
proach, excluding acronyms with digits, periods, and
spaces. An acronym must begin with an uppercase letter,
followed by zero to 8 upper or lowercase letters, slashes, or
dashes, and ending in an uppercase letter.

Acronym Expansion
Contextual Algorithm. The contextual algorithm finds ex-
pansions by matching from the last character of the acro-
nym to the front. It always saves the twenty most recent
words scanned, so when a potential acronym is identified, it
tries to find the expansion in this saved buffer. Otherwise,
it looks for the expansion in the text following the acronym.
It requires no canonical forms, so it can successfully deal
with text like, “… is three dimensional. In 3D images…”

The expansion rules can refer to a list of 35 noise words
like and, for, of, and the, which are often skipped in acro-
nyms, as in CIIR (Center for Intelligent Information Re-
trieval). The algorithm tries to find a sequence of words
such that the initial 1 to 4 characters from each non-noise
word match the characters of the acronym, as in Bureau of
Personnel (BUPERS). In addition:

• One initial character of a noise word can match an in-
ternal acronym character, as in Department of Defense
(DOD).

• A noise word can be skipped, as in Research Experi-
ence for Undergraduates (REU).

• The initial character and the 4th, 5th, or 6th characters of
potential expansion terms could be matched to acronym
characters as in PostScript (PS). This is an attempt to
simulate a crude morphemic decomposition, but without
any knowledge of English prefixes.

ACRONYMS
Contextual Canonical/

Contextual
Canonical Simple Canonical

Patterns for
Acronyms

(U{sep})+ e.g. U.S.A.
U+ e.g. USA
D*U[DU]* e.g. 3D,62A2A
UUU+L+ e.g. JARtool
UU+L+U+ e.g. AChemS

(U{sep})2-9S e.g. U.S.A, U.S.A.’s
U2-9S e.g. USA, USA’s
U*{dig}U+ e.g. 3D, 3-D, I3R
U+L+U+ e.g. DoD
U+[/-]U+ e.g. AFL-CIO

U[UL/-]0-8U
e.g. USA, DoD, AFL-CIO

Upper vs. Lower
Case

First two chars must be U,
then any number of L
anywhere, but adjacent

L internal, or final s or ‘s
DOD, DoD, DOD’s

Must begin and end with U
Can have L elsewhere
DOD, DoD

Digits Any number of digits,
anywhere

Only 1, any nonfinal position
 3M, 2ATAF

None

Spaces and
periods

 After capital letters ‘.’ Or “. +space” must be after each
character. N.A.S.A, N. A. S. A.

None

/ or - None – treated as space in
tokenizing

1 interior of /,-
CD-ROM,OB/GYN

Any number of /, - in interior
CD-ROM, OB/GYN

Max length None explicit 9 alphanumeric chars, plus any
included punctuation or final s

10 characters including any
punctuation

EXPANSIONS
Noise words Fixed list of 35 Fixed list of 40 None
Skip words Only noise words Noise words, or words following

hyphens
Only first and last words have to
match chars in acronym

Noise word chars At most 1, only characters internal to the acronym N/A
Prefixes Yes, assumes any initial 3,4, or 5 chars may be a prefix N/A
Chars from non-
noise word

Up to 4. Greedy, prefers to
take more

Up to 4.
Not greedy, prefers to take fewer

Prefers to 1. Can take more if
word starts with upper case

Canonical
Definition

N/A (Unordered)
AC (Exp), Exp(AC)
(Exp) AC, (AC) Exp
AC or Exp, Exp or AC,
AC stands for Exp
AC {is} an acronym for
Exp known as the AC
Exp “AC”, “AC” Exp

(Ordered)
Expansion (ACRONYM)
Exp or AC
Exp, or AC
Exp, AC
AC (Exp)
AC, Exp

Capitalization Expansion can be all L Canonical: can be
all lower
Contextual: only
noise words can be
lower, rest must be
upper

Can be all
lower case

Lower case allowed, but with
stricter rules than upper case;
each letter in acronym must be
matched by a letter starting a
word in the expansion.

Numbers Spell out or multiply No numbers

Table 1: Properties of acronyms and expansions for four different algorithms

The contextual algorithm scans for an expansion until an-
other acronym pattern is encountered, wherein the old ac-
ronym is forgotten and the new one becomes the source for
matching, or until the expansion is found or fails.

If a digit n is found in the acronym, the acronym receives
some special handling. The algorithm tries replacing the
digit and the following or preceding character with n repe-
titions of the character, as in MMM for 3M. If it cannot
find an expansion for this transformed acronym, it then
tries matching the digit with the spelled out number, as in
three dimensional for 3D. Periods in acronyms are ignored
in looking for expansions.

One of the major problems with the contextual algorithm
was its greediness in trying to match more than one initial
character from expansion terms. This would lead it to ex-
pand NIST as National Institute of Standards, taking the t
from Standards, rather than as National Institute of Stan-
dards and Technology. A second problem, particularly
with two letter acronyms, was the unacceptably high likeli-
hood of finding a sequence of lower case words with a spu-
rious match for the acronym, as in story from for SF.

Contextual-Canonical. The canonical/contextual algorithm
is a modification of the contextual algorithm to address the
above two problems. First, canonical rules were added to

6

constrain when lower case words are accepted for expan-
sions. Only if an acronym/expansion pair is found in a
form in the row labeled Canonical Definition in Table 1, is
a lower case expansion allowed. An expansion found via
the contextual rules must be capitalized, except for noise
words. Second, the algorithm tries conservatively, rather
than greedily, to match multiple characters in an expansion
term, addressing the problem illustrated with NIST, above.
In addition, hyphens and slashes are allowed in acronyms,
and are passed over silently in expanding them. If an ex-
pansion term is hyphenated, such as Real-Time from
CRICCS (Center for Real-Time and Intelligent Complex
Computing Systems), the algorithm can either treat Real-
Time as two words, or as a single word, not requiring a T in
the acronym.

Canonical. The canonical algorithm was derived from the
canonical contextual, filtering the output list so that only
acronym/expansion pairs that were found in canonical form
were retained.

Simple Canonical. The simple canonical algorithm was an
attempt to do away with most of the complexity of the
contextual algorithm and its derivatives. Like the canonical
algorithm, the simple canonical algorithm requires that the
acronym be found in certain textual contexts, but it accepts
fewer canonical patterns for acronym/expansion pairs, and
fewer acronym patterns. The algorithm searches for the
forms in the Canonical Definition row of Table 1 in the
order they are listed.

When checking the validity of a potential expansion, the
algorithm has a few acronym/expansion matching schemes.
Each of these schemes recursively checks shorter expan-
sions first. The matching schemes are performed as fol-
lows:

1) Uppercase strict: each letter in the acronym must be
represented, in order, by an uppercase letter in the ex-
pansion. The expansion must begin with the first letter
of the acronym.

2) Lowercase strict: each letter in the acronym must be
represented, in order, by the first letter of a word in the
expansion. The expansion must begin with the first
letter of the acronym and must not contain uppercase
letters.

3) Uppercase loose: the first word must begin with the
first letter of the acronym and the last word must begin
with a letter in the acronym. This scheme is extremely
loose, and can result in expansions where some letters
in the acronym are not matched at all.

The functions that check shorter expansions first remove
words from the end of the expansion farthest from the ac-
ronym, then the functions call themselves with the modified
expansion. Each function will remove a word from the
beginning of the expansion if the expansion follows the
acronym, or from the end of the expansion if the expansion
precedes the acronym. If the shorter expansion passes the
requirements, the algorithm returns the short expansion

with the acronym as valid. For example, Air Carrier Ac-
cess Act (ACAA) fits the pattern “expansion (ACRO-
NYM).” Since Air Carrier Access Act passes the uppercase
strict test, it is returned as the valid expansion for ACAA.
While Access Act would pass the uppercase loose test for
ACAA, it would not be returned because the uppercase strict
test is performed first.

EVALUATION OF ALGORITHMS
In order to evaluate how well our algorithms correctly find
all the acronyms that are explicitly defined in a set of
documents, we use standard information retrieval measures.
Precision, that is, found correct/found total, measures the
accuracy of extraction, and recall, that is, found cor-
rect/known correct, measures the completeness of the ex-
traction. For this evaluation we started with the 1M set,
that is, the 936,550 military and government web pages that
we processed for the Acrophile web database. From this
set, we selected at random 170 pages that contained text
and manually found all the acronyms with explicit defini-
tions. These documents contain 353 defined acronyms, 10
with an ampersand or slash, and none with numbers or
dashes. Variations in expansions that were accepted as
correct were the omission or addition of an ‘s,’ and differ-
ences in punctuation.

Table 2 shows recall and precision values for the four algo-
rithms on the 353 acronyms in test set and on a subset con-
taining the 328 acronyms of length three or higher.

All Acronyms Length > 2
Precision Recall Precision Recall

Contextual .89 .61 .96 .60
CanCon .87 .84 .92 .84
Canonical .96 .57 .99 .59
Simple .94 .56 .99 .57

Table 2: Recall and precision on 170 sample docs

There were sixteen cases missed by all our algorithms be-
cause the expansion was too far (more than twenty words)
away from the acronym. We do not expect any algorithm to
get these, and other researchers do not include such cases
[15][18]. The results excluding these cases can be seen in
Table 3.

All Acronyms Length > 2
Precision Recall Precision Recall

Contextual .89 .63 .96 .63
CanCon .87 .88 .92 .88
Canonical .96 .60 .99 .61
Simple .94 .59 .99 .60

Table 3: Excluding distances > 20 words

Precision is very high, especially on acronyms longer than
two characters. Recall is considerably higher for the ca-
nonical contextual algorithm than the other three algorithms
but with lower precision. As expected, the two canonical
algorithms have lower recall but higher precision. The
contextual algorithm has lower recall, and slightly higher

7

precision than the canonical contextual algorithm, in a pat-
tern indicating that a preponderance of its errors are on 2
letter acronyms. These results cannot be directly compared
to the .93 recall and .98 precision found for acronyms
longer than 2 characters in [15], and .91 recall and .68 pre-
cision in [18], and roughly .80 recall and .90 precision in
[19], because these studies are based on different text, and
possibly different criteria for correctness.

COMPARISON WITH HAND CRAFTED LISTS
Two web collections were chosen for the comparison. We
tried to use the largest and best quality sites from which we
could easily get and parse lists of acronyms and expan-
sions. We used WWWAAS, the World Wide Web Acro-
nym and Abbreviation server at University College Cork in
Ireland [17] and Acronym Finder, Mountain Data Sys-
tems’s acronym database [1]. From WWWAAS, the
smaller of the two sites, we could extract the entire data-
base by submitting a “.” as a query. The output was con-
verted from HTML to our format with lex. The items were
not added to our database. For Acronym Finder, the larger
site, we were not able to dump the entire database, but we
were able to collect all the expansions for a test set to be
described in the next section.

Size
First, Table 4 shows how our collection compares with the
others in overall size. WWWAAS contains far fewer acro-
nyms and expansions than our set. Acronym Finder con-
tains more acronyms, but fewer expansions than we ex-
tracted from 1M set described above. Processing additional
pages outside of the military and government domain
would undoubtedly find more acronyms.

Algorithm # Acronyms # Exps Avg Exps/Acro
Contextual 44,241 143,620 3.25
CanCon 51,726 161,686 3.13
Canonical 41,832 117,746 2.81
Simple 40,073 119,081 2.97
WWWAAS 12,108 17,753 1.47
Ac.Finder 60,000 127,000 2.17

Table 4: Number of acronyms and expansions extracted
from 1M pages by each algorithm, and at 2 web sites

Evaluation method
To go beyond size and compare the correctness of different
collections is much more difficult than comparing algo-
rithms on a fixed set of data. A major challenge was in
defining “correct.” A usable criterion was to require that we
could find the acronym in use on the web. By taking a
random sample of 200 acronyms from each of our lists, we
were able to determine that virtually all the acronyms in all
the sets were real acronyms, that is, we were able to find
them used as an acronym somewhere on the web. How-
ever, it looked as though some expansions might be errone-
ous, and we devised the following method to evaluate the
accuracy of the set of expansions listed for an acronym.

The test samples of acronyms and expansions. We ini-
tially selected a sample of 55 acronyms for evaluating ex-
pansions. Forty acronyms were chosen to mimic the distri-
bution of acronym length found in the small Wall Street
Journal collection. Acronyms with length 2, 3, and 4 were
generated randomly, while others were selected at random
from a longer list of acronyms of that type. We added 5
acronyms containing numbers, 5 known to have a large
number of expansions, and 5 with dashes or slashes.

For each of the 55 acronyms, we collected a pool of expan-
sions from the two reference databases on the Web, and
from our four algorithms, run on the 1M set. We also
added all the additional expansions that came up in the
crawling experiments discussed below. We later found that
for 10 of the 55 acronyms, none of the systems found any
expansions. These 10 were removed from the evaluation,
leaving 45 acronyms in the test set.1

Criteria for correct expansions. Our criterion for a correct
expansion was similar to that for a correct acronym, that is,
that we could find at least one example on the web defining
that expansion for that acronym. We hired evaluators to
examine pages returned from an AltaVista [2] search for a
query consisting of the acronym and the expansion. If they
could find the acronym defined with the target expansion
on any web page, using a list of explicitly defined criteria,
it was accepted as correct. Otherwise, it was incorrect.

Scoring. We defined recall for this context as the number of
correct expansions for an acronym found by one algorithm
or system divided by the number of known correct expan-
sions for that acronym found by all algorithms or systems
evaluated. Similarly, we defined precision as the number
of correct expansions for an acronym found by one algo-
rithm or system, divided by the number of expansions, cor-
rect or incorrect, found by that algorithm or system. We
then averaged across acronyms.

To obtain a range of recall/precision points, we ranked the
expansions by a confidence score, which was a function of
how many times the expansion was found for an acronym,
and another factor which we found highly related to reli-
ability – whether an occurrence is in one of the two canoni-
cal forms “expansion (ACRONYM)” or “ACRONYM (ex-
pansion)”. Pilot research with the 1989 Wall Street Journal
corpus showed that acronym/expansion pairs extracted
from this frame were about five times more likely to be
correct than pairs extracted from any other form. There-
fore, we gave occurrences in this form more weight than

1 Several patterns in our results make us doubt that our test set of
45 acronym is representative. First, the average number of
expansions per acronym is much higher in the test set than in the
complete set. We are in the process of judging a better corpus of
200 acronyms. This list includes most of the 45 acronyms from
the present test set, plus acronyms chosen randomly from a list of
acronyms found in the evaluated systems. These judgments will
allow a more reliable evaluation.

8

occurrences in other forms by counting them as five occur-
rences.

An acronym’s expansion with a count of 1 in a very large
corpus is somewhat likely to be erroneous. Expansions
with a count of 10 are much more likely to be correct and
expansions with counts of 30 are even more likely to be
correct. The higher the count we require, the better accu-
racy (precision) we can obtain. However, requiring higher
counts also causes more legitimate expansions be missed.
We can therefore get higher precision by requiring some
threshold number of counts in order to accept an expansion
for an acronym, but at the cost of lower recall. By varying
this threshold, we obtain a range of recall-precision points
for our evaluation below. The confidence scores are also
used in the online search system, but they are transformed
to C/(C+2), in order to range between 0 and 1.

Note that weighting the count does not bias our measure-
ments of recall and precision, it only affects how acronyms
are grouped by confidence to get a range of recall/precision
values.

Table 5 shows the total number of expansions found for the
45 acronym test set by each of the 4 tested algorithms and
the two web sites. It also shows recall and precision. The
contextual and canonical/contextual algorithms find the
largest number of expansions for the test acronyms. Con-
sistent with the analysis on the 170 documents, the simple
and canonical algorithms have higher precision and lower
recall. Acronym Finder has performance similar to our
algorithms. A more complete picture of the situation can
be seen in Figure 3.

Algorithm # Exps Precision Recall
Contextual 1172 .75 .28
CanCon 1055 .76 .34
Canonical 573 .79 .21
Simple 344 .81 .25
WWWAAS 90 .84 .09
Acronym Finder 450 .76 .31

Table 5: Number of expansions, precision, and recall for
each system, measured on 45 test acronyms

Figure 3 shows recall and precision curves for the four al-
gorithms, evaluated on the 45 test acronyms whose expan-
sions were all judged. The points on each curve show re-
call and precision at thresholds of 1, 2, 3, 4, 5, 10, 15, 20,
25, and 30, computed as described above. The recall and
precision values in Table 5 correspond to the threshold 1
points on Figure 3. The graph shows that for all algo-
rithms, it is possible to attain precision values in the .95-.97
range, but only at very low recall levels, that is, for the ac-
ronyms we have the most confidence in. The worst-per-
forming algorithm is the contextual, with substantially
lower values than the other values all along the recall preci-
sion curve. The canonical/contextual algorithm and the
simple algorithm perform the best across most of the curve,
except at the high recall end, where the canoni-

cal/contextual algorithm attains higher recall. In other
words, the contextual rules of the canonical/contextual al-
gorithm allow us to find more acronyms and/or expansions
than we can find using canonical rules alone, but this non-
canonical set also has more errors in it. The canonical al-
gorithm falls between simple canonical and contextual al-
gorithms in recall and precision.

The unconnected points on Figure 3 show the recall and
precision values we measured for the handcrafted web sites,
on the 45 test acronyms. Each site contributes a single point
to the graph rather than a curve, because we have no way to
vary a threshold.

WWWAAS, the smaller site, falls at the low end of recall,
with a recall of .09 and precision of .84. Although precision
(.84) appears good, compared to the other values in Table 5
(all in the .70’s), we see from the more complete recall-pre-
cision curves that this value is comparable to our worst-per-
forming algorithm – the contextual – at a threshold of 3.
Our best algorithm, the canonical/contextual, has recall of
.25 at the comparable value of precision, and precision of
.96 at the comparable recall level.

Acronym Finder, the larger site, had recall and precision
values of .26 and .76, comparable to our best algorithm, the
canonical/contextual, at a threshold of 1. These results con-
firm the hypothesis that our algorithms can create a corpus
of acronyms and expansions that is comparable in quality to
the best manually built site that we could evaluate.

Note that precision and especially recall values here are
substantially lower than what we found in evaluating the
extraction from 170 web pages. The difference is due to
the different pool of expansions which were considered
correct. We are certain that some of the acronym expan-
sions we counted as incorrect were in fact correct, but were
not found in the AltaVista search, resulting in lower preci-
sion.

Figure 3: Recall and Precision on 45-acronym test

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Recall

P
re

ci
si

o
n

Contextual
Canonical/Contextual
Simple
Canonical
Acronym Finder
WWWAAS

≈

9

The pool of correct expansions has an even larger effect in
reducing recall. An expansion is counted as missed if any
other evaluated system found the expansion, whether or not
it was present in the set of documents input to the acronym
extractors. This makes the set of correct expansions a
moving target that grows the more we search. The crawl-
ing experiments below show that the same acronyms are
used in many domains, and if we go beyond our military
and government 1M set, more expansions will be found.

PROCESSING ADDITIONAL PAGES
This analysis addresses the extent to which we can find
more expansions by searching the web for acronyms. We
used the 55 test acronyms, submitted them as queries to
AltaVista, and ran our extraction algorithms on the top 30
and 100 pages that were returned for each query. This pro-
cess found many new expansions for the target acronyms.
As an illustrative example, Table 6 shows all the expan-
sions for the acronym EWI, as found by all the systems
mentioned. WWWAAS does not appear in the table be-
cause it did not include the acronym EWI. The other man-
ual site, Acronym Finder (AF) had three expansions listed,
two correct and one incorrect. All four of our algorithms,
run on the 1 million web pages, found the two correct ex-
pansions for EWI listed by Acronym Finder, and did not get
the incorrect expansion. In addition, our algorithms found
a third correct expansion, and all but the contextual algo-
rithm found another incorrect expansion. The additional
pages found by searching and crawling more than doubled
the number of correct expansions. When 30 pages were
processed for each acronym query, four new correct expan-
sions and one incorrect expansion were found. When 100
pages were processed for each acronym query, another two
correct expansions were found.

Expansion

A
F

C
on

C
an

C
on

C
an

Si
m

pl
e

1M
+3

0

1M
+1

00

Edison Welding Institute + + + + + + +
Education With Industry + + + + + + +
Electronic Warfare Intelligence -
Equal Width Increment + + + + + +
Explosive Waste Incinerator - - - - -
Eijkman Winkler Institute + +
Elliott Wave International + +
European Wireless Institute + +
European Web Index + +
Edison Welding - -
Electro World Inc +
Executive Women International +

Table 6: Expansions for acronym EWI

In addition to finding more expansions for the target acro-
nyms, extraction from the crawled pages found some new
acronyms that had not been extracted before. For 1M+30,

318 new acronyms were found, and for 1M+100, 1120 new
acronyms were found. None of these were the 55 acronyms
targeted by the search.

Figure 4 shows the recall precision curves for the canonical
contextual algorithm, processing 30 crawled pages per ac-
ronym in addition to the basic 1M set, and 100 additional
crawled pages per acronym, along with the old curve for
the 1M set. This targeted crawling results in a huge in-
crease in recall, without dropping precision except at the
very highest recall levels – thresholds of 1. At a threshold
of 2, precision (.75) is not appreciably lower than the preci-
sion for the 1M pages alone at a threshold of 1 (.76), but
recall has almost doubled from .28 to .54.

As a control, we also measured the performance of the ca-
nonical contextual algorithm on comparably sized sets,
consisting of the 1M set with the addition of either
55x30=1650, or 55x100=5500 randomly selected docu-
ments. We did not include these results on the graph in
Figure 4, however. The results were so similar to that of
the 1M set alone that they could not be seen separately on
the graph.

CONCLUSIONS
We were able to build in a largely automated manner, a
searchable dictionary of acronyms and expansions which
rivals the quality of a good manually constructed dictionary
of acronyms, by extracting acronyms and expansions from
a large corpus of static web pages. We showed that we can
increase the precision (accuracy) of our extraction by rais-
ing a threshold. Although this results in lower recall (cov-
erage), we can increase recall by processing more pages.
We can increase recall dramatically without loss of preci-
sion by processing web pages that are returned by a search
for the acronyms that we have already found. This two-
stage strategy results in a collection that is superior to any

Figure 4: Adding source pages by searching for
target acronyms

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Recall

P
re

ci
si

o
n

1M

1M+30

1M+100

≈

10

manually built database, and it can be kept up-to-date in an
automated manner.

FUTURE WORK
Dynamic Extraction
Given the great efficiency and success of finding additional
expansions for an acronym by searching for the acronym
and extracting expansions from the top 100 web pages re-
turned, we are planning to add a facility to do this online.
This will not replace the static database, however. There
are some acronyms which spell existing words (IS, TIDES)
for which the acronym may not occur in the top 100 pages
returned from a search.

We would like to have the system automatically crawl for
pages containing known acronyms, to continue to find new
expansions for our acronyms, and to discover new acro-
nyms. We have found that our confidence scores get dis-
torted by this process because the same web pages may be
processed many times. Presently we remove duplicate
URLs from the set of pages for one acronym, but we do not
keep a master list to prevent processing the same page
again in a later run.

HTML Parsing
Our simple method of ignoring material inside HTML tags
could be improved. We lose several occurrences of acro-
nym/expansion pairs defined within the ALT property of
 tags, as in: <IMG SRC="image.gif" HEIGHT="50"
WIDTH="50" ALT="Library of Congress (LOC)" >.

We also do not take advantage of the <ACRONYM> and
<ABBR> tags, which allow a web author to declare acro-
nyms and abbreviations as follows: <ACRONYM ti-
tle="Rapid Eye Movement"> REM </ACRONYM> or
<ABBR title="Y2K"> Year 2000</ABBR>. These tags are
not yet in common usage, but if they become more widely
used, we would want our extraction algorithms to be able to
extract acronyms and abbreviations from them.

ACKNOWLEDGMENTS
This material is based on work supported in part by the
National Science Foundation, Library of Congress and De-
partment of Commerce under cooperative agreement num-
bers EEC-9209623 and EIA-9820309. Any opinions,
findings and conclusions or recommendations expressed in
this material are the authors and do not necessarily reflect
those of the sponsor.

We thank Mike Molloy for information about Acronym
Finder, and Morris Hirsch for an early version of the con-
textual algorithm. Thanks also to Don Byrd for his com-
ments on a draft of this paper.

REFERENCES
1. Acronym Finder. http://www.AcronymFinder.com.

2. AltaVista. http://www.altavista.com.

3. The American Heritage College Dictionary, Third Edi-
tion. Boston: Houghton Mifflin Company, 1993.

4. Atomic Harvester.
http://www.desktop-server.com/atomic.htm.

5. Dog fanciers acronym list. http://mx.nsu.ru/FAQ/F-dogs-
acronym-list/Q0-0.html.

6. EmailSiphon is known by the evidence it leaves when it
crawls archives for email addresses, purportedly for
spamming purposes. See discussion in
http://archives.list-universe.com/list-moderators/9802.

7. Fellbaum, Christiane. WordNet: An Electronic Lexical
Database, Cambridge: MIT Press, 1998.

8. Giles, C. Lee, , Bollacker, Kurt D., and Lawrence, Steve.
CiteSeer An Automatic Citation Indexing System, in
Digital Libraries 98, New York: ACM Press, 1998, pp.
89-98.

9. Hearst, Marti. Automatic Acquisition of Hyponyms
from Large Text Corpora, in Proceedings of the Four-
teenth International Conference on Computational
Linguistics (Nantes, France, July 1992).

10. Mad Cow disease list.
http://www.maff.gov.uk/animalh/ bse/glossary.html.

11. MetaCrawler. http://www.metacrawler.com.

12. Molloy, Michael (Acronym Finder), personal commu-
nication. February, 2000.

13. Opaui Guide to Lists of Acronyms, Abbreviations, and
Initialisms (http://spin.com.mx/~smarin/acro.html).

14. ResearchIndex. http://www.researchindex.com.

15. Taghva, Kazem, and Gilbreth, Jeff. Recognizing Ac-
ronyms and their Definitions. Technical Report 95-03,
ISRI (Information Science Research Institute) UNLV,
June, 1995. http://www.isri.unlv.edu/ir/publica-
tions/Taghva95-03.ps

16. Tkach, Daniel, ed. Text Mining Technology: Turning
Information into Knowledge. IBM White Paper, 1998.
http://www.software.ibm.com/data/miner/fortext/down
load/whiteweb.html.

17. World Wide Web Acronym and Abbreviation Server
(WWWAAS). http://www.ucc.ie/cgi-bin/acronym.

18. Yeates, Stuart. Automatic extraction of acronyms from
text. In Proceedings of the Third New Zealand Com-
puter Science Research Students’ Conference. Hamil-
ton, New Zealand, April 1999, University of Waikato,
pages 117-124. http://www.cs.waikato.ac.nz/~syeates/-
pubs/acroPaper.ps.gz

19. Yeates, Stuart, Bainbridge, David, and Witten, Ian.
Using Compression to identify acronyms in text.
Submitted to Data Compression Conference,
DCC2000.

