Probabilistic Techniques for Phrase Extraction*

Fangfang Feng and W. Bruce Croft

Center for Intelligent Information Retrieval
Computer Science Department
University of Massachusetts, Amherst

Abstract

This study proposes a probabilistic model for automatically extracting English noun phrases without
part-of-speech tagging or any syntactic analysis. The technique is based on a Markov model, whose initial
parameters are estimated by a phrase lookup program with a phrase dictionary, then optimized by a set of
Maximum Entropy parameters for a set of morphological features. Using the Viterbi algorithm with the
trained Markov model, the program can dynamically extract noun phrases from input text. Experiments
show that this technique is of comparable effectiveness with the best existing techniques.

Keywords: indexing, phrase extraction, Markov, maximum entropy.
Additional Keywords: phrase dictionary, tokenize, smooth, bias

* Acknowledgments:
Jay Ponte did the early Markov model design, and provided many suggestions. This material is based on work supported in part
by the National Science Foundation under cooperative agreement EEC-9209623. It is also supported in part by United States
Patent and Trademark Office and by the Defense Advanced Research Projects Agency/ITO under ARPA order D468, issued
by ESC/AXS contract number F19628-95-C-0235. Any opinion, findings and conclusions or recommendations expressed in this
material are of the authors and do not necessarily reflect those of the sponsors.

Address:

Center for Intelligent Information Retrieval
Computer Science Department

University of Massachusetts

140 Governor St.

Ambherst, MA 01003-4610

Email:
feng@cs.umass.edu
croft@cs.umass.edu

1 Introduction

Extracting noun phrases can be a helpful aid to many applications, such as indexing and summarization. In
Information Retrieval (IR), noun phrase indexing can improve the retrieval accuracy and is commonly done
in web search engines. To index noun phrases, one must first find a method of identifying or extracting the
noun phrases. A straightforward and popular method is to assign a part of speech (POS) tag to every word
then collect the sequences of words which correspond to noun phrases (Church, 1988; Smadja, 1993; Brill,
1993; Kupiec, 1993; Voutilainen, 1997; Tolle & Chen, 2000; Perez-Carballo & Strzalkowski, 2000). The POS
category of a word reflects its syntactic role in a sentence. The assignment of POS categories to words is
referred to as tagging. The tagging problem is difficult because of the lexical ambiguity and the grammatical
flexibility. In this approach to noun phrase extraction, a POS tagger plays a major role, and will decide the
performance of the overall extraction process.

Tagging methodologies can be categorized into two broad classes, stochastic approaches and heuristic ap-
proaches. The stochastic tagger treats the problem as a set of random variables with associated probabilities
and uses an overall likelihood to determine the part of speech of a word. The heuristic method uses grammat-
ical and lexical knowledge in the form of a set of rules whose conditions are to be matched against the actual
context to deterministically decide the POS of a word. Most stochastic taggers are trained automatically
to deal with lexical ambiguities, and many such taggers have incorporated Markov models. A well-trained
Markov model can tag sentences more accurately and with more flexibility (Jelinek, 1985; Church, 1988;
DeRose, 1988; Cutting, Kupiec, Pedersen, & Sibun, 1992; Kupiec, 1992; Charniak, Hendrickson, Jacobson,
& Perkowitz, 1993; Weischedel, Meteer, Schwartz, Ramshaw, & Palmucci, 1993; Xu, Broglio, & Croft, 1994;
Merialdo, 1994; Brants, 2000).

Extracting noun phrases from a tagged sentence is still not an easy task, because even after tagging, there
can still be considerable uncertainty on issues such as what components or patterns can be noun phrases, how
long a noun phrase can be, where a noun phrase should be segmented, etc. For example, we could have a very
simple pattern for the noun phrase extraction, an adjective followed by a proper noun. Here are two sentences:

They were due Sunday.
They were young Americans.

They will be tagged exactly same as “PPSS BED JJ NP” (the tag annotations are defined in Brown Corpus).
However, “due Sunday” of the first sentence is not a noun phrase while “young Americans” is. If we specify
that the name of a day cannot be a component of a noun phrase, then this excludes other possible phrases
such as “bloody Sunday”. There are many such conflicts between numbers, months, years, and past, passive,
and present participle verbs.

The length of a noun phrase is another issue. The longer the noun phrase (e.g. number of words > 3),
the more modifiers and the more specific it is, while shorter noun phrases tend to be more general. Shorter
noun phrases usually have higher frequency than phrases preceded by more modifiers (i.e. longer ones). For
example, in the 1987 Wall Street Journal from the TREC collection (Harman, 1995), there is a long noun
phrase “IBM version of new operating system software”. This phrase occurs only once while “operating system
software” occurs 22 times and “operating system” occurs 211 times. Some IR systems perform more effectively
when short phrases are identified in the queries. This raises the problem of how to segment a long phrase into
shorter ones. For example phrase mentioned above can be segmented into “IBM version” and “new operating
system software” or “operating system software”, or “operating system”, or “system software”. It is difficult
to decide which segmentation is better without more semantic information. These examples show that even
if a POS tagger can supply accurately tagged text, a noun phrase extractor still needs to solve a variety of
other problems.

A method of noun phrase extraction that does not require syntactic tags is to use delimiters such as verbs
and stopwords to tokenize a sequence of words between delimiter boundaries. Such a method can not avoid

the problem of lexical ambiguity. For example, the word “can” is not only in a typical stopword list but
also a noun. The word “fell” can be a noun, a verb, or an adjective. It would be difficult to extract the
noun phrase “beverage can” from the sentence, “The beverage can fell”, even with a collection of heuristic
rules for confusing cases. Using only lexical or morphological knowledge to identify the delimiters is often
not sufficient. A “surface grammatical analysis” can be helpful for improving the performance of this kind of
method (Bourigault, 1992).

For IR applications, the desired characteristics for a phrase extraction system are that it is fast, accurate,
trainable, has low storage overhead (i.e. no large dictionaries), and can recognize phrases that have not
previously been encountered. None of the current techniques has all of these characteristics. In this paper, we
investigate an approach that combines a simple tokenizing method with the method of automatically training
a Markov model for extracting noun phrases.

In the next section, we describe previous research related to phrase extraction. In Section 3, we describe our
approach and Markov model in more detail. Section 4 shows how the model is initialized and trained. Section
5 presents a series of experiments and discusses the results. Conclusions and future research are covered in
Section 6.

2 Previous Work

This section describes previous work related to noun phrase extraction. As we described in the previous
section, most extraction systems employ a POS tagger. Church proposed a stochastic method (Church, 1988)
to extract noun phrases based on statistical information. The method counts the frequencies for POS tags
of every word and every trigram from the Brown Corpus, and also estimates the probabilities of noun phrase
boundaries from tagged training material (about 40,000 words and 11,000 noun phrases). The first pass
associates every word with a POS tag. The second pass uses precedence parsing to insert the brackets around
noun phrases. The reported performance was very good, accuracy of 95-99% (recall was not reported).

LEXTER (Bourigault, 1992) does “surface grammatical analysis” which uses delimiters, such as verbs, stop
words, punctuation, premodifiers, nominal heads, and certain kinds of postmodifying prepositional phrases
and adjectives, to tokenize French texts for extracting maximal length noun phrases. LEXTER can extract
most terminological noun phrases. The effectiveness was measured to be 95% recall, but, precision was not
reported.

XTRACT (Smadja, 1993) uses straight statistical measures to retrieve from a corpus (10 million-word corpus
of stock market news reports) pairwise lexical relations whose common appearance within a single sentence
are correlated. For those pair (bigram, any order) whose frequency of occurrence is above a certain threshold
and if words are used in relatively fixed ways, XTRACT produces collocations involving more than two words
(ngrams (Choueka, 1988)). For example, the bigram “average industrial” produces the ngram “the Dow Jones
industrial average”, since the words are always used within the same noun phrases in the training corpus.
XTRACT uses a parser Cass (Abney, 1990) to add syntactical information to collocations (bigrams) and
filters out inappropriate ones as well as such ngrams containing them. For example, a bigram “price rose”
is identified as subject-verb by Cass, then filtered out and all ngrams containing it. After the filtering, the
remaining ngram (n > 1) is considered as a noun phrase. The effectiveness of this system was measured
at 94% recall and 80% precision. The technique is very similar to the “statistical phrases” used in early IR
research by Salton and Lesk (Salton & Lesk, 1968) and studied extensively by Fagan (Fagan, 1989).

NPtool (Voutilainen, 1997) uses a lemmatizer, ENGTWOL, to analyze English text morphologically, and
assign a ENGTWOL-style description for each word. Then uses a constraint grammar parser to parse the
text and extract noun phrases. If an ambiguity is found by the parser, the parsed text will be processed
by two different finite-state parsers, NP-hostile and NP-friendly with different NP-hood heuristics, then the
intersections of noun phrases of two parsings will be extracted. The reported effectiveness was 98.5-100%

recall and 95-98% precision.

Kupiec uses a noun phrase extractor in a question-answer system MURAX (Kupiec, 1993). The NP extractor
employs a POS tagger which is based on a hidden Markov model and trained on the untagged words of half of
the Brown Corpus (Francis & Kudera, 1982), it identifies noun phrases by finite-state recognizers for matching
lexicon-syntactic patterns.

A7 Noun Phraser was developed by University of Arizona (Tolle & Chen, 2000), and combines tokenizing the
text with POS tagging of tokens (Brill, 1993). It then applies a set of grammatical rules against the tagged
tokens to identify noun phrases. In a more general sense, the noun phrase is also considered concept. There
are also approaches for identifying other type of phrases, such as (Ratnaparkhi, Reynar, & Roukos, 1994;
Ratnaparkhi, 1998) using a maximum entropy model for prepositional phrases, and (Haase, 1996) using a
FramerD for all types of phrases.

Compared with the above, the approach described in this paper is a mixed method but uses no grammatical
or syntactical knowledge. A Markov model is trained to recognize phrases directly rather than POS tags. The
development of the new extraction system was undertaken because of the problems with existing techniques.
Despite the high reported effectiveness of the extraction systems based on POS tags, in an IR setting they were
found to make a number of serious errors and not able to easily adapt to short queries and new vocabulary.
The techniques based on statistical phrases were more flexible in that they capture the phrases used in the
corpora being searched, but this technique requires large dictionaries and a number of heuristics to attain
reasonable levels of effectiveness. The combination of techniques used in the extraction system described here
was designed to overcome these problems.

3 The Phrase Extraction Approach

Our approach applies a combination of methods to extract noun phrases. First, a tokenizer generates tokens
(i.e. a sequence of words, also called the phrase candidates) from free text using a list of delimiters and a set
of delimiting rules, then a trained Markov model extracts the noun phrases from the tokens. The tokens are
called phrase candidates because they may or may not contain subsequences of words considered noun phrases.
To recognize phrases from the tokens, there are two different phases, a training phase and an application phase.
During the training phase, the training program looks for every token subsequence of two-or-more words in a
phrase dictionary. After the Markov model has been trained, during the application phase, a dynamic program
with the Viterbi algorithm (Viterbi, 1967) recognizes phrases from the token by finding the best subsequence
with the maximum likelihood through the model. In this section, we describe the tokenizer and define the
Markov model.

3.1 Tokenizer

The tokenizer is a case-sensitive scanner, which generates tokens by identifying delimiters from text. There
are two types of delimiters, boundary delimiters and removal delimiters. The boundary delimiters are a set
of special words. Some of them can be used for starting a new token, for example, personal titles such as
Mr. and Prof. Some of them can be used for terminating a token, for example, company designators such as
Corp., Lit., and A.G.

The removal delimiters can be any items which are considered not significant for any noun phrases, and will
be discarded by the tokenizer. There are five types of removal delimiters:

1. stopwords: articles, pronouns, prepositions (excluding “of”), conjunctions, some adverbs (e.g. what,
when, where, and so forth), number words (e.g. one, ten, hundred), unambiguous verbs that can be used as

verb only (e.g. be, expect), those past and passive participles of most frequently used irregular verbs (e.g.
known, bought, got), and words about times (e.g. minute, hour, week); stopwords do not include those
verbs that can be nouns (e.g. can, make).

2. numbers: numeric items, such as currency, percentage, and fractions, are removed.

3. punctuation: only few exceptions, like hyphen used in compound words, quotes used in possessives or as
an and (e.g. rock 'n’ roll), and periods used in abbreviations, most others are considered removal delimiters.

4. verb patterns: there are about ten verb patterns used by the tokenizer to predicate verbs and remove
them such as, have to {verb}, able to {verb}, and ought to {verb}.

5. formating delimiters: such as table fields, labeled lines, and section heads are considered removal delimiters.

The tokenizer parses each text item (single word). If the item is not a delimiter (any type) then it will be
saved in a buffer. If it is a boundary delimiter, the tokenizer will starts or terminates a token. To start a new
token, the tokenizer outputs the saved items in the buffer and puts the boundary delimiter in the buffer as
the first word. To terminate a token, the tokenizer puts the boundary delimiter at the end of the buffer and
outputs the buffer. If the item is a removal delimiter, it will be discarded and the tokenizer will output the
buffer.

Here we assume that the text is written in a normal format, like a newspaper article, that capitalizes proper
names and the first word of a sentence. For such a text the tokenizer can recognize the proper names and do a
simple sentence segmentation based on these capitalized words. There are few exceptions where the stopwords,
numbers, or certain punctuation used by proper names are not treated as the removal delimiters. Table 1
shows examples of such items used in proper names. The proper name, here, is defined as uninterrupted
of sequence of capitalized words and special items (e.g. de, von, las, &, “R”) in certain pattern. The
tokenizer uses few rules to protect removing such items from the proper names by the pattern matching. If
the item occurence matches the rule it will be saved in the buffer, otherwise, like other removal delimiters, it
will be discarded.

proper name delimiter
World War I I

Pan Am Am
American Can Can
U.S. Today Today
vitamin A A
AT&T AT &
Toys "R” Us “ Us
Six Flags Six

Red October October
S & P 500 index | &,500
Windows 3.1 3.1

Table 1: Removal delimiters used in proper names

As an example of how the tokenizer works, if the input text is:

It disclosed that its 28.1%-owned A&W Brands Inc. affiliate filed with the Securities and
Exchange Commission for an initial public offering of 3.4 million shares, with 2.3 million to be sold
by the company and the rest by holders, at $13 to $15 a share, through underwriters led by First
Boston Corp. Proceeds will be used to pay bank debt.

the output tokens are:

A & W Brands Inc
affiliate filed
Exchange Commission
initial public offering
First Boston Corp
bank debt

Note that a token could contain not only words but also other items such as numbers and ampersands. In the
rest of paper, however, we refer to the items of a token simply as “word”.

3.2 Markov Model

As mentioned earlier, our approach can be classified as a Markov model. A Markov model is any probabilistic
process in which the future development is completely determined by the present state and not at all by the
way in which the present state arose (Baum & Eagon, 1963). It can be defined as (4, B, w), where A is a set
of probabilities of state-to-state transitions; B is a set of probabilities of the process generating a symbol at a
certain state; 7 is a set of probabilities of initial states (Rabiner & Juang, 1986). In our Markov model, a set of
n states represents word positions of a phrase S = {sq, $1,- .., $n}, where n is the maximum length of a phrase.
State 0, so indicates no phrase or initial state, s; through s,, indicate the 1st through nth word position of a
phrase, and s, could also indicate a terminal state ending of a phrase (Figure 1.b). For a first-order model
(i.e. a single word of context), we may define S, and S,_; as random variables denoting the states of the
word at any position 7 and the proceeding word at the position r-1 in a phrase. The transition probability a;;
linking two states s; and s;, represents the probability of state s; following s;, i.e. p(S, = s;|Sr_1 = ;).

The word at position r is represented by a random variable V,., which ranges over the vocabulary V =
{v1,...,v,}, where z is the number of words (i.e. the size of a vocabulary including all allowed terms).
Discrete state-dependent word probabilities b;; represent the probability that word vy is seen at the state s;
(in our case, vy occurs as the jth word of a phrase), i.e. p(V, = vg|S, = s;).

Given that t represents a clock time, a random variable II; is defined to indicate the current state at time ¢,
so that the probability of initial state 7; represents the probability of a sequence beginning with state s;, i.e.
p(Ily = s;|t = 1). We now formally define the Markov model (4, B,) as:

A = {ay| 0<4,j<n}
B = {bj| 0<j<n1<k<z}
m = {m| 0<i<n}

Our approach is described by a non-ergodic model where we impose constraints on the phrase length, state
transition and initial states. The maximum phrase length is six (i.e. n = 6). The transitions represent the
word positions of a phrase (i.e. nonzero states, s; through sg) only allow from a word to the next word and
the initial states only allow sg and s; (i.e. non-phrase state and the state having seen the first word of a
phrase), so that some of transitions in a;; and most of m; values are zero.

The model stays at sg if there no phrase occurs in the input tokens. For the model to recognize a phrase, it
must see the first word of a phrase, then the second, and so forth. The state goes from sy to s;, and from
s1 to s for the second word, and so on for the rest of the phrase words until the end of the phrase. When
the model has seen the last word of the phrase the state could either directly shift back to the initial state or
go to a terminal state then return to the initial state. We have tried both ways, referred to as model, and
model, and shown as Figure 1.a and Figure 1.b. model, has no common terminal state. In such a model every
non-initial state could be a terminal state. model, has a common terminal state, and whenever an ending
word of a phrase is seen, the model will go to the common terminal state sg then return to the initial state.

1 0 1 0

Figure 1: Two examples of non-ergodic model

We tried the model, in our initial experiments, but we found that many extracted phrases ended with an
incorrect word (i.e. not a noun). model, uses the common terminal state sg to distinguish this state from
other states, specially to distinguish nouns from other type of words, such as adverbs, adjectives, and past
participles. For example,

organized crime
armed force

The words organized and armed can never be used as nouns so that their probabilities of occurring at the end
of a phrase will be zero (i.e. bg; = 0). State sg is not redundant as a terminal state of other nonzero states,
but rather it is an important feature for head nouns and is used for optimizing and smoothing (see Section
4.4 and 4.5).

In modely, ; has a nonzero probability only when the initial state is either s or s; (seeing no phrase or seeing
a phrase). Correspondingly the initial transition ag; could have nonzero probability only when j =1 or j =0
(starting a phrase or staying in the non-phrase state). The other transition probabilities {a;;|0 < i,j < 6}
will have nonzero value either when going to the next state (i.e. j =i + 1), that is, going from a word to the
next word of a phrase, or the terminal state (i.e. j = 6). Since the extractor is interested only in phrases of
length two or more, the transition from the first word to the second word of a phrase is always available. The
transition could go from s; to sg with a;¢ for the two-word phrase or to s; with a;s for a longer phrase.

The transition probabilities from terminal state s¢ are ag; and will have a nonzero value only when going to
so or to s1 (i-e. ago > 0 and ag; > 0). Going to so indicates either going from an end of a phrase to the
non-phrase, or from the end of the phrase which is also the end of a token to the initial state waiting for the
next token. Going to s; indicates going from the end of a phrase to the beginning of another phrase.

4 Training

Once the model is defined, the parameters (A, B,) can be refined by a training procedure of three phases.
Since we are using a supervised training method, the parameters could be estimated by a training corpus
with bracketed noun phrases, or phrase dictionary lookup. Because there are no training corpus available
to us, we build a phrase dictionary in the first phase. The second phase is calculating initial estimates of
the parameters with phrase dictionary lookup. The final phase involves optimizing the parameters using the
Maximum Entropy Principle (Jaynes, 1957a; Jaynes, 1957b).

4.1 Building Phrase Dictionary

Since there was no large, publicly-available phrase dictionary, building a phrase dictionary was an important
first step in the training process. The total number of phrase entries in two popular dictionaries available
on-line (Collins English Dictionary, 1979 edition and Longman Dictionary of Contemporary English, 1978
edition) is 19,823. Although this could be a large number for some applications, it is not sufficient for training
the Markov model for phrase extraction. Instead, we used a four-step heuristic algorithm to collect phrases
from all TREC collections (6.9 gigbytes of text):

1 Insert tokens in a hash table.
2 Remove non-noun words from the end of tokens by rules or other heuristics (see Section 5.1).
3 Cluster tokens whose occurrence frequency is lower than a threshold.

4 Discard tokens whose occurrence frequency is lower than a cutoff value.

The program gets tokens from the tokenizer and hashes them into a hash table, counting the frequency for
every entry. After all tokens have been inserted in the hash table, in step 2, the program invokes a set of
simple rules to recursively remove obvious non-noun words from the end of entries in the hash table. Here are
two examples of simple rules:

1 if the three-letter suffix of the word has never been used in any noun then remove it;

2 if the two-letter suffix of the previous word is “ly” and the suffix of the ending word is any of
“ed”, “ing”, “ble” “ly” then remove both of them;

A table of three-letter suffixes of nouns are available to the rule 1. This information was collected from Collins
English Dictionary (1979 Edition) which includes 81,958 words and 29,494 nouns. To recognize those plural
suffixes of nouns, the program does a simple stemming for words ending with s, es, and ies, assuming the
suffix cannot be found in the three-letter suffixes table. After each removal, the original entry is deleted from
the hash table and the remainder of the token is inserted if it still has two or more words. For the rest of
entries in the hash table, the program uses the average frequency as a threshold. From the TREC collections,
there were 72,162,082 tokens and 4,114,697 entries total so that threshold = 17.5376.

A clustering procedure (step 3) tries to replace low frequency entries with high frequency entries. If any
subsequence of a low frequency entry is identical to a high frequency entry, then the procedure removes the
low frequency entry and increases the count of the high frequency entry by the count of low frequency entry.
For example, Table 2 shows part of a hash table before the clustering and Table 3 shows the result of clustering.

freq | tokens

1 3-D workstation industry matures
41 workstation industry

26 3-D workstation

8 industry matures

Table 2: Example of the hash table of tokens before clustering

“3-D workstation industry matures” is combined with each other three entries so it is replaced. “industry
matures” is not replaced even though its frequency is below the threshold, because it does not contain any
subsequence that matches a high frequency entry. Thus, after the clustering there can still be some low

freq | tokens

42 workstation industry
27 3-D workstation

9 industry matures

Table 3: Example of the hash table of tokens after clustering

frequency entries left in the hash table. Those entries of frequency less than the cutoff value of 3 are discarded.
Usually the cutoff value is less than the threshold, but there is no known way to choose the cutoff value
automatically and optimally (see Section 5.1). The phrase dictionary is composed of the remained entries
from the cutoff, and will be used in the training phases.

4.2 Initialization

Once the phrase dictionary has been built, the initial model parameters (A, B,w) can be estimated. The
initial estimates are obtained by doing phrase lookups of the training data. The lookup procedure attempts
to find any subsequence of the training tokens from the dictionary (the “full match”) from the longest (six
words) subsequence to the shortest (two words). Thus the full match considers every possible subsequence
as a training sequence. The states, transitions and words are counted along the way using three arrays. The
state array s[i] records the total times of s; has been accessed; the transition array a[i,j] records how many
times a transition has been made from s; to s;, and the word array v[k,j] records the times of that word vy
has been seen at state s;. From these arrays, the initial probability (or the observed probability) estimates
can be obtained.

The 1987 Wall Street Journal collection (131.7 MB) was used as the training data. It includes 46,448 docu-
ments, 2,349,946 tokens, and 6,125,944 words, where 165,355 are unique. Using the previous example “IBM
version of new operating system software”, as the single training token, the subsequence lookup procedure and
the status of state array s[i] are showed in Table 4.

subsequence

IBM version of new operating system
version of new operating system software
IBM version of new operating
version of new operating system
IBM version of new

version of new operating

new operating system software
version of new

operating system software

new operating system

IBM version

new operating

system software

operating system

2]
=

2]
=
S
=
I
=

2]
=

IR IENIEN{IENIENIEN [Ne I Re e (TN RUCTR Y s
oUW ==ROo o olo|lolo
Wl Wl W W w o rRolololo ol o|l»
e Rl Rl Bl Bl el Bl Rl =] K =) K ==] R o) Nen] R el]
O|O|O|O|O|O|OO|O|o|o|o|Ioo|m
O|O|O|O|O|O|OO|O|o|o|o|Ioo|m
oUW ==ROo o olo|lolo

Table 4: Example of the state array

For each subsequence of adjacent words in the example token, Table 4 lists accumulated counts for every state
that is accessed. For example, when the lookup procedure finds “new operating” in the phrase dictionary, it
means that word “new” has been seen at state one (i.e. the first word of the phrase) and the word “operating”
has been seen as the end of the phrase (i.e. see the word at the terminal state), so s; and sg will increase by
one. The transition array a[i,j] and word array v[j,k] are updated correspondingly, where jis the state. Assume

that the word identifiers of “new” and “operating” are 19 and 20 respectively. When “new operating” is found
in the dictionary, the elements v[1,19] and v[6,20] of the word array, and a[0,1] and a[1,6] of the transition
array will all increase by one. After seeing the end of the phrase, the state transition will either return to the
non-phrase state so or go to the state of another phrase start (i.e. s1), depending on the dictionary lookup for
the next subsequence. If the next subsequence “system software”, is also found, then a[6,1] will be increased
by one, otherwise one is added to a[6,0]. This process is applied to every subsequence of all training tokens.
After this process, we can get the initial parameter estimates from the arrays:

mo = s[0]/(s[0] + s[1])
m = s[1]/(s[0] + s[1])
aij = ali,j]/sli]

bjr = vljkl/slj]

The initial model then can be used to extract phrases via dynamic programming. For a given word sequence
(token), the Viterbi algorithm (Viterbi, 1967) is used to find the best path (state sequence) with the maximum
likelihood through the model. For the above example, the best pathis (16 01 6 0 1) through the initial model,
so the extracted phrases are “IBM version” and “new operating”. This example indicates that the initial model
needs to be optimized since it missed an important phrase “operating system”. After the optimization, the
extracted phrases from this example will be “IBM version” and “new operating system software”.

4.3 Optimizing with Maximum Entropy

The parameters (A, B, w) of a Markov model can be adjusted in variety of ways. For example, a simple method
is to bias A and B (see Section 5.3). The most well-known method is Baum-Welch algorithm (Baum & Eagon,
1972), which is an iterative procedure that maximizes the probability of the observation sequence given to
the model. Our approach is to find a set of biases for different word clusters. In a word cluster every word
has the same features (see Section 4.4). A Maximum Entropy (ME) model (Jaynes, 1957a; Jaynes, 1957b)
is well-suited for such an approach since it combines diverse forms of contextual information in a principled
manner, and does not impose any distributional assumptions on the training data.

The probability model is defined over S x V described in the Section 3.2. The probability of seeing a word v
at state s is defined as:

p(s|v) = ﬁ .Ha;j(3,v) (1)

k
2v) = Y[ol

vEV =1
where Z (V') is a normalization factor to ensure }°, p(s|v) = 1, while a1, ..., o} are the positive model param-
eters, fi1,..., fr are known as features, and f;(s,v) € {0,1}. Note that each parameter o; corresponds to a

feature f;, and can be interpreted as a weight of the feature. The probability p(s|v) is a normalized product of
those features that are active on the pair (s,v), i.e. those features f; such that f;(s,v) = 1. The parameters
Qzi, ..., a of the probability distribution p* that best fit the training data can be obtained with the maximum
likelihood estimation (Ratnaparkhi, Reynar, & Roukos, 1994):

Q= {plp(el) = 5755 - [T)

10

L(p) = Y _(s,v) log p(s[)

,v

p* =arg r}gleag[L(P)]

where @ is the set of models of log-linear form; 5(s,v) is the probability of seeing v at state s in the training;
L(p) is the conditional log-likelihood of the training set; and p* is the optimal probability distribution according
to the maximum likelihood criterion.

Finding the p* is implemented as constraints on the model p’s expectation of features of f;, the constrains are
given by:

Epfj = Esf; 1<j<k (2)
where the model’s feature expectation is (Lau, Rosenfeld, & Roukos, 1993):
Epfi= Y, Bv)p(slv)fi(s,v)
veV,s€S
and the observed feature expectation is:

Epfy= Y. B(s,)fi(s,v)

veV,seS

p(s,v) indicates an observed probability of (s,v), and p(v), an observed probability of word v in the training
data. Thus, the constraints compel the model to match its feature expectations with those observed in the
training data.

This model also can be interpreted under the Maximum Entropy. The entropy of the distribution p is defined
as:

Hp')=— Y p(s,v)logp(s,v) (3)

sES,vEV

P = {p | Epfi=Epf;, j=1,..,k}

The maximum likelihood parameter estimation for the models of form (1) being equivalent to the ME param-
eter estimation models (3) (Darroch & Ratcliff, 1972). That is

* = argmax L(p) = arg max H(p'
p gmas (p) g max (")

if p has the form (1) and satisfies the k constraints of (2).

We estimate the parameters o; with the algorithm of Generalized Iterative Scaling (GIS) (Darroch & Ratcliff,
1972):

a;j (0) = 1

) +1 _) Esf; 1
a](m) — aJ(m)(ﬁ)C

where C' = max,¢ S,vev(zle fi(s,v)) and E;f; are computed from the initial training for the given k features.
The GIS procedure re-estimates the model’s expectation E, f; literately for j = 1,...,k. The computation of
E, f; involves summing over each v € V and s € §, such that:

11

By, = S 50)p™ (sv)f;(s,0)

o) F3 (8,0
P (sl) = gy ITi,al™

Each iteration will get a L(p) and L(p(™*+1)) > L(p(™). After enough number of iterations p("™ will converge
to p*, that is lim,, . p(™ = p* (Darroch & Ratcliff, 1972), and a set of parameters o, for features fi
will become stable.

4.4 Features for Word Cluster

The conditional probability p(s|v) is determined by those parameters o; whose corresponding features f; are
active, that is f;(s,v) = 1. We need to explore a set of features that can encode the information for some
word types, called word cluster, that can help predict whether or not a word can occur in a nonzero state.
For the first round of experiments, we used only ten features that they are most likely to be active on those
phrase words. The generic feature function is defined as:

1 ifs#0and (z(s)=1ory(v)=1)
0 otherwise

e ={

where z(s) represents a predicate function for the states and y(v) is a predicate function for words. Table 5
lists the features.

Feature | Function | Predicates

f1 y1(v) if v has a three-letter suffix used in noun
fa y2(v) if v is capitalized

f3 y3(v) if v is all in uppercase
fa y4(v) if v is an abbreviation
fs y5(v) if v contains any digit
fe y6(v) if v is hyphenated

fr y7(v) if v has an apostrophe
fs z1(s) ifs=1

fo z2(s) ifl<s<6

f10 I3 (8) ifs=6

Table 5: Feature functions

It’s clear that f;(s,v) maybe active only if s # 0, or only when word v is used by a phrase in the training
data. So, after a number of iterations with GIS algorithm, the parameters a1 .10 are converged (see Section
5.3). The feature f1o states that for all words that occur often in a phrase as head nouns (the last word), the
terminal state is an important feature. To use these feature parameters as biases for word clusters, we modified
the b;; (the observed probability of word v being seen at state s;) with an extra [[.- a;%(%/"+) when the
Viterbi algorithm finds the best path for a word sequence. More details will give in the next subsection.

4.5 Scaling and Smoothing

As mentioned in (Rabiner, 1989), there is a potential problem in the probability calculations. Since all
probabilities are less than 1.0, the numbers significantly less than one are being multiplied together, the values

12

will approach zero at an exponential rate, quickly exceeding the precision of machines. Hence a technique
for scaling the Markov parameters (4, B, w) is required to avoid mathematical underflow. A logarithmic
computation is used to scale the probabilities so that at each time step of the Viterbi procedure it is a simple
matter of adding the logarithms. For consistency, the biases of the ME parameters are also scaled by the
logarithmic computation, thus, Egl fi(sj,vr)log(a;), and the sum will be added to the b;;. This may not
be necessary, for if the form (1) is not required in a probability mode then the normalization factor 1/Z (V)
can be omitted from (1) and most of parameters a,... 10 will not be very small (see Section 5.3).

Another problem in such a probabilistic model is that some of the probabilities are hard to estimate by direct
counting, whatever the training data, because of Zipf’s Law (frequency is roughly proportional to inverse
rank) (Zipf, 1949). For example, considering a lexical probability, (word frequency)/(total word frequency),
because of Zipf’s Law, no matter how much text we look at, there will always be a large tail of words that
occur only few times, or will not occur at all (i.e. unknown words). Fortunately, several smoothing methods
can help alleviate this problem. We used a simple way to smooth those unknown words and empty elements
(i.e. bjr = 0). The empty element b;r, = 0 means that a word v; has never been seen as jth word of a
phrase during the training. Some empty elements are caused by the insufficient training data while some are
caused by the words themself. For instance, the word rivet occurs in the training collection (see Section 4.2)
four times but is not used as part of a noun phrase. In general text, however, there are many noun phrases
containing this word, for example, rivet body and blind rivet, we call such a word non-phrase word. Some
words can not be lexically used as jth word of a phrase. For example, adjectives can not be used as a head
noun, and the preposition of can not be used at the beginning or ending of a phrase. This means that the
smoothing algorithm should treat the empty elements differently.

Five “bins” or values based on the lexical occurrence probabilities are used for empty elements. The occurrence
probability is computed during model initialization. The average probability, i.e. avg, = 3 oy, B(v)/2z (recall
that z is the size of V, the training vocabulary), is used as a scaling factor, and the words are ranked from
high occurrence probability to low. Thus five bins are:

Bin Assumption Range

1 (well trained) (4avgp, 00)

2 (sufficiently trained) (2avgp, 4avgy)

3 (average trained) (avgp/2,2avgy)
4 (insufficiently trained) (avg,/4,avg,/2]
5 (poorly trained) [1, avgp/4]

The empty elements (i.e. bjz = 0) in the first bin (1) are not smoothed. The second bin is smoothed with
the minimum probability, i.e. min, = min,cy $(v). The empty elements in the third bin are smoothed with
a word average probability, i.e. avg,, = Zfzo bir,/6. Because of their importance to start and end phrases,
the elements by) and bg for the second and third bins are not smoothed. For the fourth bin, the smoothing
value used is also the word average probability, avg,,, but all empty elements are smoothed. For the fifth
bin, a smooth value of avg,/4 is added to every element of b;;. There are an additional seven elements
0,241 -+» b6,z+1 for all unknown words (i.e. the words do not occur in the training data). These are all
smoothed using the minimum probability min,,.

After smoothing the empty elements, the procedure normalizes every element b, (j =0,1,...,6;k = 1,..., 2,2+
1, plus the unknown word) using the total mass of probabilities of the words seen at the same state. The
normalized b, are:

r bj
ik — z+1 b
k=1 "Jjk

The smoothing for the Markov parameter B is accomplished by this normalization and the training process

13

of the Markov model is complete. With such a trained Markov model the Viterbi program can process the
input tokens to output extracted phrases.

5 Experiments and Results

As mentioned in the Section 4, the TREC collections were used to generate a phrase dictionary. The 1987
Wall Street Journal collection was used for training the model. In addition to the training data, two test files
were made for running experiments. The first is part of 1987 Wall Street Journal collection, called “wsj-test”,
and includes 50 documents, 709 tokens, and 14,524 words, from which 654 longest noun phrases have been
extracted manually. The other test file, called “patent-test” includes 21 text sections from Patent documents,
804 tokens, 2,049 words, and 733 longest noun phrases. The patent-test also includes 24 unknown words (i.e.
never seen in the training), and 74 phrases contain these unknown words, 41 non-phrase words (i.e. never
used by any phrase in the training), and 191 phrases containing them. The patent-test is considered a blind
test since it was not used during the development of the system. A target file of noun phrases were extracted
manually from each test file. The evaluation procedure is to compare the output of the phrase extractor with
the target file.

Since the longest noun phrase in the target file is not specifically the goal, there is the problem of determining
which extracted noun phrases can be regarded as “correct”. There are three simple standards for comparing
the phrases in the output files with the ones in the target files.

1. if an extracted noun phrase matches the target one exactly then it is correct.

2. if an extracted noun phrase matches the last n words (n > 1) of the target one then it is correct;
for the proper names the output must match the target one completely.

3. if two sequentially output phrases match (using 1 or 2) both the words preceding and following a
preposition of in a target phrase then they are counted as one correct match.

The output file is evaluated using recall and precision. Recall is the percentage of noun phrases in the target
file that were correctly found by the phrase extractor. Precision is the percentage of the noun phrases found by
the extractor that occurred in the target file. These measures provide a reasonable indication of performance,
and the evaluation can be done automatically.

5.1 The Phrase Dictionary

Since the training dictionary plays a major role in our approach, the quality of the dictionary is very important.
The dictionary is required not only a high “recall” but also a high “precision”. That is, the dictionary is
expected to contain as many correct noun phrase as possible. Using the heuristic method that was used for
generating training dictionary, we collected noun phrases from the wsj-test file. The resulting phrase list had
a recall of 97%, but the precision was only about 88%. When the cutoff=1, the recall was 21%, and the
precision was 99%, which represented a significant tradeoff. Since the wsj-test has only at most 709 entries,
it is possible to evaluate the output manually. It is more difficult, however, to choose a reasonable cutoff
for 4,114,697 entries of the original training dictionary because it is too expensive to evaluate such a big
dictionary manually. Using the Zipf’s Law, we can remove the long tail in the frequency distribution. In
the original dictionary there are 1,808,909 entries with frequency one, 469,036 entries with frequency two,
and 216,237 entries with frequency three. The sum of these is 2,299,582 entries, which is almost 56% of the
initial dictionary, so the cutoff value chosen was 3. The final dictionary after applying the cutoff has 1,815,115
entries.

14

Many other experiments have been done to improve the dictionary quality. For examples, using a POS tagger,
Jtag (Xu, Broglio, & Croft, 1994) to tag tokens and remove those that are not a noun phrase pattern; using
Mutual Information to predict a possible phrase; and using WordNet (Miller, Beckwith, Fellbaum, Gross, &
Miller, 1990) to collect POS tags of every word and invoking a set of disambiguation rules to remove the
verbs from tokens before doing the clustering. Compared with wsj-test results, using WordNet produced the
best result (recall 100%, precision 97%), but this technique was not used to generate the training dictionary
because of a speed concern®.

All above experiments were done to generate a phrase dictionary in a four-step heuristic model (see Section 4.1).
That is, hashing the tokens, removing non-noun ending words, clustering, and discarding the low frequency
tokens. The different methods used in the experiments are applied only in step 2 to remove non-noun ending
words. In fact, these methods can be applied to extract noun phrases directly. For instance, in previous work,
there have been many studies using a POS tagger for the noun phrase extraction. The next section reports a
comparison with this approach.

5.2 Comparison with POS Approaches

As part of this study, we developed a noun phrase extractor with Jtag. Jtag is a part-of-speech tagger developed
by the Center for Intelligent Information Retrieval (CIIR) at University of Massachusetts at Amherst. Jtag
uses a statistical ngram model similar to Church’s work (Church, 1988). The major difference is that Jtag
uses a bigram model instead of the trigram model used by Church.

The noun phrase extractor with Jtag performs well on the wsj-test and has recall 91% and precision 90%, while
our heuristic model has recall 97% and precision 88%. From this experiment, however, we found three major
problems affecting the performance of POS extractor (not only our Jtag extractor, which is just a instance
here). These are sentence segmentation, lexicon ambiguity, and noun phrase patterns. Incorrect segmentation
of sentences caused the tagger to make a number of mistakes. For example, consider the following text:

The contract consolidates 26 existing contracts that Boeing Computer Services has with NASA.
Magjor subcontractors are Unisys, based in Detroit, and New Technology Inc., Huntsville, Ala.,
Boeing said.

Looking at the capitalized word “Major” starting the second sentence, because of the segmentation error Jtag
tags it as NP (annotation for proper noun), as follows

...has/HVZ with/IN NASA./NP Major/NP subcontractors/NNS are/BER...

Given this tagging, the Jtag extractor considers “NASA. Major” as a noun phrase. Correctly segmenting a
sentence is difficult if the sentences end with an abbreviation of a proper name, or a short name, such as
“U.5.”, and “Uncle Sam.”, because such proper names are very likely used to modify other names or nouns
as well as to terminate a sentence. In these cases, since the sentence segmentation fail, the POS tagger is very
difficult to assign correct tags to the capitalized words.

The second problem we found is that the statistical bigram model cannot disambiguate verb-noun lexicons
very well because of limited training data and the ngram size. For example, consider the following tagged
sentence

LGenerating the dictionary from 131.7MB data of 1987 Wall Street Journal collection takes about 24 hours because the
WordNet dictionaries are located on a hard disk and collecting POS tags for 6,125,944 words needs 4 x 6,125, 944 binary searches
on the disk

15

The/AT company/NN designs/NNS ,/, manufactures/NNS and/CC markets/NNS pumps/NNS ,/,
valves/NNS and/CC compressors/NNS.

all three verbs designs, manufactures, and markets are tagged as NNS (plural noun) by Jtag. Jtag also makes
such mistakes for many other words that can be used as either a verb or a noun, like plan, move, and show.
Most of usage of these words are nouns in the training data, and the bigram cannot predict that they are
used as verbs in this context because (NN NNS), (, NNS) and (CC NNS) are high frequent patterns. With
these tagging mistakes, the extracted noun phrases are, of course, incorrect, for example, “markets pumps”’
and “shows signs”.

Some of such mistakes can be corrected by the extractor with noun phrase patterns, for example, if there is
no pattern for (NNS NNS) then “markets pumps” will not be extracted. However, some mistakes can not be
corrected easily. For example, in the tagged clause,

In/IN New/NP York/NP Stock/NP Exchange/NP composite/NN trading/VBG ...

The extractor should contain trading in the noun phrase and output New York Stock Exchange composite
trading. To do this, we cannot simply add a pattern (.. NN VGB), because this pattern will introduce more
mistakes when a noun followed by a real gerund which leads a verb clause to modify the noun, such as

department/NN managers/NN going/VBG up/IN the/AT ladder/NN ...

The extractor should get only “department managers” rather than “department managers going”. There are
no complete definitions of noun phrase patterns. Even if the POS tagger was able to supply a 100% correctly
tagged text there would still be problem in finding the right noun phrase patterns without syntax analysis.

Comparing POS approaches with our heuristic approach, all above three problems are difficult to solve, but the
heuristic model used to generate the training phrase dictionary can overcome or avoid these difficulties. The
heuristic model also requires the sentence segmentation but it does not make mistakes because of segmentation
errors. This model identifies phrases based on the co-occurrence frequency of the words, so unless “NASA.
Magor” occurs enough times in the text, then the heuristic model could not consider it a phrase. The other two
problems do not exist at all for the heuristic model, since it does not use syntactic knowledge. The heuristic
model does, however, have limits. It is applicable only for large collections which contain enough co-occurrence
information, and requires two passes of the collection to extract phrases. Thus the heuristic model cannot be
used to extract phrases “on the fly”. For example if an IR system wants to index phrases for a collection,
it has to make a phrase dictionary on the first pass of the entire collection, and then create the index with
dictionary lookups on the second pass. The heuristic model can also output incorrect noun phrases ending
with non-noun words if they occur enough times in a collection. For example, “company designs” occurs 65
times in the TREC collections, if the cutoff value is less than 65 then it will be considered as a noun phrase.
The higher cutoff value can improve the precision of extracted phrases but reduce the recall, such a tradeoff
is another limit of the heuristic model. The heuristic model cannot extract phrases with both high recall and
precision.

5.3 Markov Model Results

In this section we show some experiment results on the Markov model. There are two sets of experiment
runs, one set for smoothing and the other one for biasing the model parameters. We did the smoothing
experiments before the biasing experiments. However, to avoid the interaction between smoothing and biasing,
the smoothing results shown in Table 6 come from the runs in which the ME parameter biases has been applied,
and the biasing results shown in Table 7 come from the runs in which the five bin smoothing has been done.

16

5.3.1 Smoothing

The smoothing procedure is necessary for empty elements and unknown words as described in Section 4.5.
The initial smoothing procedure simply filled every empty element bj;, with its word average probability (i.e.
avgy,). This caused many problems. For example, the word “of” in the training collection, it occurs 99,560
times at state two, 9,548 times at state three, 2,216 times at state four, and 218 times at state five, so the
word average is very high. However, both b, and bg; should be zero because “of” does not occur at the
start or the end of a noun phrase. If the word average probability is used to fill these two empty elements,
then incorrect phrases will be extracted. The Table 6 shows that five bin smoothing described in Section 4.5
performs better than this simple method.

smoothing method | test Recall% | Precision%
simple wsj-test 100 91
five bin wsj-test 100 95
simple patent-test | 89 86
five bin patent-test | 93 91

Table 6: Evaluations of two smoothing methods

5.3.2 ME parameters

Before the ME model had been explored, we ran many experiments to figure out biases for the Markov
parameters A and B. Without the biases, the initialized Markov model extracts fewer phrases and gets low
recall (68% on wsj-test, 34% on patent-test). The biases can increase parameters A and B, and improve the
recall and the precision, but they are neither robust nor constant. Table 7 shows that biases of 2, and 6 work
very well on wsj-test but not nearly as well on patent-test, while biases of 9 and 9 perform reasonably well on
patent-test but not on wsj-test.

test bias A | bias B | Recall% | Precision%
wsj-test (no bias) 1 1 68 87
patent-test (no bias) | 1 1 34 84
wsj-test 2 6 93 94
patent-test 2 6 78 89
wsj-test 9 9 99 88
patent-test 9 9 95 84

Table 7: Evaluations of two set of biases

We could not find a consistent set of biases that worked well for both of test files. For a more reliable and
more flexible noun phrase extractor, the ME model was developed.

To train ME parameters, we ran an experiment with 400 iterations. Figure 2 shows that some of ME parameters
are converged before 100 iterations while the others do not. It should also be noted that the parameters are
not normalized, so that some of values are greater than 1.

Applying the ME parameters to bias the parameter B of the Markov model can achieve good improvements
on both test files. Specially, recall 100% and precision 95% on wsj-test, and recall 93% and precision 91%
on patent-test. The patent-test result was the focus of the extractor evaluation because wsj-test is part of
training data. For a summary, Table 8 compares the Markov model results with the other phrase extraction
approaches for the paten-test file.

In Table 8, correct,/found, is the ratio of number of correct phrases containing unknown words to the
number of extracted phrases containing the unknown words, and correct,/found, is the ratio for the non-

17

04 L L L L L L L L L
0 50 100 150 200 250 300 350 400 450

Figure 2: The parameter converging in 400 iterations

phrase words. In patent-test, there are 74 phrases containing unknown words and 191 phrases that contain
non-phrase words. Overall, the comparison shows that the Markov model extractor performs better than the
heuristic model, and very similar to the POS approach with WordNet. Almost all mistakes made by the
Markov model extractor are caused by the unknown words and non-phrase words, even though the smoothing
and optimizing procedures worked well. The difference between the results of the wsj-test and the patent-test
indicates that the model needs optimization. The ME features offset insufficient training information.

phrase extraction method | Recall% | Precision% | correct,/found,, | correct,/found,
POS model with Jtag 91 87 50,60 120/129
heuristic model 93 85 55/68 153/176
MI model 91 85 54/68 152/176
POS model with WordNet | 90 94 51/56 130/132
Markov model 91 93 45/54 163/184

Table 8: Evaluations of four approaches for patent-test

6 Conclusion and Future Work

The Markov model approach provides an effective and trainable technique for noun phrase extraction. The
extractor runs in a reasonable speed, is comparable in the effectiveness to the best results of other approaches,
and is able to extract phrases on the fly. For an IR system, the extractor can index phrases without additional
passes over the data.

The Markov model approach does not require syntactic knowledge or noun phrase patterns, unlike POS
approaches. The most important factors for the Markov model are the size and quality of the training
dictionary. Analysis of errors made by the current version of the extractor confirms that the quality of the
training dictionary should be improved in order to further improve performance. One way of avoiding the
problem of dictionary quality is to train the Markov model without the dictionary, that is unsupervised
training. The trained model would be a Hidden Markov model, which could be optimized by using forward-
backward Baum-Welch algorithm. This will be studied in future work.

The ME model is an extremely flexible technique for linguistic modeling, since it can use a virtually unrestricted

and rich feature set in the framework of a probability model. Our current feature set is not rich enough yet.
Another area for future research is to discover more lexicon features or word-based features for identifying the

18

word clusters for the optimization with the Maximum Entropy model. For example, we could use every suffix
instead of noun-suffix only, and add more contextual features, etc.

There may also be a more flexible smoothing method than the five bin approach. Moreover, experiments
involving smoothing for the transition parameter A need to be done.

References

Abney, S. (1990). Rapid increamental parsing with repair. In Proceeding, Waterloo Conference on Electronic
Text Research.

Baum, L. E. & J. Eagon (1963). An inequality with applications to statistical prediction for functions of
markov processes and to a model for ecology. Bulletin American Mathematic Society 73, 360-363.

Baum, L. E. & J. Eagon (1972). An inequality with associated maximization technique in statistical esti-
mation for prediction functions of markov processes. Inequalities 3, 1-8.

Bourigault, D. (1992). Surface grammatical analysis for extraction of terminological noun phrases. In Pro-
ceedings of the Fourteenth COLING, pp. 977-981.

Brants, T. (2000). TnT - a statistical part-of-speech tagger. In http://www.coli.uni-sb.de/ thorsten/publi-
cations/Brants-ANLPO00.pdf. Saaland University.

Brill, E. (1993). A corpus-based approach to language learning. Ph. D. thesis, Department of Computer and
Information Science, University of Pennsylvania.

Charniak, E., C. Hendrickson, N. Jacobson, & M. Perkowitz (1993). Equations for part of speech tagging. In
Proceedings of the Eleventh National Conference on Artificial Intelligence, Washington, DC, pp. 784-789.

Choueka, Y. (1988). Looking for needles in a haystack. In Proceeding, RIAO Conference on User-Oriented
Contert Based Text and Image Handling, Cambridge, MA, pp. 609-623.

Church, K. W. (1988). A stochastic parts program and noun phrase parser for unrestricted test. In Pro-
ceedings of the Second Conference on Applied Natural Language Processing, pp. 136—143. Association for
Computational Linguistics.

Cutting, D., J. Kupiec, J. Pedersen, & P. Sibun (1992). A pratical part-of-speech tagger. In Proceedings of the
Third Conference on Applied Natural Language Processing, Trento, Italy. Association for Computational
Linguistics.

Darroch, J. & D. Ratcliff (1972). Generalized iterative scaling for log-linear models. Annals of Mathematical
Statistics 43(5), 1470-1480.

DeRose, S. (1988). Grammatical category disambiguation by statistical optimization. Computational Lin-
guistics 14, 31-39.

Fagan, J. (1989). The effectiveness of a nonsyntactic approach to automatic phrase indexing for document
retrieval. Journal of the American Society for Information Science 40(2), 115-132.

Francis, W. & F. Kucera (1982). Frequency Analysis of English Usage: Lezicon and Grammar. Boston, MA:
Houghton Mifflin.

Haase, K. B. (1996). Framerd: Representing knowledge in the large. IBM Systems Journal 35(3/4), 381-397.

Harman, D. (1995). Overview of the second text retrieval conference (trec-2). Information Processing and
Management 31(3), 271-289.

Jaynes, E. T. (1957a). Information theory and statistical mechanics: Part I. Physical Review 106, 620-630.
Jaynes, E. T. (1957b). Information theory and statistical mechanics: Part II. Physical Review 108, 171.

Jelinek, F. (1985). Markov source modeling of text generation. Impact of Proceeding Techniques on Com-
munication E91 of NATO ASI series, 569-598.

Kupiec, J. (1992). Robust part-of-speech tagging using a hidden markov model. Computer, Speech, and
Language 6, 225-242.

19

Kupiec, J. (1993). Murax: A robut linguistic approach for question answer using an on-line encyclopedia.
In R. Korfhage, E. Rasmussen, & P. Willett (Eds.), Proceedings of the 16th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, Pittsburgh, Pa. USA, pp.
160-169.

Lau, R., R. Rosenfeld, & S. Roukos (1993). Adaptive language modeling using the maximum entropy
principle. In Proceeding of the Human Language Technology Workshop, pp. 108-113. Advanced Research
Projects Agency.

Merialdo, B. (1994). Tagging english text with a probability model. Computational Linguistics 20(2), 155—
172.

Miller, G., R. Beckwith, C. Fellbaum, D. Gross, & K. Miller (1990). Five papers on the wordnet. Technical
Report July, Princeton University, Computer Science Laboratory.

Perez-Carballo, J. & T. Strzalkowski (2000). Natural language information retrieval: progress report. In-
formation Processing and Management 36(1), 155-178.

Rabiner, L. (1989). A tutorial on hidden markov models and selected applications in speech recognition.
Proceeding of the IEEE 77(2), 257-286.

Rabiner, L. & B. Juang (1986). An introduction to hidden markov models. IEEE Transactions on Acoustics,
Speech and Signal Processing January, 4-16.

Ratnaparkhi, A. (1998). Statistical models for unsupervised prepositional phrase attachement. In ACL
36/COLING 17, pp. 1079-1085. Association for Computational Linguistics.

Ratnaparkhi, A., J. Reynar, & S. Roukos (1994). A maximum entropy model for prepositional phrase
attachment. In Proceeding of the Human Language Technology Workshop, Plainsboro, NJ, pp. 250-255.
Advanced Research Projects Agency.

Salton, G. & M. Lesk (1968). Computer evaluation of indexing and text processing. Association for Com-
puting Machinery 15, 8-36.

Smadja, F. (1993). Retrieving collocations from text: Xtract. Computational Linguistics 19(1), 143-177.

Tolle, K. M. & H. Chen (2000). Comparing noun phrasing techniques for use with medical digital library
tools. Information Processing and Management 51(4), 352—-370.

Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically optimal decoding algorithm.
IEEE Transactions on Information Theory IT-13, 260-269.

Voutilainen, A. (1997). A short introduction to nptool. In http://www.lingsoft.fi/doc/nptool /intro.

Weischedel, R., M. Meteer, R. Schwartz, L. Ramshaw, & J. Palmucci (1993). Coping with ambiguity and
unknown words through probability model. Computational Linguistics 19(2), 359-382.

Xu, J., J. Broglio, & W. Croft (1994). The design and implementation of a part of speech tagger for english.
Technical Report IR-52, University of Massachusetts, CIIR.

Zipf, G. (1949). Human behavior and the principle of least effort. addison-wesley.

20

