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Abstract

As larger and more heterogeneous text
databases become available, informa-
tion retrieval research will depend on
the development of powerful, efficient
and flexible retrieval engines. In this pa-
per, we describe a retrieval system (IN-
QUERY) that is based on a probabilis-
tic retrieval model and provides support
for sophisticated indexing and complex
query formulation. INQUERY has been
used successfully with databases con-
taining nearly 400,000 documents.

1 Introduction

The increasing interest in sophisticated informa-
tion retrieval (IR) techniques has led to a num-
ber of large text databases becoming available for
research. The size of these databases, both in
terms of the number of documents in them, and
the length of the documents that are typically full
text, has presented significant challenges to IR re-
searchers who are used to experimenting with two
or three thousand document abstracts. In order to
carry out research with different types of text rep-
resentations, retrieval models, learning techniques,
and interfaces, a new generation of powerful, flex-
ible, and efficient retrieval engines needs to be im-
plemented. At the Information Retrieval Labora-
tory in the University of Massachusetts, we have
been developing such a system for the past two
years. The INQUERY system is based on a form
of probabilistic retrieval model called the inference

net. This model is powerful in the sense that it
can represent many approaches to IR and combine
them in a single framework [8]. It also provides the
ability to specify complex representations of infor-
mation needs and compare them to document rep-
resentations.

In this paper, we focus on the architecture
and implementation of the INQUERY system,
which has been designed for experiments with
large databases. We start by giving a brief descrip-
tion of the underlying inference net model in the
next section. We then present an overview of IN-
QUERY’s architecture, followed by more detailed
descriptions of the important system components.
Throughout this description, we will give timing
figures from recent experiences with a 1 Gigabyte
database that contains nearly 400,000 documents
varying in length from short abstracts to 150 page
reports. We conclude by discussing the current
research and development issues.

2 The Inference Network

Model

Bayesian inference networks are probabilistic mod-
els of evidential reasoning that have become widely
used in recent years [1; 6]. A Bayesian infer-
ence network, or Bayes net, is a directed acyclic
graph (DAG) in which nodes represent proposi-
tional variables and arcs represent dependencies.
A node’s value is a function of the values of the
nodes it depends upon. Leaf nodes typically repre-
sent propositions whose values can be determined
by observation. Other nodes typically represent
propositions whose values must be determined by



inference. The notable feature of Bayes nets is that
dependencies are not necessarily absolute. Cer-
tainty or probability can be represented by weights
on arcs.

INQUERY is based upon a type of Bayes net
called a document retrieval inference network [9;
8]. A document retrieval inference network, or in-
ference met, consists of two component networks:
one for documents, and one for queries (see Figure
1). Nodes in an inference net are either true or
false. Values assigned to arcs range from 0 to 1,
and are interpreted as belief.

2.1 The Document Network

A document network can represent a set of doc-
uments with different representation techniques
and at varying levels of abstraction. Figure 1
shows a simple document network with two lev-
els of abstraction: the document text level d, and
the content representation level r. Additional lev-
els of abstraction are possible, for example audio or
video representations, but are not currently needed
by INQUERY.

A document node d; represents the proposition
that a document satisfies a user query. Document
nodes are assigned the value ¢rue. The value on an
arc between a document text node d; and a content
representation node 7y is the conditional probabil-
ity P(re|d;). A document’s prior probability P(d;)
is 1/(number of documents).

A content representation node r; represents
the proposition that a concept has been observed.
The node may be either true or false. The value
on an arc between a content representation node
7, and a query concept node ¢; is the belief in the
proposition.

INQUERY uses several types of content rep-
resentation nodes. The simplest corresponds to a
single word of the document text, while more com-
plex concepts include numbers, dates, and com-
pany names. Section 4 describes in more detail
the types of content representation nodes created,
and the methods used to create them.

2.2 The Query Network

The query network represents a need for informa-
tion. Figure 1 shows the network for a query with
two levels of abstraction: the query level ¢, and

the concept level ¢. Additional levels of abstrac-
tion are possible, but are not currently needed by
INQUERY.

Query nodes represent the proposition that an
information need is met. Query nodes are always
true. Concept nodes represent the proposition
that a concept is observed in a document. Con-
cept nodes may be either true or false.

The query network is attached to the docu-
ment network by arcs between concept nodes and
content representation nodes. The mapping is not
always one-to-one, because concept nodes may de-
fine concepts not explicitly represented in the doc-
ument network. For example, INQUERY’s phrase
operator can be used to define a concept that is not
represented explicitly in the document network.
The ability to specify query concepts at run-time is
one of the characteristics that distinguishes intelli-
gent information retrieval from database retrieval.

2.3 The Link Matrix

Document retrieval inference networks, like the
Bayes networks from which they were derived, en-
able one to specify arbitrarily complex functions to
compute the belief in a proposition given the be-
liefs in its parent nodes. These functions are some-
times called link matrices. If the belief for each
combination of evidence were specified directly, a
link matrix for a node with n parents would be
of size 2 - 2™. This problem can be avoided by re-
stricting the ways in which evidence is combined.
INQUERY uses a small set of operators, described
in Section 6, for which closed-form expressions can

be found.

3 Overview of the Architecture

The major tasks performed by the INQUERY
system are creation of the document network, cre-
ation of the query network, and use of the net-
works to retrieve documents. The document net-
work is created automatically by mapping docu-
ments onto content representation nodes, and stor-
ing the nodes in an inverted file for efficient re-
trieval. Query networks are specified by a user
through a user interface. Document retrieval is
performed by using recursive inference to propa-
gate belief values through the inference net, and
then retrieving documents that are ranked high-
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Figure 1: A simple document retrieval inference network.

est. Figure 2 shows the major components of the
INQUERY system, and how information flows be-
tween them. The following sections discuss each
component in more detail.

4 The Parsing Subsystem

The first task in building a document network is
to map each document onto a set of content rep-
resentation nodes. This mapping process is re-
ferred to as parsing the document, and consists of
five components: lexical analysis, syntactic analy-
sis, concept identification, dictionary storage, and
transaction generation. It is important that each
of these components be efficient, because con-
struction of the document network is one of the
most time-consuming parts of building and us-
ing inference nets. The current set of INQUERY
parsers, without high-level concept recognition, re-
quire 19.8 CPU hours on a Sun SPARCserver 490
with 128 MBytes of memory to parse a 1 GByte
document collection. The following subsections
describe how each of the parsing components is
implemented.

4.1 Lexical and Syntactic Analysis

There are three distinct uses of lexical analysis in
INQUERY. The parser’s lezical analyzer provides

lexical tokens (usually words or field markers) to
the syntactic analyzer. The database builder stores
the document text in a database for use by the user
interface. Concept analyzers identify higher-level
concepts, for example dates and names, that occur
in the text. The activities of these lexical analyz-
ers are loosely coordinated by a lexical analysis
manager.

One reason that it is desirable to have so many
lexical analyzers is that INQUERY currently con-
tains parsers for six different document formats.
The burden of supporting many document formats
is minimized by keeping the database builder and
concept analyzers ignorant of the document for-
mat. The lexical analysis manager enforces this ig-
norance by controlling access to the input stream.
The manager reads large blocks of text into an
internal buffer, from which the lexical analyzers
read. When a new document is encountered, the
parser’s analyzer is given exclusive access to the
document, as shown in Figure 3a. The parser’s
analyzer is responsible for converting into canoni-
cal format all field markers found in the document.
When the parser’s analyzer reaches the end of the
document, the other analyzers are given access to
the document, as shown in Figure 3b.

The parser’s analyzer has two important duties
besides converting the document to canonical for-
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Figure 2: The architecture of the INQUERY information retrieval system.

mat. It is responsible for providing tokens, usually
words, numbers, or field markers, to the syntac-
tic analyzer. It is also responsible for converting
words to lower case, discarding user-specified stop
words (e.g. ‘a’, ‘and’, ‘the’), and optionally remov-
ing word endings (e.g. “-ed’, “-ing’) before notifying
the transaction manager (discussed below) about
the occurrence of each word.

The principal use of syntactic analysis in IN-
QUERY is to ensure that a document is in the
expected format, and to provide error recovery if
it is not. All of INQUERY’s syntactic analyzers
are created by YACC [3].

4.2 Concept Recognizers

INQUERY is currently capable of recognizing and
transforming into canonical format four types of
concepts: numbers, dates, person names and com-
pany names. INQUERY also contains a concept
recognizer to recognize and record the locations of
sentence and paragraph boundaries. Concept rec-
ognizers tend to be complex [5; 7], so it is desirable
to implement them as efficiently as possible. All
of INQUERY’s concept recognizers are currently
finite state automata created by LEX [4]. In prin-
cipal, it is possible to combine the recognizers into
a single finite state automaton, however LEX can-
not create automata of the required size.

The number and date recognizers use gram-

mars similar to Mauldin’s [5]. The major differ-
ence is INQUERY’s use of string arithmetic to
avoid roundoff errors in the number recognizer.
The recognizers map different expressions of a con-
cept (e.g. 1 million, or 1000000, or 1,000,000) into
a canonical format.

The company name recognizer is similar to,
but less sophisticated than, Rau’s [7]. It looks
for strings of capitalized words that end with one
the legal identifiers that often accompany company
names (e.g. “Co”, “Inc”, “Ltd”, or “SpA”). If the
company name occurs once with a legal identi-
fier, the recognizer can usually recognize all other
occurrences of the name in the document. This
strategy performs reasonably well on our test col-
lections.

The person name recognizer uses a strategy
similar to the company name recognizer, except
that it looks for occupation titles and honorific ti-
tles. This strategy performs poorly on our test
collections. We are contemplating replacing the
current algorithm with one that relies more heav-
ily on a large database of known names.

The sentence and paragraph boundary recog-
nizer is currently only able to recognize bound-
aries that are explicitly tagged with field mark-
ers. The locations of these boundaries is saved in
a file, for use in a planned project on paragraph-
and sentence-level retrieval from large documents
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Figure 3: (a) The parser’s lexical analyzer converts field markers to canonical form and provides tokens
to the syntactic analyzer. (b) When the parser analyzer reaches the end of the document, the database
builder and concept recognizers are allowed to read the document, one at a time.
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collections.

In principle, there is no limit to the number
and complexity of concept recognizers that can be
added to INQUERY. For example, we are inves-
tigating the use of stochastic tagging [2] to auto-
matically identify phrases. The main consequence
of additional concept recognizers is the overhead
that they add to the parsing process. The current
set of recognizers slows parsing by about 25%.

4.3 Concept Storage

The lexical analyzers are designed to work effi-
ciently with strings of characters, but the rest of
INQUERY is not. When a decision is made to in-
dex a document by a word or higher-level concept,
the string of characters is replaced with its entry
number in a term dictionary. A reference to an
entry number take less space and can be manipu-
lated much more efficiently than a reference to a
string of characters. If the word already exists, the
number of the existing entry is returned, otherwise
a new entry is created.

INQUERY originally stored its dictionary in a
B-tree data structure. However, performance anal-
ysis showed the dictionary to be a bottleneck. The
current version of INQUERY stores its dictionary
in a hash table. This change alone reduced the
time required to parse a 339 MByte document col-
lection from 16.8 CPU hours to 8.2 CPU hours.

4.4 Transaction Generation

Each time a term is identified, whether by the
parser’s lexical analyzer or a concept recognizer,

its location is reported to the transaction man-
ager. When the end of the document is reached,
the transaction manager writes to disk a set of in-
dexing transactions that record for each term the
frequency and locations of its occurrence in that
document.

Transactions are currently stored in text files
using a suboptimal encoding method. Our exper-
iments with large collections have produced more
transactions than fit on one of our disks. The
transaction manager copes with this problem by
creating a new transaction file each time an IN-
QUERY document parser is invoked. (One invo-
cation of a parser may parse many documents.)
The periodic creation of new transaction files en-
ables us to scatter them across several disks.

5 File Inversion

Each transaction represents a link between a docu-
ment node and a content representation node. The
entire document network is represented by the set
of transaction files produced during parsing. The
task addressed after parsing is to organize the net-
work so that evidence may be propagated through
it rapidly and efficiently.

The value of an internal network node is a
function of the values assigned to its parents. IN-
QUERY avoids instantiating the entire document
network during retrieval by using recursive infer-
ence to determine a node’s value. The speed of
recursive inference depends upon how fast infor-
mation about a node and its links can be obtained.
INQUERY provides fast access to this information



by storing it as an inverted file in a B-Tree data
structure.

The inverted file is constructed most efficiently
if the transactions for a term are processed to-
gether. Therefore the transaction files are sorted
before the inverted file is constructed. The sorting
procedure involves several steps, both for efficiency
and because transactions may be stored in multi-
ple files that do not all fit on one disk.

We begin by using the UNIX sort program to
sort each transaction file by term and document
identifiers. If the transactions all fit on a single
disk, we merge-sort the sorted transaction files.
Otherwise we partition the sorted transaction files
at some term (e.g. the 10,000th) and merge-sort
partitions covering the same ranges of terms.

Sorting is one of the most time-consuming
tasks in building a document network. In tests
with a 1 GByte document collection, sorting, par-
titioning and merge-sorting 1.3 GBytes of transac-
tions required 13.6 CPU hours on the Sun SPARC-
server 490.

After the transactions are sorted, the inverted
file can be constructed in O(n) time. The keys to
the inverted file are term ids. The records in the
inverted file store the term’s collection frequency,
the number of documents in which the term oc-
curs, and the transactions in which the term oc-
curs. The inverted file is stored in binary format,
which makes it smaller than the transaction files
from which it is assembled. The 1.3 GBytes of
transactions referred to above were converted to
an 880 MByte inverted file in 2.5 CPU hours.

6 The Retrieval Subsystem

The retrieval subsystem converts query text into a
query network, and then evaluates the query net-
work in the context of the previously constructed
document network.

6.1 Building a Query Network

Queries can be made to INQUERY by using ei-
ther natural language or a structured query lan-
guage. Natural language queries are converted
to the structured query language by applying the
#sum operator to the terms in the query. Table
1 describes #sum and the other operators in IN-
QUERY’s query language. Query operators per-

mit the user to provide structural information in
the query, including phrase and proximity require-
ments. Query text is converted to lower case, pos-
sibly checked for stopwords or stemmed to canon-
ical word form, and compared to the concept dic-
tionary before being converted into a query net.
Query net nodes correspond to structured lan-
guage operators and query terms. The informa-
tion contained in a node varies, depending on its
type. The attachment of the query net to the pre-
existing document net occurs at the term nodes.

6.2 Retrieval Engine

The INQUERY retrieval engine accepts the root
node of a query net and evaluates it, returning a
single node containing a belief list. This belief list
is a structure containing the documents and their
corresponding “beliefs” or probabilities of meet-
ing the information need as defined by the query.
The retrieval engine does its work by instantiat-
ing proximity lists at term nodes, and converting
such lists to belief lists as required by the struc-
ture of the query net, using methods defined in [9].
This list may be sorted to produce a ranked list of
documents for the user to see.

The inference net is evaluated by recursive calls
of the main evaluation routine which in turn calls
one of many possible node specific evaluation rou-
tines. The routines represent the canonical form
of evaluating a simplified link matrix at each node.
The closed form expressions for computing the be-
lief at node @ are:

belot(Q) = 1-—p1 (1)
belor(@) = 1—(1—p1)-..-(1—pn) (2)
beland(®@) = p1-P2--.. Pn (3)
belmax(Q) — maX(Pl;PZ: .. '1pTL) (4)
 (wipy Fwapr + ...+ wnpn)w(q-\

belwsum(Q) - ('LU]_ _I_ woy + . _|_ wn) L4
belsum(Q) _ (p1 +pa2+...+ pn) (6)

n

The basic structures from which all compu-
tations of document node belief are derived are
proximity lists and belief lists. A proximity list
contains statistical and proximity (term position)
information by document on a term specific basis.
The belief list is a list of documents and associated



OPERATOR ACTION

#max

#and AND the terms in the scope of the operator.

#tor OR the terms in the scope of the operator.

#not NEGATE the term in the scope of the operator.

#sum Value is the mean of the beliefs in the arguments.

#wsum Value is the sum of weighted beliefs in the arguments, scaled by the sum of the

weights. An additional scale factor may be supplied by the user.

The belief is the maximum of the beliefs in the arguments.

#n A match occurs whenever all of the arguments are found, in order, with no more
than n words separating adjacent arguments. For example, #3 (A B) matches

“AB”, “AcB” and “A cc B”.

#phrase Value is a function of the beliefs returned by the #3 and #sum operators. The
intent is to rely upon full phrase occurrences when they are present, and to rely
upon individual words when full phrases are rare or absent.

#syn The argument terms are to be considered synonymous.

Table 1: The operators in INQUERY’s query language.

belief values at a given node, as well as default be-
liefs and weights used when combining belief lists
from different nodes. The belief list will contain
the cumulative probability of a documents’ rele-
vance to the query given the values of the parents.
Belief lists may be computed from proximity lists,
but the reverse derivation is not possible. This lim-
itation imposes some restrictions on query form.
The query form must not produce a proximity list
type resultant node which is acted upon by a rou-
tine expecting a belief list type. Proximity lists
are transformed into belief values using the infor-
mation in the list and combined using weighting
or scoring functions.

Node belief scores are calculated as a combina-
tion of term frequency (tf) and inverse document
frequency (idf) weights. The values are normal-
ized to remain between 0 and 1, and are further
modified by tf and belief default values which the
user may define at program invocation.

Calculation of a belief for a given node is de-
pendent on the type of node and the number and
belief in its parents as presented in Equations 1-
6. The probability combinations are achieved via
belief list merges and negation.

6.3 Retrieval Performance

Typical query processing time is 3 to 60 seconds on
a 1 GByte document collection. Processing time
varies according to query complexity, the number
of terms in the query and their frequency in the

collection. Terms with high collection frequen-
cies are likely to add to processing time due to
the length of associated proximity lists. Retrieval
performance is much improved over boolean and
conventional probabilistic retrieval. The reader is
referred to [9] for details.

7 Interfaces

INQUERY offers batch and interactive methods of
query processing, and an application programmers
interface (API) to support development of cus-
tomized front-ends to the retrieval engine. Each
of these interfaces is discussed below.

7.1 Application Programmers Interface

The INQUERY application programmers interface
(API) is a set of routines that allow programmers
to develop interfaces of their own to the INQUERY
retrieval engine. The API functions open and close
INQUERY databases and files, convert query text
into query nets, evaluate query nets, and retrieve
documents.

7.2 Batch Interface

The batch program takes command line arguments
in the form of input file names and switches. The
output of the program is a ranked list of documents
by weight (the calculated probability of relevance)
in a file format readable by an evaluation program,



which can produce standard recall-precision tables
on retrieval performance. A file of relevance judg-
ments for the submitted queries is required as in-
put for the batch program. This arrangement al-
lows queries to be run repeatedly, so that changes
to the system may be evaluated.

7.3 User Interface

The interactive user interface supports queries in
natural language or structured form, and was pro-
duced using routines from the API. Query results
are displayed on the screen in the form of a ranked
document list. The user may browse through the
retrieved documents to determine their relevance
to the query. A file containing the session results
may also be produced.

8 Current Status

The INQUERY system has been tested on both
standard information retrieval collections [9; 8]
and a heterogeneous 1 GByte collection. We con-
tinue to conduct research on intelligent informa-
tion retrieval with the INQUERY system, and en-
courage others to do so. INQUERY version 1.3,
described in this paper, is distributed by a tech-
nology transfer agency of the University of Mas-
sachusetts for a nominal fee.

Current work on INQUERY addresses both
software engineering and research issues. One re-
cent improvement was the addition of encoding
methods to reduce the sizes of both the inverted
file and the user-interface indices. The inverted file
index has been reduced to 40% of its previous size,
while the user-interface index has been reduced to
5% of its previous size. This improvement will en-
able us to install a 2 GByte document collection on
our current hardware during the summer of 1992.

We are also studying the use of relevance feed-
back in INQUERY. Relevance feedback enables a
user to identify those retrieved documents that are
most relevant to the user’s information need. The
system then analyzes those documents, produces
a revised query based upon the analysis, and re-
trieves a new set of documents.

A colleague is developing a Japanese ver-
sion of INQUERY, called JINQUERY. The only
differences between INQUERY and JINQUERY

are the lexical and syntactic analyzers, and the

user interface. Japanese documents are particu-
larly challenging because word boundaries are im-
plicit. JINQUERY currently indexes documents
with Kanjii characters and Katakana words. A
segmenter that divides a stream of Kanjii charac-
ters into words is being tested.

Finally, research is underway to provide bet-
ter support for queries expressed in natural lan-
guage. INQUERY and JINQUERY currently han-
dle natural language by summing the beliefs con-
tributed by the individual query words. We be-
lieve that improvements can be made by automati-
cally identifying phrases, incorporating words from
thesauruses, running the concept recognizers on
queries, and performing other types of morpholog-
ical processing.
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