
UMass at TDT 2000
James Allan, Victor Lavrenko, David Frey, and Vikas Khandelwal

Center for Intelligent Information Retrieval
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

We spent a fair amount of time this year rewriting our TDT system
in order to provide more flexibility and to better integrate the various
components. The time spent rearchitecting the code, learning to deal
with its peculiarities, and correct bugs detracted substantially from
research this year. As a result, the major approaches used on this
evaluation are very similar to those used in TDT 1999.

We had two thrusts to our research, neither of which was ready to be
deployed in this evaluation. We report here on the results from the
training data, in all cases explored within the link detection task. In
the first direction, we looked more carefully at score normalization
across different languages and media types. We found that we could
improve results noticeably though not substantially by normalizing
scores differently depending upon the source language. In the sec-
ond direction, we considered smoothing the vocabulary in stories
using a “query expansion” technique from Information Retrieval to
add additional words from the corpus to each story. This resulted in
substantial improvements.

1. BASIC SYSTEM
The core of our TDT system uses a vector model for represent-
ing stories—i.e., we represent each story as a vector in term-space,
where coordinates represent the frequency of a particular term in a
story. Terms (or features) of each vector are single words, reduced
to their root form by a dictionary-based stemmer. This system is
based on one that was originally developed for the 1999 summer
workshop at Johns Hopkins University’s Center for Language and
Speech Processing.[1] It was substantially reworked to provide im-
proved support for “language model” approaches to the TDT tasks,
though that functionality was not used significantly for TDT 2000.

1.1. Detection algorithms
Our system supports two models of comparing a story to previ-
ously seen material: centroid (agglomerative clustering) and nearest
neighbor comparison.

Centroid In this approach, we group the arriving documents into
clusters. The clusters represent topics that were discussed in the
news stream in the past. Each cluster is represented by a centroid,
which is an average of the vector representatives of the stories in that
cluster.

Incoming stories are compared to the centroid of every cluster, and
the closest cluster is selected. If the similarity of the story to the
closest cluster exceeds a threshold,

���������
	
, we declare the story old;

if the similarity exceeds a second threshold,
� �
�
��������

, we add the
new story to the topic and adjust the cluster centroid. If the similarity
does not exceed

����������	
, we declare the story new, and create a new

singleton cluster with the story as its centroid. Both thresholds are

set globally and apply to all clusters.

k-nearest neighbor The second approach, � -NN, does not attempt
to explicitly model a notion of a topic, but instead declares a story
to on the topic of the existing story most similar to it. That is, in-
coming stories are directly compared to all the stories we have seen
before. The most similar � neighbors are found, and if the story’s
similarity to the neighbors exceeds a threshold, the story is declared
to be on the same topic. Otherwise, if the story does not exceed that
similarity with any existing story, the incoming story is declared the
start of a new topic. In this work, we focused primarily on ����� .

1.2. Similarity functions
One important issue in our approach is the problem of determining
the right similarity function. We considered four functions: cosine,
weighted sum, language models, and Kullbach-Leiblar divergence.
The critical property of the similarity function is its ability to sepa-
rate stories that discuss the same topic from stories that discuss dif-
ferent topics. For TDT 2000 we used only the cosine function, since
our previous work had shown it provided substantial advantages and
was more stable. Descriptions of the other techniques are provided
for comparison.

Cosine The cosine similarity is a classic measure used in Informa-
tion Retrieval, and is consistent with a vector-space representation
of stories. The measure is simply an inner product of two vectors,
where each vector is normalized to unit length. It represents the
cosine of the angle between the two vectors

��
and

�� .��� � � � � �"!$# �%� �%&� � �'� � &� �
(Note that if

�� and
��
have unit length, the denominator is 1.0 and the

angle is calculated by a simple dot product.) Cosine similarity tends
to perform best at full dimensionality, as in the case of comparing
two long stories. Performance degrades as one of the vectors be-
comes shorter. Because of the built-in length normalization, cosine
similarity is less dependent on specific term weighting, and performs
well when raw word counts are presented as weights.

Weighted sum The weighted sum is an operator used in the In-
Query retrieval engine developed at the Center for Intelligent Infor-
mation Retrieval (CIIR) at the University of Massachusetts. InQuery
is a Bayesian inference engine with transition matrices restricted
to constant-space deterministic operators (e.g., AND, OR, SUM).
Weighted sum represents a linear combination of evidence with
weights representing confidences associated with various pieces of
evidence: � � � � � � �"! � � � � �

where � represents the query vector and
�

represents the document
vector. (InQuery does not include a notion of vectors, but we have
mapped the InQuery ideas into our vector-based implementation.)
For instance, in the centroid model, cluster centroids represent query
vectors which are compared against incoming document vectors.

Weighted sum tends to perform best at lower dimensionality of the
query vector � . In fact, it was devised specifically to provide an
advantage with short user requests typical in IR. The performance
degrades slightly as the number of entries in � grows. In addition,
weighted sum performs considerably better when combined with
traditional tf (idf weighting (discussed below).

Language model Language models furnish a probabilistic ap-
proach to computing similarity between a document and a topic (as
in centroid clustering) or two documents (nearest neighbor). In this
approach, previously seen documents (or clusters) represent models
of word usage, and we estimate which model) (if any) is the most
likely source that could have generated the newly arrived document*

. Specifically, we are estimating +-, */.)10 ! +-, * 0 , where +-, * 0
is estimated using the background model +-, */. 243 0 corresponding
to word usage in General English.

By making an assumption of term independence (unigram model),
we can rewrite +-, */.)105�76 � +-, � � .)�0 , where

� �
represent in-

dividual tokens in
*

. We use a maximum likelihood estimator for+-, � � .)�0 , which is simply the number of occurrences of
� �

in)
divided by the total number of tokens in) . Since our models
may be sparse, some words in a given document

*
may have zero

probability under any given model) , resulting in +-, */.)�04�98 .
To avoid this problem we use a smoother estimate +-, � � .)�0:�; + ��< , � � .)10>=?,
�A@ ; 0�+-, � � . 243 0 , that allocates a non-zero prob-
ability mass to the terms that do not occur in) . We set

;
to the

Witten-Bell[3] estimate B ! , BC=?DE0 where B is the total number
of tokens in the model and D is the number of unique tokens. (Note
that since detection tasks are online tasks, we may encounter words
not in

243
, and so we smooth

243
in a similar fashion using a uni-

form model for the unseen words.)

Kullbach-Leiblar divergence Instead of treating a document
*

as
a sample that came from one of the models, we could view

*
as a

distribution as well, and compute an information-theoretic measure
of divergence between two distributions. One measure we have ex-
perimented with is the Kullbach-Leiblar divergence, F/GA, *IH)10J�@LK � � �%MONQP ,SR �T! � � 0 , where

� �
and R �

represent relative frequen-
cies of word U in

*
and) respectively (both smoothed appropri-

ately).

1.3. Feature weighting

Another important issue is weighting of individual features (words)
that occur in the stories. The traditional weighting employed in most
IR systems is a form of tf (idf weighting.

Inquery The tf component of the weighting—the number of times
a term occurs in a document—represents the degree to which the
term describes the contents of a document. The idf component—
the inverse of the number of documents in which a term occurs—
is intended to discount very common words in the collection (e.g.,
function words) since they have little discrimination power. Below

is the particular tf (idf scheme used in the InQuery engine:VXWZY\[R"]^� VXWVXW =_8a` bc=d�%` b <O�
��e<O�
�%fhghi
U � WZYj[R5]k� MON%P , B ! � W 0MON%P , Bl=d��0

The tf-comp component has a general form of tf
! , tf =mFL0 , where tf

is the raw count of term occurrences in the document, and K influ-
ences the significance we attach to seeing consecutive occurrences
of the term in a particular document. The functional form is strictly
increasing and asymptotic to 1.0 as tf grows without bounds. The
effect is that we assign a lot of significance to observing a single
occurrence of a term, and less and less significance to consecutive
occurrences. This is based on the observation that documents that
contain an occurrence of a given word n are more likely to contain
successive occurrences of n .

The parameter K influences how aggressively we discount succes-
sive occurrences, and in InQuery is set to be the document length
over average document length in the collection. This means that
shorter documents will have more aggressive discounting, while
longer stories will not assign a lot of significance to a single occur-
rence of a term. This form of the tf component is generally referred
to as “Okapi tf” since it was first introduced as part of the Okapi
system.[2]

The idf-comp component is the logarithm of the inverse probability
of the term in the collection, normalized to be between 0 and 1. N
denotes the total number of documents in the collection, while df
shows in how many of those documents the term occurs. This par-
ticular idf formulation arises naturally in the probabilistic derivation
of document relevance under the assumption of binary occurrence
and term independence.

tf This weighting scheme is simply the actual tf value used in the
tfcomp formula above—i.e., the number of times the term occurs
in the story. The intuition behind omitting the idf component is
that feature selection at other points in the process will choose only
medium- and high-idf features with good discrimination value. As a
result, the tf-only weighting scheme is less likely to work at high
dimensionality when low-idf features will appear and need to be
down-weighted.

tf (idf This weighting scheme is simply the raw tf component times
the idf component of the tf (idf scheme. This weighting method
boosts the importance of multiple occurrences of a feature over that
given in the tf (idf scheme. This approach turns out to be the most
successful in our TDT 2000 research.

2. TRACKING
Our research was focused on Story Link Detection (Section), so we
did not try anything unusual for tracking this year. We spent time
rechecking our parameter choices by sweeping a range of values. In
the end, we settled on centroid representation of topics (i.e., aver-
age all B �

training stories together), and cosine comparison of sto-
ries to topics. The other parameters (weighting, number of features,
adapting thresholds) were chosen by a parameter sweep as shown in
Table 1.

It is interesting to note that difference between effectiveness of In-
query’s weighting function (Okapi tf component) compared to just
using the tf count directly. This difference is surprising because the
Okapi tf function has been widely adopted in IR—yet here it appears
to be less useful. We posit this is because the Okapi tf function is
valuable for high-precision (low false alarm) tasks such as informa-
tion retrieval. In the TDT tracking task, the optimum score is in a
part of the error tradeoff curve that is less significant for IR.

We normalized the scores by comparing all B �
training stories to

the centroid and then finding the average of those B �
similarities.

During tracking, all subsequent story similarities were divided by
that average score. So an “average on-topic story” would have a
score of 1.0.

If the topic was adapted, the average was recalculated using the orig-
inal B �

training stories as well as the stories that had been included
in the topic. This year, adapting did not provide any reduction in the
cost, and usually helped. This is consistent with results from TDT
1998, though continues to surprise us.

We selected using 1000 features (the full story), tf (idf weighting of
those features, and no adapting. The threshold was selected depend-
ing on the task, as follows:

B � ��� manual boundaries 0.07B � ��� auto boundaries 0.13B � �do manual boundaries 0.07B � �do auto boundaries 0.13

The threshold was chosen by sweeping through the scores on the
training data and finding the threshold that yielded the best normal-
ized tracking cost.

3. CLUSTER DETECTION
Our clustering approach used 1-NN story comparison, so that a story
was added into the topic that contained a single story to which it was
very similar. Comparison was done using the cosine measure. Idf
values were calculated using a retrospective corpus (the six-month
TDT-2 collection).

Table 2 shows the result of the parameter sweep for selecting the
comparison function, the weighting, and the threshold

� �������
	
.

As part of a cooperative project with BBN’s Oasis system, we have
begun looking at cluster detection on “real world” data and in a “real
world” evaluation setting. It is obviously from the very first attempts
that 1-NN cluster formation will not be appropriate. The created
clusters have a property that is common among algorithms of the
“single link” genre: they tend to be “stringy” with stories that are
linked together in long chains, but that may not hold together as a
group. Using the optimal settings trained on the TDT-2 corpus (i.e.,
our TDT 2000 parameters), we found clusterings containing 100s of
at best marginally related stories.

The evaluation measure currently used in TDT rewards a system for
getting the bulk of a topic’s stories together, and does not appear to
penalize enough for mistakes. At a minimum that means that the
cost values for detection need to be different for the Oasis task. At
worst, it means that the detection cost function is inappropriate.

Weighting #Terms Adapting min ,Tp �q�X����r 0 ��s\��
Reference boundaries, B � �do

tf (idf 1000 no 0.2255
tf (idf 100 no 0.2560
tf (idf 50 no 0.2992
tf (idf 20 no 0.3718
tf (idf 10 no 0.4082

Inquery 1000 no 0.6038
Inquery 100 no 0.2663
Inquery 50 no 0.3102
Inquery 20 no 0.3761
Inquery 10 no 0.5879

Reference boundaries, B � ���
tf (idf 1000 no 0.2673
tf (idf 100 no 0.2906
tf (idf 50 no 0.3311
tf (idf 20 no 0.3751
tf (idf 10 no 0.4487
tf (idf 1000 1.0 0.2673
tf (idf 1000 0.9 0.2673
tf (idf 1000 0.8 0.2673
tf (idf 1000 0.7 0.3550

Inquery 1000 no 0.5301
Inquery 100 no 0.7825
Inquery 50 no 0.6675
Inquery 1000 1.0 0.5301
Inquery 1000 0.9 0.5301
Inquery 1000 0.8 0.5301
Inquery 1000 0.7 0.5301

Automatic boundaries, B � �do
tf (idf 1000 no 0.2586
tf (idf 1000 1.0 0.3146
tf (idf 100 no 0.2840
tf (idf 100 1.0 0.3451

Automatic boundaries, B � ���
tf (idf 1000 no 0.9533
Inquery 1000 no 0.9720
Inquery 1000 1.0 0.9816
Inquery 1000 0.9 0.9730

Table 1: Result of parameter sweep for tracking run on TDT-2 train-
ing data.

4. FIRST STORY DETECTION
Our first story detection system was run identically to the cluster de-
tection system, except that we selected a different threshold because
of the different evaluation measure. The emitted score was one mi-
nus the detection score—i.e., the confidence that this story is new
(rather than on a topic).

Idf was calculated from a retrospective corpus (the six-month TDT-2
collection), we chose the tf (idf weighting scheme, cosine compari-
son, and 1000 features per story (all features). We selected 0.20 as

Compare Weight Threshold Cost
cosine tf (idf 0.04 0.9253
cosine tf (idf 0.06 0.7707
cosine tf (idf 0.08 0.5981
cosine tf (idf 0.10 0.4673
cosine tf (idf 0.16 0.2604
cosine tf (idf 0.18 0.2334
cosine tf (idf 0.20* 0.2193
cosine tf (idf 0.22 0.2212

cosine Inquery 0.02 1.0000
cosine Inquery 0.04 1.0000
cosine Inquery 0.06 0.9904
cosine Inquery 0.14 0.6219
cosine Inquery 0.16 0.5289
cosine Inquery 0.18 0.4383

wsum tf (idf 0.02 0.9804
wsum tf (idf 0.04 0.9804
wsum tf (idf 0.06 0.9569
wsum tf (idf 0.08 0.9569
wsum tf (idf 0.10 0.9569
wsum tf (idf 0.12 0.9569
wsum tf (idf 0.16 0.9560
wsum tf (idf 0.18 0.9560
wsum tf (idf 0.20 0.9246
wsum tf (idf 0.22 0.9035
wsum tf (idf 0.24 0.8934
wsum tf (idf 0.26 0.8835

wsum Inquery 0.02 0.9245
wsum Inquery 0.04 0.9245
wsum Inquery 0.06 0.8393
wsum Inquery 0.08 0.5422
wsum Inquery 0.10 0.3560
wsum Inquery 0.12 0.2932
wsum Inquery 0.14 0.2713
wsum Inquery 0.16 0.2832
wsum Inquery 0.18 0.3101
wsum Inquery 0.20 0.3624
wsum Inquery 0.22 0.3872
wsum Inquery 0.24 0.4192

Table 2: Result of parameter sweep for cluster detection run on TDT-
2 training data.

the threshold—the same value as used in clustering, despite the dif-
ferent measures. We are somewhat surprised by this result, but have
not yet investigated it.

5. STORY LINK DETECTION

Our link detection submission did not include any novel results.
However, we report here on some preliminary results that were
showing us improvements in link detection. We exploring how a
query expansion technique from information retrieval could smooth
the compared stories, and how score normalization depending on
language mix can improve results.

Weight Thresh Norm(p <O���Qr
)

tf (idf 0.02 1.6619
tf (idf 0.04 0.6322
tf (idf 0.045 0.5362
tf (idf 0.05 0.4591
tf (idf 0.055 0.4099
tf (idf 0.06 0.3769
tf (idf 0.065 0.3523
tf (idf 0.07 0.3412
tf (idf 0.075 0.3289
tf (idf 0.08* 0.3200
tf (idf 0.085 0.3235
tf (idf 0.09 0.3216
tf (idf 0.10 0.3248
tf (idf 0.12 0.3583
tf (idf 0.14 0.4084
tf (idf 0.16 0.4641

Inquery 0.02 4.2889
Inquery 0.04 3.3705
Inquery 0.045 3.1142
Inquery 0.05 2.8463
Inquery 0.055 2.5871
Inquery 0.06 2.3356
Inquery 0.065 2.1033
Inquery 0.07 1.8761
Inquery 0.075 1.6715
Inquery 0.08 1.4895
Inquery 0.085 1.3109
Inquery 0.09 1.1864
Inquery 0.10 0.9522
Inquery 0.12 0.6969
Inquery 0.14 0.5994
Inquery 0.16 0.6063

Table 3: Result of parameter sweep for link detection run on TDT-2
training data.

5.1. Submitted SLD
Here we are comparing two stories. We ran a parameter sweep to
select the weighting scheme and the threshold for comparison. We
found that cosine comparison of tf (idf weights with a threshold of
0.80 worked best. Idf scores were taken from a retrospective cor-
pus (TDT-2’s six-month corpus). Table 3 shows the cost function
varying over a range of parameter values.

5.2. LCA smoothing
In SIGIR 1996, the CIIR presented a query expansion technique
that worked more reliably than previous “pseudo relevance feed-
back” methods.[4] That technique, Local Context Analysis (LCA),
locates expansion terms in top-ranked passages, uses phrases as well
as terms for expansion features, and weights the features in a way
intended to boost the expected value of features that regularly occur
near the query terms.

Because LCA has been so successful in IR tasks, we felt it was ap-
propriate to explore it as a smoothing technique in TDT’s story link
detection task. That is, each story is treated as a “query” and ex-

panded using LCA. Additional words that occur in the corpus very
near the words in the story are added into each story and the result-
ing, larger, stories are compared as before.

We first provide some details about how LCA works, and then dis-
cuss its explicit use and results in TDT.

LCA used for SLD We used LCA query expansion to replace the
original story vector with a different, smoothed one. We first con-
verted the story to a vector as before, selecting either Inquery or
tf (idf as a weighting function. We then select the t most highly
weighted features from that vector and discard all other features.

Those t features are used as a query to find the u stories from the
TDT-3 corpus that are most similar to features (as vectors). Except
where noted otherwise below, we only allow those stories to come
from stories that appeared before the story being expanded. (We
could have used any stories up until the later of the two stories, but
have not yet explored that adjustment.)

We extract all features from those u stories and weight them based
upon their proximity to the original t “query” features. The LCA
weighting function is a complex heuristic that gives higher weights
to features that occur with many query words.[4] We select the topt LCA expansion features and add them to the vector. Note that it
is possible for some of the original t features to re-appear as LCA
features. The resulting vector has anywhere from t to v�t unique
features.

The new features are added in with weights that start at �%` 8 and
smoothly drop down to �%` 8-@w,Stx@?��0�8y` z ! t . This is the common
weighting function for LCA features, and may not be the best choice
for adding into the vector.

The result is that a story’s vector is replaced by t to v�t features
with weights that are a combination of Inquery or tf (idf weights, and
LCA weights.

For this study we used uE�{v�8 stories for expansion, used tL�|��8Q8
features from each story, and added t/����8%8 expansion features.

LCA/SLD experiments Figure 1 shows the impact of story
smoothing using LCA on the link detection task. The curve that is
consistently worst is the DET plot for no smoothing at all: our base
case. The next curve toward the original (it moves closest to the ori-
gin at both ends) is the result of using LCA as described above. The
curve that comes closest to the origin is a “cheating” run that uses
the entire TDT-3 corpus for expansion, meaning that a story could be
expanded by stories that follow it and not just those in the past. Even
without looking ahead, the value of LCA smoothing is apparent.

For our experiments, we used either the Inquery or the tf (idf weight-
ing function both for determining the top t features of the story, and
for finding the best-matching stories for expansion. Our best results
in non-LCA SLD were obtained with the tf (idf weighting function,
but with LCA, Inquery weights performed better. Why?

We hypothesize that the reason is that query expansion requires
highly accurate retrieval of the type that is typical in an IR system.
The cost of expanding using non-relevant passages is very high: the
query will be expanded in a direction that is not related to th original
request. Our tf (idf weight is well known to be less effective in IR,
so we expect it generates less relevant expansion terms. Since those
terms account for up to half of the story’s representation, it is very

1

2

5

10

20

40

60

80

90

.01 .02 .05 .1 .2 .5 1 2 5 10 20 40 60 80 90

M
is

s
pr

ob
ab

ili
ty

 (
in

 %
)

False Alarms probability (in %)

Effects of LCA on mul,eng Topic Weighted Curves

Random Performance

No LCA

Partial LCA

Full LCA

Figure 1: Results of LCA smoothing on SLD task. Experiments
were done on the TDT-2 corpus.

important that they be accurate.

5.3. Cross-language score normalization

Effects of SYSTRAN translations During our experiments we
stumbled upon an interesting effect of Mandarin documents on per-
formance. We observed that the performance of our story-link de-
tection system was noticeably worse on a multi-lingual dataset than
it was on the English-only data. We hypothesized that the drop in
performance could be due to lexical differences between the use of
language in native English stories and in SYSTRAN translations of
Chinese stories.

To test this hypothesis we performed the following post-hoc exper-
iment. We partitioned our set of story pairs into three subsets: (1)
pairs where both stories are native English stories, (2) pairs where
both stories are SYSTRAN translations of Chinese, and (3) pairs
where one story is a native English story and the other is the SYS-
TRAN translation. Then we analyzed the distributions of similarities
of stories in the pair for each subset. Figure 2 presents distribution
plots separately for on-target (both stories discuss the same topic)
and off-target (stories discuss different topics) pairs in each subset.

It is evident that similarity distributions are very different for dif-
ferent subsets of pairs. On average, two SYSTRAN stories have a
higher expected similarity than do two native English stories; the
expected similarity of a SYSTRAN story to a native English story is
even lower. Note that this observation holds for both on-target and
off-target story pairs, but the effect is much more pronounced for
on-target pairs.

We suspect the differences are due to the limited vocabulary of
SYSTRAN translations. Any machine translation system, including
SYSTRAN, has a relatively small vocabulary, whereas native En-
glish authors tend to use a much wider range of words. Also, SYS-
TRAN uses words consistently from story to story, whereas different
human authors tend to use different words to describe the same idea.
Inconsistent use of words leads to smaller expected word overlap be-

0

2

4

6

8

10

12

14

16

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

D
en

si
ty

Similarity

Distribution of Similarities for Off-Target Document Pairs

English to English
Systran to Systran
English to Systran

0

2

4

6

8

10

12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

D
en

si
ty

Similarity

Distribution of Similarities for On-Target Document Pairs

’English to English’
’Systran to Systran’
’English to Systran’

Figure 2: Effect of language on distributions of story similarities.
Top: off-target story pairs. Bottom: on-target story pairs

tween any two stories, which translates to lower expected similarity
between two stories.

Whatever the cause, the differences in similarities present a seri-
ous challenge to effective cross-lingual story-linking. Suppose two
given stories have a similarity of 0.1. If we know that both stories
are SYSTRAN translations, the pair is most-likely off-target (from
Figure 2 we see that probability of getting a 0.1 similarity in an on-
target SYSTRAN pair is extremely low). However, if we know that
one story is native English, and the other is a SYSTRAN translation,
the pair is most-likely on-target, since the probability of getting 0.1
is higher for on-target pairs (Figure 2). This example implies that
our similarity values are not directly comparable when pairs of sto-
ries involve multiple languages. To make them comparable, we need
to normalize the similarities with respect to the source of stories in
the pair.

Compensating translation effects There exist a number of nor-
malization techniques, ranging from simple range normalization and
linear scaling (used in our tracking approach) to more elaborate tech-
niques. We consider a probabilistic normalization technique where
we replace the similarity } of a pair from subset ~ with the posterior

0.020.10.20.51 2 5 10 20 40 60 80 90
False Alarm Rate

2

5
10

20

40

60

80

90

M
i
s
s

R
a
t
e

0.020.10.20.51 2 5 10 20 40 60 80

1
2

5
10

20

40

60

80

Figure 3: Improvement in performance resulting from normalization
of similarities. Lower curve represents normalized system.

probability that the pair is on-target +-,S� . } H ~�0 , given the similarity} and subset ~ . If we have access to distributions of on-target simi-
larities +-,S} . � H ~J0 and off-target similarities +-,S} . B H ~J0 , we can use
Bayes rule to derive the posterior:+-,S� . } H ~J0J� +-,S} . � H ~J0�+-,S� H ~J0+-,S} . � H ~J0�+-,S� H ~J0�=_+-,S} . B H ~J0�+-, B H ~J0
Note that estimating the posterior requires knowledge of relevance
judgments for each pair (to estimate +-,S} . � H ~J0 and +-,S} . B H ~J0).
What we would do in practice is estimate the probabilities from the
training data and then apply the transformation to the similarities in
the testing data.

A number of parametric and non-parametric techniques could
be used to estimate the conditional densities +-,S} . � H ~�0 and+-,S} . B H ~J0 . In this work we chose non-parametric kernel density
estimators because they can provide an arbitrarily close fit to the
training data (”Applied Smoothing techniques for Data Analysis”
A.Bowman, A.Azzalini). The conditional probability of } is a func-
tion of every story pair in the training set ~ :+��'� 	 ,S} . ~J0�� �� . ~ . � �Q����� , }-@��� 0
Here

�
is the kernel, which can be any probability density function,

and
�

is the bandwidth parameter, representing the desired degree
of smoothness. For kernel estimators the choice of

�
has very little

effect, as long as it is unimodal, symmetric and smooth. We selected
Gaussian kernels: � ,S}�0>� �� v����������\� &
Bandwidth

�
, on the other hand, has very strong effects on the fi-

nal distribution. We uses automatic bandwidth selection technique
(described in on p.31 of “Applied Smoothing techniques for Data
Analysis” A.Bowman, A.Azzalini).

Figure 3 shows the effects of applying our normalization to the train-
ing set of story-link pairs. System that used normalized similarities
shows a small but consistent improvement over no normalization.

0

2

4

6

8

10

12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

On-Target Pairs
Off-Target Pairs

0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1

On-Target Pairs
Off-Target Pairs

Figure 4: Effect of score normalization on similarity distributions.
Top: distributions before normalization. Bottom: after normaliza-
tion.

In this case we performed a cheating experiment, using the training
data to normalize itself.

To better understand the effects of our normalization we plotted the
overall densities of the original similarities (top half of Figure 4),
and normalized similarities (bottom half). The main effect is in
spreading the distributions apart. However, our normalization also
introduces very “heavy” tails in both densities on the bottom half
of Figure 4, and the tails are “bumpy”, which means that our nor-
malization is non-monotonic (higher similarities don’t always mean
higher probability of being on-target). We suspect that bumpiness
is the result of over-fitting the density. Possible ways to avoid this
problem would be to increase the bandwidth

�
or use a parametric

density estimator instead of kernel estimator described above.

6. CONCLUSION
The bulk of our effort this half year was spent re-engineering our
TDT system so that it could better support our longer-term research
goals. In particular, we are modifying the system to provide better
capabilities in the area of language modeling, consistent with our

broader goals of formally modeling information organization tasks.

We have some preliminary work that shows the value of smoothing
stories by other, related stories in the corpus. We are simultaneously
working on improved formal models for query expansion, and antic-
ipate incorporating that approach into our language modeling ideas.

Score normalization is a key task within TDT that has not been im-
portant in areas such as information retrieval. We have been using
distribution plots to recognize when normalization is likely to be
helpful, and have shown that definitely helps within and across lan-
guages.

Acknowledgments

This work was supported in part by the National Science Founda-
tion, Library of Congress, and Department of Commerce under co-
operative agreement number EEC-9209623, in part by SPAWAR-
SYSCEN-SD grant number N66001-99-1-8912. The opinions,
views, findings, and conclusions contained in this material are those
of the authors and do not necessarily reflect the position or policy of
the Government and no official endorsement should be inferred.

References
1. J. Allan, H. Jin, M. Rajman, C. Wayne, D. Gildea, V. Lavrenko,

R. Hoberman, and D. Caputo. Topic-based novelty detection:
1999 summer workshop at CLSP, final report. Available at
http://www.clsp.jhu.edu/ws99/tdt, 1999.

2. S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu,
and M. Gatford. Okapi at TREC-3. In D. K. Harman, editor,
The Third Text REtrieval Conference (TREC-3). NIST, 1995.

3. I.H. Witten and T.C. Bell. The zero-frequency problem: Esti-
mating the probabilities of novel events in adaptive text com-
pression. IEEE Transactions on Information Theory, 37:1085–
1094, 1991.

4. J. Xu and W. B. Croft. Query expansion using local and global
document analysis. In Proceedings of the 19th annual interna-
tional ACM SIGIR conference on research and development in
information retrieval, pages 4–11, Zurich, 1996. Association for
Computing Machinery.

