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ABSTRACT
Meta-search, or the combination of the outputs of different search
engines in response to a query, has been shown to improve per-
formance. Since the scores produced by different search engines
are not comparable, researchers have often decomposed the meta-
search problem into a score normalization step followed by a com-
bination step. Combination has been studied by many researchers.
While appropriate normalization can affect performance, most of
the normalization schemes suggested are ad hoc in nature.

In this paper, we propose a formal approach to normalizing scores
for meta-search by taking the distributions of the scores into ac-
count. Recently, it has been shown that for search engines the score
distributions for a given query may be modeled using an exponen-
tial distribution for the set of non-relevant documents and a normal
distribution for the set of relevant documents. Here, it is shown
that by equalizing the distributions of scores of the top non-relevant
documents the best meta-search performance reported in the litera-
ture is obtained. Since relevance information is not available apri-
ori, we discuss two different ways of obtaining a good approxima-
tion to the distribution of scores of non-relevant documents. One is
obtained by looking at the distribution of scores of all documents.
The second is obtained by fitting a mixture model of an exponen-
tial and a Gaussian to the scores of all documents and using the re-
sulting exponential distribution as an estimate of the non-relevant
distribution. We show with experiments on TREC-3, TREC-4 and
TREC-9 data that the best combination results are obtained by av-
eraging the parameters obtained from these approximations. These
techniques work on a variety of different search engines including
vector space search engines like SMART and probabilistic search
engines like INQUERY.

The problem of normalization is important in many other areas
including information filtering, topic detection and tracking, multi-
lingual search and distributed retrieval. Thus, the techniques pro-
posed here are likely to be applicable to many of these tasks.

1. INTRODUCTION
Meta-search, or the combination of the outputs of different search

engines to produce a single (combined) ranked list in response to
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a query, has been shown to improve performance [5, 8, 9, 7, 11,
2]. Many search engines produce scores as a measure of the rele-
vance of the document to a particular query. These scores are then
used to generate document rankings. The scores produced by dif-
ferent search engines are usually not comparable since they are of-
ten computed using some metric (or non-metric) distance function.
Researchers have often decomposed the meta-search problem into
a score normalization step followed by a combination step. While
the combination step has been studied by a number of researchers
[5] there has been little work on the normalization techniques to be
used. The normalization step can in fact be more critical for per-
formance in many situations [13]. Existing normalization schemes
[8, 9, 13] have been proposed on heuristic grounds and their perfor-
mance seems to depend somewhat on the dataset used [13]. Thus,
the appropriate choice of normalization is not clear.

We propose that the correct way to normalize scores for meta-
search is by taking the distributions of the scores into account. Re-
searchers have previously shown that for search engines [11] and
for the outputs of filtering systems [1] the score distributions for a
given query may be modeled using an exponential distribution for
the set of non-relevant documents and a normal distribution for the
set of relevant documents. Here, we show that by equalizing the
distributions of scores of the top non-relevant documents the best
meta-search performance reported in the literature is obtained. The
non-relevant distributions can be equalized by mapping the mini-
mum score to zero and equalizing the means of the different expo-
nential distributions. Since relevance information is not available
in practice, we show that there are two different ways of obtaining
a good approximation to the distribution of scores of non-relevant
documents (i.e. of estimating the exponential parameter).

1. The non-relevant distribution may be approximated by fitting
an exponential distribution to the scores of all documents
(rather than fitting only the non-relevant documents). This
approximation is usually reasonable because the proportion
of relevant documents in search engines is usually small. We
show that this approximation is in fact identical with a nor-
malization technique selected by Montague and Aslam [13]
on heuristic grounds.

2. An alternative technique for estimating the non-relevant dis-
tribution involves fitting a mixture model consisting of an ex-
ponential and a Gaussian to the scores of all documents [11]
and then using the exponential component as an estimate of
the non-relevant distribution. The mixture model is solved
using Expectation-Maximization (EM).

The best estimate turns out to be to take an average of those ob-
tained using the above (two) approximations. We show that the
combination performance obtained by taking this average is the



best reported performance for meta-search and is consistently good
over all the four (TREC) datasets tested. The techniques used here
have been applied to a variety of search engines operating on dif-
ferent principles including vector space engines like SMART and
probabilistic search engines like INQUERY.

Surprisingly, the performance of this model is better than one
obtained by combining posterior probabilities (computed from the
mixture model mentioned above) [11]. Part of the problem stems
from errors in estimating the mixture model (consisting of relevant
and non-relevant errors).

While our work in this paper focuses on the problem of com-
bining the outputs of different search engines retrieving documents
from a common database, score normalization is important in many
different contexts. The approach here could be easily extended to
the combination of different search engines indexing databases in
different languages to produce a multi-lingual search engine or the
combination of search engines indexing different databases (dis-
tributed retrieval). The score normalization procedure used here
may also be useful for the topic detection and tracking task where
scores have to be normalized across different topics.

2. PRIOR WORK
We will discuss some of the normalization and combination tech-

niques proposed before describing some score modeling work. A
recent and extensive survey of evidence combination in information
retrieval is provided by Croft [5].

Fox and Shaw [7] proposed a number of combination techniques
including operators like the MIN and the MAX. Other techniques
included one that involved setting the score of each document in
the combination to the sum of the scores obtained by the individual
search engines (CombSum), while in another the score of each doc-
ument was obtained by multiplying this sum by the number of en-
gines which had non-zero scores (CombMNZ). Note that summing
(CombSum) is equivalent to averaging while CombMNZ is equiv-
alent to weighted averaging. Lee [8, 9] studied this further with six
different engines. His contribution was to normalize each engine
on a per query basis improving results substantially. Lee showed
that CombMNZ worked best, followed by CombSum while oper-
ators like MIN and MAX were the worst. Lee also observed that
the best combinations were obtained when systems retrieved sim-
ilar sets of relevant documents and dissimilar sets of non-relevant
documents. Vogt and Cottrell [14] also verified this observation
by looking at pairwise combinations of systems. A probabilistic
approach using ranks rather than scores was proposed last year
by Aslam and Montague [3, 2]. This involved extensive training
across about 25 queries to obtain the probability of a rank given a
query. Their results for TREC-3 were close to but slightly worse
than Lee’s COMBMNZ technique 1. Aslam and Montague were
able to demonstrate that rank information alone can be used to pro-
duce good combination results. The main difficulty with this tech-
nique seems to be the extensive training required of every engine
on a substantial number of queries.

Montague and Aslam [13] proposed three different normaliza-
tion schemes for meta-search. The methods involved linearly shift-
ing and scaling scores so that the following mappings were achieved:

They tested these with some well known combination techniques
including CombSum and CombMNZ [7, 8, 9].

Recent (and independent) work by Manmatha et al [11] - for
search - and Arampatzis and van Hameren [1] - in the case of fil-
tering - has shown that the scores of non-relevant documents may

1The graph for Lee’s technique in [3] is incorrect.

Name Method
Standard Map min to 0 and max to 1.
Sum Map min to 0 and the sum to 1.
ZMUV Map mean to 0 and variance to 1.

Table 1: Normalization Methods Suggested by Montague and
Aslam

be approximated by an exponential distribution and the scores of
relevant documents by a Gaussian distribution. These experiments
(by Manmatha et al [11]) were done by modeling the top 1000 doc-
uments for different search engines from the TREC-3 ad hoc track.

These distributions were successfully used for information fil-
tering in [1, 15]. Manmatha et al [11] also showed that the rele-
vant and non-relevant distributions could be recovered by solving
a mixture model consisting of an exponential and a Gaussian using
Expectation-Maximization (EM). They used mixture model to map
scores to probabilities for each engine. The probabilities were aver-
aged for meta-search. The results were as good as the CombMNZ
technique with the Standard normalization.

3. EXISTING NORMALIZATION SCHEMES
We first start by looking at Montague and Aslam’s normaliza-

tion schemes. Montague and Aslam [13] reported the results of
combining a set of n engines. First, a set of n engines is randomly
selected from the set of all available engines and these n engines
are then combined. A different set of n engines is then selected and
the results combined again. The process is repeated until all possi-
ble choices for a given n have been selected. The results for a given
n are then averaged and reported. We argue that this is not a use-
ful way of reporting results in meta-search. The average precision
for the average combination is often less than the average precision
for the best search engine. This happens because many of the sets
of n are combinations of search engines with much lower average
precision.

In Table 2 we, therefore, compare the performance of the three
normalization schemes suggested by Montague and Aslam [13] and
two different combination schemes on the top five engines for data
from the ad hoc track of TREC-3 data. This track provides scores
for the top 1000 documents for all search engines which partic-
ipated in this track. In the table Sum-CombSum means that the
normalization technique used was the ’Sum’ technique (see Table
1) and the combination technique was CombSum. The first row
gives the average precision for the top engine (in terms of average
precision). The second row reports the combination performance
in terms of average precision for the top two engines. The third,
fourth and fifth rows report the performance for combining the top
3 engines, the top 4 engines and the top 5 engines respectively. The
results are also plotted in Figure 1.

From Table 2 it is clear that Sum-CombSum and Sum-CombMNZ
perform best (with Sum-CombSum performing slightly better). This
is in fact corroborated by experiments on the ad hoc tracks in TREC-
4, TREC-5 data and on TREC-9 (web-track) data. From this table,
the normalization used appears to be more important than the com-
bination scheme used. That is, the Sum normalization performs
best whether CombSum or CombMNZ is selected. 2.

Why should the Sum normalization scheme perform better? The
paper by Montague and Aslam [13] does not give any intuition
for picking one normalization scheme over another. We argue be-
low that the appropriate normalization involves equalizing the non-
2Interestingly, contrary to Lee’s claim [9], Standard-CombSum is
in fact slightly better than Standard-CombMNZ.



Engines combined Sum ZMUV Standard Sum ZMUV Standard
CombSum CombSum CombSum CombMNZ CombMNZ CombMNZ

inq102 0.4226 0.4226 0.4226 0.4226 0.4226 0.4226
inq102, citya1 0.4551 0.4445 0.4495 0.4503 0.4382 0.4464
inq102, citya1, brkly7 0.4807 0.4593 0.4742 0.4742 0.4553 0.4700
inq102, citya1, brkly7, inq101 0.4715 0.4471 0.4683 0.4677 0.4438 0.4648
inq102, citya1, brkly7, inq101, assctv2 0.4773 0.4500 0.4750 0.4713 0.4455 0.4692
average 0.4614 0.4447 0.4579 0.4572 0.4411 0.4546

Table 2: Non-interpolated precision of TREC-3’s top 5 engines
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Figure 1: Average precision graphs for the different normaliza-
tion schemes suggested by Montague and Aslam for combining
the best five engines from TREC-3

relevant score distributions of the outputs of different search en-
gines. We show that the ’Sum’ normalization is a good way of
approximately normalizing the non-relevant score distributions of
different search engines. We also show how better approximations
may be obtained.

4. FUSION BY EQUALIZING DISTRIBU-
TIONS

Figure 2 shows a histogram of scores for query 171 for IN-
QUERY from TREC-3. Note that the data are first normalized so
that the minimum and maximum score for a query are 0 and 1 re-
spectively. A maximum-likelihood fit of an exponential curve to
this data is also shown (see [11] for more details).

The probability density of the exponential distribution is described
by the following equation:

p(x) = λ exp(−λx) (1)

and its mean = 1/λ.
We note that a large variety of search engines based on differ-

ent principles have non-relevant score distributions described by an
exponential (see [11]).

The non-relevant distribution provides information as to how the
scores would be distributed even if there are no relevant documents.
That is, it provides information as to how a search engine maps a
random set of documents to scores for a given query. Relevant
documents will tend to get picked more easily if they stand out
against this baseline distribution.

Since a good normalization scheme should ensure that random
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Figure 2: Histogram, exponential fit to non-relevant data and
fit for entire data for query 171 INQUERY (inq102)

documents are mapped in the same manner, it is appropriate to nor-
malize the random distributions. For a non-relevant distribution
which is exponential, this can be done by simply setting the mini-
mum score to 0 and the means of the exponentials to be the same.
The retrieved lists from different search engines are now merged
based on the normalized scores and CombSum. The results ob-
tained by this technique (top curve labeled EXPML-CombSum) are
the best as seen in Figure 3. The figure shows the average precision
for the best 5 individual engines from TREC-3 (the individual en-
gine graph). Each combination technique is labeled using the nor-
malization technique followed by the combination technique used.
For example, the CombMNZ technique with Standard normaliza-
tion (Table 1) is referred to as Standard-CombMNZ. This was advo-
cated by Lee [9] as the best fusion technique. EXPML-CombSum
provides an improvement of almost 3.5% over Standard-CombMNZ
in terms of average precision.

In practice, relevance information is not available. Hence, the
non-relevant distribution has to be estimated without relevance in-
formation. We discuss three different ways of doing this below.

4.1 Estimate Using Mixture Model Fit
Manmatha et al [11] showed that one could fit a mixture model

consisting of an exponential and a Gaussian to the score distribu-
tions using Expectation Maximization. This model applies to many
different search engines.

The density of a mixture model p(x) can be written in terms of
the densities of the individual components p(x|j) as follows: [4,
12]

p(x) =
∑

j

P (j)p(x|j) (2)
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Figure 3: Average precision graphs for combining the best five
engines from TREC-3

where j identifies the individual component, the P (j) are known as
mixing parameters and satisfy

2∑

j=1

P (j) = 1, 0 ≤ P (j) ≤ 1. (3)

We will denote densities with a lower case p(x) and probabilities
with an uppercase P(x). In the present case, there are two compo-
nents, an exponential density with mean λ

p(x|1) = λ exp(−λx) (4)

and a Gaussian density with mean µ and variance σ2

p(x|2) =
1√
2πσ

exp(− (x − µ)2

2σ2
) (5)

The Gaussian part is an estimate of the relevant distribution while
the exponential part of the mixture may be used as an estimate of
the non-relevant distribution. The mixture model may be solved
using Expectation-Maximization which is an iterative procedure
to update the parameter values given some initial estimates. The
reader is referred to [10] for details on the solution of this mixture
model. The parameters of the mixture may be solved using the
following update equations:

µnew =

∑
n

P old(2|xn)xn

∑
n

P old(2|xn)
(6)

(σnew)2 =

∑
n

P old(2|xn)||xn − µnew||2∑
n

P old(2|xn)
(7)

λnew =

∑
n

P old(1|xn)∑
n

P old(1|xn)xn
(8)

P (1)new =
1

N

∑

n

P old(1|x) (9)

Note that the updated Gaussian parameters are given by µnew

and σnew while the updated exponential parameter is given by
λnew . P (1)new is the new estimate of the mixing parameter for
the exponential (P (2) = 1 − P (1)). P old(j|xn)jn are estimates
of the posterior for component j (j = 1,2) given the current estimates
of the parameters.

For our purpose here, we use the exponential part of the mix-
ture as an estimate of the non-relevant distribution. Equalizing the

non-relevant distributions of the different search engine outputs is
equivalent to equalizing the exponential components of the mix-
tures describing their outputs. That is, the scores of all documents
are rescaled to ensure that the means of the exponential components
are the same. In practice, this may be done for a given query on a
search engine by by simply dividing the score of every document
by the mean of the exponential component. The results obtained
using their technique (labeled EXPEM-CombSum) are shown in
Figure 3. EXPEM-CombSum is the second curve from the top
and the closest in performance to EXPML-CombSum (our theo-
retical ideal). For various reasons, the exponential distribution ob-
tained using the EM algorithm doesn’t converge exactly to the non-
relevant distribution.

4.2 Estimate Using Total Distribution
Figure 2 also shows an exponential fit to the scores of all docu-

ments. This plot is close to the exponential fit to the non-relevant
documents. The distribution of all documents is often a good ap-
proximation to the distribution of non-relevant documents because
the proportion of relevant documents is small in many cases (in this
case 34 out of a 1000)

Figure 4 shows a plot of the difference of the means of the two
distributions for all 50 queries of INQUERY (depicted as the t -
nr curve). This difference is always positive and for many of the
queries, but not all, it is small. Figure 4 also shows the difference
between means of the exponential model obtained from the mixture
model and the one obtained from the non-relevant document scores
(labeled as em - nr).
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Figure 4: Differences between the means estimated using
the two approximation techniques and the mean of the non-
relevant distribution for INQUERY (inq102) for TREC-3. em,
nr and t refer to the means obtained from the mixture model,
non-relevant distribution and the total distribution respec-
tively. Note that the t - nr curve is always positive and that
the two differences are un-correlated.

Normalizing using the distribution of all scores is equivalent to
setting the minimum to zero and equalizing the mean of all the
scores. It is straightforward to show that this is equivalent (in terms
of document ranking) to the Sum normalization scheme proposed
by Montague and Aslam [13] (see Table 1). The plot labeled as
Sum-CombSum in Figure 3 has the fourth best performance (but
is really close to the optimal EXPML-CombSum). Our approach
here provides the theoretical justification for one of Montague and
Aslam’s normalization schemes.



Note that for some datasets, Sum-CombSum is better than EXPEM-
CombSum as shown in Figure 5 (which shows the average preci-
sion graphs for combining the best five automatic runs from the ad
hoc track of TREC-4).

The last normalization scheme proposed by Montague and Aslam
may be viewed as normalizing the means and variances of two
Gaussian distributions. Since we know that the distribution of all
scores is definitely not a Gaussian this should not work very well.
In fact, the ZMUV-CombMNZ and ZMUV-CombSum are the worst
performing combination techniques in Figure 1 and Table 2 and
in Figure 5 the performance of ZMUV-CombMNZ actually gets
worse as one combines more engines. One could not have predicted
this without understanding the nature of the score distributions. We
note that in a related area (TDT), this is a common technique for
score normalization [6] - and probably a bad choice.

4.3 Estimate by Averaging
Figure 4 shows that the two estimates of the non-relevant dis-

tribution often err in different directions. Another estimate can,
therefore, be obtained by averaging the two estimates. Normaliz-
ing and combining produces the EXPAVG-CombSum plot in Fig-
ures 3 and 5. We see that this lies between EXPEM-CombSum and
Sum-CombSum. This gives the best consistent performance over
all datasets. Note that for Trec-4 we take the top five automatic
runs from TREC-4 to show that meta search also works in such
cases.
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Figure 5: Average precision graphs for combining the best five
automatic runs for the ad hoc track from TREC-4

Figure 6 shows the results from the Web Track of TREC-9 and
again the best results are obtained by using EXP-ML.

4.4 Discussion of Results
The approach discussed here of equalizing the non-relevant score

distributions of different search engines and then averaging the re-
sulting scores clearly produces the best meta search results reported
so far. Three different ways of estimating the non-relevant distribu-
tion have been discussed above but clearly the easiest technique in-
volves estimating using the total distribution (equivalently, the Sum
normalization). We have compared the results with some of the
standard ad hoc normalization and combination techniques above.
It is interesting to compare the results to a technique based on map-
ping scores to probabilites and then combining the probabilities as
follows.

The mixture model may be used to compute a posterior proba-
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Figure 6: Average precision graphs for combining five runs
from the manual interactive track from TREC-9

bility of relevance given the score (see [11]. The different search
engines may then be combined by averaging the probabilities. In
practice, combination by averaging posterior probabilities does not
work as well as the technique proposed here involving equalizing
the non-relevant distributions. We believe that the reason for this
is the error involved in estimating the mixture model. For esti-
mating the posterior probability both the relevant (Gaussian) and
non-relevant (exponential) components of the mixture need to be
estimated. As we have seen above, there are errors in estimating
the exponential component. There are also errors in estimating the
Gaussian component. The Gaussian component is also harder to es-
timate because the number of relevant documents could be small.
Since the posterior probability of relevance given score needs a
good estimate of the Gaussian component, there can be errors in
it.

In the case of multi-lingual retrieval and distributed retrieval, the
problem of estimating the Gaussian component for some databases
may be really severe. Imagine, for example a French news database,
an English news database and an Indonesian news database. In re-
sponse to a query about the mayor of Nice, the French database
may have a number of relevant documents while the Indonesian
database may have no relevant documents. In such a situation,
the estimates of the posterior probability would be especially poor.
However, the techniques described here would still work (the expo-
nential component of the mixture would still be estimated reason-
ably well).

One could also ask whether equalizing the Gaussian (relevant)
distributions works. There does not appear to be any obvious intu-
itive reason for the relevant distributions to have the same param-
eters (although they may all belong to the same family of distribu-
tions). In practice, this does not work very well as expected.

Combining multiple search engines usually provides substantial
improvements over even the best individual search engine. There
are exceptions to this rule. For example, when the performance of
one search engine is much better than another search engine then
combination may not improve performance. Although combining
the top few search engines usually improves performance, combin-
ing more than about 5 engines does not seem to cause a substantial
improvement in performance and may in fact cause degradation.
As is clear from the previous figures, as one goes further down the
list, the performance of the individual search engines get substan-
tially worse. An interesting question is how many engines should



be combined before the performance shows no further improve-
ment.

5. CONCLUSION AND FUTURE WORK
We have described a formal approach to meta search which in-

volves equalizing the distributions of scores of the top non-relevant
score distributions of different search engines on a per query basis.’
Three different techniques were described for estimating the non-
relevant distribution. It was shown that the techniques described
here produce the best reported meta search performance in the lit-
erature. The approach described here also provides a formal basis
for one of the normalization schemes previously described in the
literature.

Future work could include the extension of this technique to the
combination of results from search engines operating on databases
in different databases to produce a multi-lingual search engine and
on combining the results from different databases in distributed re-
trieval.

The problem of score normalization is also important in other
information retrieval tasks like topic detection and tracking and the
discussion in this paper could provide some insight in such areas.
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