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ABSTRACT 
This paper describes a system for question answering using semi-
structured metadata, QuASM (pronounced “chasm”). Question 
answering systems aim to improve search performance by 
providing users with specific answers, rather than having users 
scan retrieved documents for these answers.  Our goal is to 
answer factual questions by exploiting the structure inherent in 
documents found on the World Wide Web (WWW).  Based on 
this structure, documents are indexed into smaller units and 
associated with metadata. Transforming table cells into smaller 
units associated with metadata is an important part of this task. In 
addition, we report on work to improve question classification 
using language models.  The domain used to develop this system 
is documents retrieved from a crawl of www.fedstats.gov. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – information filtering, search process.  

General Terms: Algorithms, Measurement, Performance, 
Design, Experimentation. 

Keywords: Question answering, semi-structured, tables, 
question classification, content documents, metadata, language 
model 

1. INTRODUCTION 
Traditional information retrieval (IR) systems use a query to 
return a set of documents that may be relevant to the user’s 
information need. In the case of a user looking for a specific, 
short answer to a question, these documents must be scanned to 
achieve this goal. Answers may be buried deep in tables, or far 
down in the document, making this process tedious. 
Question answering (QA) systems augment IR systems by taking 
over the scanning task. A separate search and scoring algorithm is 
executed to locate answers in the retrieved documents 
(Voorhees[10]).  Most QA systems have dealt with TREC data, 
where the determination of an answer is based in part on the 

syntactic structure of the language in the documents.  QA 
performed on web pages could potentially exploit the structure 
inherent in the HTML markup (semi-structured data) – especially 
for tabular data.  
This paper describes a system called Question Answering using 
Semi-structured Metadata (QuASM).  QuASM is built on 
previous work in cross language question answering [5]. 
Experiments were performed to determine if the semi-structured 
nature of web documents could improve the performance of these 
systems. 
One way of taking advantage of the structure is to determine if a 
document contains suitable data for answering questions.  Many 
of the documents obtained from the WWW do not contain useful 
content. Pages may, for example, simply provide navigational 
links to other documents. If these pages can be removed, the 
initial document retrieval phase of a QA system should be 
improved. Finn, Kushmerick and Smyth [4] developed a way of 
identifying text sections in documents.  This method was adapted 
for selecting content documents. 
Once content documents have been identified, they can be 
transformed based on their structure. QA systems look for 
answers in close proximity to query terms [10].  When a table is 
used to display data, a cell of the table may be at a distance from 
where the query terms are likely to reside (e.g. column and row 
headers). Pyreddy and Croft [7] developed heuristics for 
identifying text tables and their components. As an extension of 
this work, the desired components of a table can be matched with 
each cell.  The same can be done for more structured tables found 
in Hypertext Markup Language (HTML) documents. 
Like tables, the prose sections of a document can be transformed.  
In a document on farming, there is no need to search for answers 
to questions about potatoes in a section about cows.  The semi-
structured nature of web documents offer clues to where sections 
begin and end, as well as their subject matter. Using these clues, it 
is our belief that documents can be broken into smaller units that 
are topically homogeneous. Our hypothesis is that by indexing 
smaller parts of documents for IR, the answer search will be more 
effective. 
The QuASM experiments also involved query classification.  In 
order to find answers, a relationship must be established between 
the question being asked and possible target answers in the 
document. Questions need to be classified on the basis of the type 
of answer that is expected. These answer entities must also be 
recognized in retrieved documents so the answers can be located. 
Regular expressions have been commonly used to classify 
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questions, but we found them lacking as the number of classes of 
questions were expanded and as we attempted to classify real 
world questions.  In IR, language models have been used to 
estimate the probability that a document generates a query (Ponte 
and Croft [6], Song and Croft [9]).  Our idea for improving 
question classification is to use language models of question 
classes to estimate the probability that the answer class generated 
the question.  
The rest of this paper looks in detail at the components of the 
QuASM system. Section 2 presents an overview of the 
components. Section 3 discusses content selection in detail. 
Section 4 explains table transformation, with 4.1 concentrating on 
text tables and section 4.2 dealing with HTML tables. Section 5 
presents query classification and entity identification. Section 6 
evaluates the overall system and Section 7 looks to future work. 

2. OVERVIEW 
Figure 1 is a diagram of the acquisition and data processing 
modules of the QuASM system.  The components are discussed 
below and in more detail in later sections. 

2.1 Database Acquisition 
Database acquisition consists of two tasks. The first is obtaining 
pages by means of a web crawl. The second is extracting pages 
that contain content (and thereby answers) from these documents. 
The goal of the crawl was to extract pages related to the 
www.fedstats.gov site, as the questions we desired to answer 
would be of a statistical nature.  A tiered search was used to 
accomplish this.  All pages in the fedstats.gov domain were 
collected first.   As pages were collected, links to pages outside 
that domain were also collected.  Once a domain was exhausted, 
the program could move on to the next tier and repeat the process.  
Scripts were developed to allow the stopping and restarting of the 
crawl at each level. 
Other heuristics were added to ignore error pages, ignore binary 
files, (including .pdf files), ignore popular web domains, and 
compensate for duplicate pages that appear to be unique. 
Not all documents retrieved from the web crawl will contain 
content appropriate for question answering. Documents are 
screened to separate documents with answer content from those 
that are navigational or interactive (query pages).  Results are 
discussed in section 3. 

2.2 Document Processing 
Documents are processed to break them up into smaller 
information units.  Two of the processing methods transform table 
cells into short documents consisting of cell data and metadata.  A 
third process breaks text documents into smaller sections for 
faster processing of questions. 

2.3 Text Tables 
Tables present an interesting problem for question answering. QA 
systems look for potential answer entities in close relation to 
query terms. However, in a data table, the answer may be rows 
and columns away from the text that could contain the query 
terms; the row names, column headers, titles and captions. 

 
Figure 1. Data Acquisition and Processing 

Text tables in particular make this difficult, since the layout of 
these tables is as varied as their composers. Cell spacing is 
random. Some use characters (-,|,!,+) to delineate rows and 
columns. Columns may have multiple headers, or one header may 
exist over a number of rows. Numerous heuristics have been 
developed to generally place the correct designators with the 
proper cell data. A full explanation of the heuristics and 
experimental results can be found in section 4.1. 

2.4 HTML Tables 
Unlike text tables, HTML tables offer a clearer structure.  The 
beginning and end of these tables are marked with HTML tags, as 
are the column headers and individual cells.  However, there is no 
standard that forces an HTML author to adhere to these.  
An efficient algorithm was designed to make one pass through the 
data to join titles, row and column headers with cell data.  The 
first row of the table is considered the header row and the first 
column of the table contains the row names. For any particular 
cell not in the first row or first column, the corresponding table 
title, row name and column header are written out with the cell 
data as a sentence. A more thorough discussion is found in section 
4.2 
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2.5 Document Sectioning 
The purpose of document sectioning is two-fold; to produce small 
snippets of documents on a single subject, and to find metadata 
for those snippets. 
HTML tags provide clues about the organization of a document 
and its subject matter. Words tagged as bold or italics, or that 
appear in different levels of headings convey information about 
the section. Paragraph and body tags provide a good indication of 
the end of a logical section. 
To find sections, the program creates and performs a series of 
operations on a tag depth array. The tag depth array contains two 
pieces of information about each line in the file; the text of the 
line and the depth of the line inside tags.  Each time an important 
tag (BIG, BOLD) is encountered, we increase the depth by 1.  
When we find the end of that tag, the depth is decreased by 1, but 
never below zero.  Certain other tags are reset tags (such as the 
start of a paragraph), and always reset the depth to zero. Each line 
of text is assigned the current depth.  
Once each line is tagged with a depth value, the lines are arranged 
into sections. First, adjacent sections with the same depth are 
combined. Then consecutive sections are combined until a depth 
of 0 is reached, at which point a new section starts. Lines with 
depth greater than zero are saved as metadata. 
Other heuristics are applied for special cases and better 
performance. An attempt is made to keep sections between 100 
and 500 characters.  For documents with no HTML markup, other 
clues must be used to section a document, such as capitalization 
and numbering. Once processing is complete, each section is 
written out as a separate document. 

2.6 Answer Retrieval 
Figure 2 represents the answer retrieval module of the QuASM 
system.  Documents are indexed using the Inquery search engine 
[3]. The question classification and entity identifier are discussed 
below and in more detail in later sections. 

2.7 Question Classification 
In order to answer questions correctly, the query must be 
classified so an answer of the same type can be located in the 
retrieved documents. These question classes can be general 
(NUMBER, LOCATION) or more specific (AREA, MASS).  
A number of techniques have been employed to identify the 
answer class of a question. Entity tagging, part of speech tagging, 
regular expressions and language models all combine to produce a 
class for a question.  A more thorough discussion and evaluation 
of this work are in section 5.1. 
Once passages have been retrieved, possible answer entities are 
tagged using BBN’s IdentifinderTM (described in [2]) and a 
program developed as part of this project to find entities 
corresponding to answer classes not covered by IdentifinderTM. A 
more thorough discussion of this work is presented in section 5.2. 

 
Figure 2. Answer Retrieval 

 

3. CONTENT SELECTION EXPERIMENT 
Rather than indexing every web page retrieved from the crawl, a 
filtering program was put in place to determine which documents 
were more likely to contain content. Content in this instance 
refers to prose and tables that convey information useful in 
answering questions, as opposed to navigational aids. 
Our selection algorithm is based on work by Finn, Kushmerick 
and Smyth, [4] who explored text extraction from HTML files. A 
document is represented as a binary vector.  Tokens representing 
HTML tags are given the weight one, all others weight zero. We 
modified this algorithm by setting certain HTML tags to have 
weight 0, since they were likely to occur in content sections (font 
changes, headings), or indicate content (table tags). From this 
vector, a document slope curve (DSC) is generated. The entries in 
the DSC array correspond to the total of the binary vector up to 
and including that token. Long, low sloping regions of this graph 
represent content (text without tags). If these regions are large 
enough the document is classified as containing content. 
Figure 3 contains two examples of document slope curves. The 
graph labeled non-content page is from a document that contains 
a list of hyperlinks. The HTML tags in this document occur 
regularly, so the graph shows a steady rise. The graph labeled 
content page is an article from the EPA web site. The beginning 
and end of the document contain hyperlinks and HTML 
formatting tags, while the middle of the article is text. The curve 
has high slope at the beginning and end, but is flat in the middle. 
The algorithm for determining content is as follows: 

•  Create the binary vector (BV). 

•  From this binary vector, create a DSC.   

•  The length of the document (in tokens) is used to 
determine a window size. This window will be used to 
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determine the average slope of each section.  The 
minimum window size is 8 (for documents less than 200 
tokens) and the maximum size is 50 (for documents 
greater than or equal to 5000 tokens. 

•  Record the average slope of the document 

•  Starting at the beginning of the DSC, and moving the 
window half the window length at a time, look for three 
consecutive sections that have an average slope less 
than 50% of the average slope of the document.  A low 
slope area has now been located. Classify each of these 
areas as low slope until three consecutive sections 
where the slope is greater than 50% of the average 
document slope have been found. 

•  Once the low slope sections have been identified, 
determine the number of tokens in those sections.  If 
this number is less than 10% of the tokens in the 
document, reject the document as having no content. 

•  If the document passes the above test, check the average 
slope of the low slope sections.  If this average slope is 
less than 50% of the average slope of the document, 
accept it as having content.  

 
Figure 3. Document Slope Curves 

After tuning the parameters on training data, documents were 
randomly extracted from the web crawl and judged by hand to be 
content or non-content. Then these documents were classified by 
the algorithm and compared to the judgments. Table 1 shows the 
result of this experiment.   

 
Table 1. Experimental Results, Content Selection 

Total Documents 188 

Judged As Content 87 

Identified as Content 109 

Correctly Identified as Content 75 

Recall .862 

Precision .688 

 

4. DOCUMENT PROCESSING  
The goal in processing documents was to break the pages into 
multiple small information units with the following properties: 

•  The small units were about a single fact or related ideas. 

•  If needed, the data was transformed to associate 
potential query terms with the data. 

Three separate filters were applied to the documents in 
succession.  Text tables were transformed and removed, HTML 
tables were transformed and removed, and the remaining text was 
processed into sections.  Experiments with text and HTML tables 
are discussed here. 

4.1 Text Table Experiments 
There is a large amount of content information within our web 
crawl stored as non-HTML tables (text tables). Our goal was to 
build on previous work to associate the cells of these tables with 
metadata.  The hypothesis is that transforming the tables in this 
way will lead to better answers for questions about the table data. 

4.1.1 Table Identification 
The first step in extracting table data is to locate the tables in the 
file. An example of a text table can be seen in Figure 4a. We built 
upon the TINTIN system by Pyreddy and Croft [7].  A Character 
Alignment Graph (CAG) is created to look for white space 
alignment in blocks of contiguous lines of texts. A number of 
heuristics are applied to this CAG: 

•  A row with more than two gaps may be a table row.  
Gaps are large areas of white space in a row, and may 
indicate column structure. 

•  A row with more than four continuous white spaces 
may be a table row. 

•  The density of table rows (number of rows marked as 
belonging to a table) indicate the presence of a table. 

•  Simple rows (with less than 3 cells) can indicate the 
beginning or ending of a table. 

•  Rows at the beginning of the table are likely to be less 
regular than the rest of the table. 

•  The number of simple rows in the table should be small. 

•  Non-table rows and blank rows are a sign of the end of 
a table. 

•  A number of consecutive signs of the end of a table will 
indicate the end of a table. 

Non-Content Page 

Content Page 



 
Figure 4. Text Table Examples 

To test table identification, we selected files at random from the 
set of content files and identified by hand the number of table 
lines, and compared this to the output of the program.  Totals are 
from 103 files containing 109 tables (Table 2). 

Table 2. Experimental Results, Table Identification 

Total number of lines 91578 -- 

Total number of table and caption lines 10944 -- 

Total number of lines extracted by table 
extractor 

10786 -- 

Total number of table and caption lines 
missed 

1075 9.8% 

Total number of extraneous lines extracted 917 8.4% 

While this result is not as good as TINTIN[7], it should be noted 
that TINTIN was tested on tables from Wall Street Journal news 
stories only, while the tables in this collection came from a more 
heterogeneous source; the Web. 

4.1.2 Header Identification 
The second step in extracting table data is to match data cells with 
their appropriate headers.  This was new research with regard to 
table extraction. Figure 4b contains an example of a processed 
table cell, with the header information between the COLUMN 
tags. 
Column headers are difficult to detect; they can span multiple 
lines.  They can be split from the data by lines containing other 
information.  They can have sub-headers and super-headers. 

Onions: Area Planted and Harvested by Season, State,

and United States, 1996-98

-------------------------------------------------------------------------------

Season : Area Planted : Area Harvested

and :----------------------------------------------------------------

State : 1996 : 1997 : 1998 : 1996 : 1997 : 1998

-------------------------------------------------------------------------------

: Acres

:

Spring :

AZ : 2,100 2,100 2,500 1,900 2,100 2,500

CA : 10,100 9,900 7,000 9,600 9,600 6,800

GA : 16,000 16,200 15,000 14,700 15,800 13,900

TX : 15,300 12,400 12,000 13,000 9,800 11,400

Total : 43,500 40,600 36,500 39,200 37,300 34,600

<QA_SECTION><QA_METADATA>

<TITLE> Onions: Area Planted and Harvested by Season, State, and
United States, 1996-98 </TITLE>

<CAPTIONS> Season : Area Planted : Area Harvested and :------------
--------------------------------------

-------------- State : 1996 : 1997 : 1998 : 1996 : 1997 : 1998 :
Acres Spring : </CAPTIONS>

<ROW> AZ :</ROW>

<COLUMN> Area Planted ---------------------------------------------------------------- 1997 Acres
</COLUMN>

</QA_METADATA>

<TITLE> Onions: Area Planted and Harvested by Season, State, and
United States, 1996-98 </TITLE>

<CAPTIONS> Season : Area Planted : Area Harvested and :------------
---------------------------------------------------- State

: 1996 : 1997 : 1998 : 1996 : 1997 : 1998 :
Acres Spring : </CAPTIONS>

<ROW> AZ :</ROW>

<COLUMN> Area Planted ---------------------------------------------------------------- 1997 Acres
</COLUMN>.

2,100 </QA_SECTION>

 

Original Table (a) 

Cell Corresponding to Area Planted, 1997, AZ (b) 



Whereas the TINTIN system was only interested in marking rows 
as tables or captions, our system extended this to find rows that 
contain header information. A number of heuristics were used to 
accomplish this: 

•  Simple rows at the beginning of a table are probably 
titles. 

•  Other rows at the beginning of a table are probably 
caption rows. 

•  Simple rows in the middle of a table are likely caption 
rows. 

•  Rows in a table with a similar number of cells are likely 
data rows. 

•  The most common number of cells in a row represents 
the number of cells in a data row, and rows with that 
number of cells are marked as such.  Authors of text 
tables often leave cells without data blank.  This makes 
these rows to appear to have fewer cells. 

•  Data rows with integer numbers in the range 1700 to 
2100 are likely caption rows, since these number 
probably represent years. (These are likely year headers 
for US government studies, given the age of the 
country.) 

•  When data rows are made up of cells containing digits, 
data rows made up of alphabetic characters are probably 
caption rows. 

•  If a cell in a caption row can cover multiple cells in a 
data row, it is included in the headers for all those 
columns. 

•  Caption rows in the middle of a table indicate a new 
section of the table, and the headers from that row 
should only apply to the next section. 

•  Cells in the first column are used as row headers. 
The same set of 103 documents was used to test caption 
identification.  The results are in Table 3. Here we show an 
improvement over TINTIN. 

Table 3. Experimental Results, Caption Identification 

Actual number of captions 1049 -- 

Number of captions miss-tagged as table 
lines 

37 3.53% 

Actual number of table lines 9895 -- 

Number of table lines miss-tagged as 
captions 

387 3.9% 

 
One of the most important parts of the above heuristics was 
determining if a cell in a caption row covered multiple cells in a 
data row.  The most common number of cells in a line is 
calculated by creating a histogram of the cells in each line and 
picking the entry with the highest value.  For a line with this 
number of cells, the character position where each cell begins and 
ends is recorded.  Then for a caption line with fewer cells, the 
beginning and ending character positions of each cell is recorded.  
Any columns that fall under the span of the caption row cell get 
this cell as a piece of its metadata. 

To test this, we selected 62 tables that had column headers and 
table rows, and checked to see if we were capturing the column 
header information.  The results are in table 4. 

Table 4. Header Capture Experiment 

Number of Columns 425 

Columns, Header Text Missing 27 

Columns, All Header Text 
Captured  

398 

Percent, All Header Text Captured 93.6 

 
Of the 398 columns for which we captured all the header 
information, 327 of those included extraneous text. We believe 
QuASM will work better with a small amount of extra 
information than it would by missing relevant metadata. Once all 
the lines of the table have been marked, titles, caption, row and 
column data is written to a metadata section, and that same data is 
repeated with the cell data to be passed on to the scoring 
algorithm after retrieval. 
As a check to see if text table processing would improve QA, the 
following experiment was performed.  Sixteen questions were 
generated from the data in the table in Figure 4a, all variants on 
“In 1997, how many acres were planted with onions in the spring 
in AZ?” changing the state, the year, or substituting harvested for 
planted. The sixteen questions were run against two different 
databases.  The first database contained the original content files 
indexed for retrieval with the Inquery search engine (Unprocessed 
DB).  The second database contained the content files with tables 
extracted and prose sectioned, also indexed for retrieval 
(QuASM). Five documents were retrieved for each question, and 
we recorded the mean reciprocal rank1 (MRR) [10] and the 
number of questions without an answer found in the top five 
documents.  The results are in Table 5. We found these results 
encouraging. 

Table 5 Experimental Results, Text Table QA 

Onion Questions Unprocessed DB QuASM 

MRR 0 .781 

# Not Found 16 0 

 

4.2 HTML Tables 
HTML Tables present a somewhat easier problem than text tables.  
The <table></table> tags clearly delineate the start and end of an 
author’s construct. An example of an HTML table is shown in 
Figure 5a. 
The heuristics for extracting table data are simple and effective.   

•  When tables are nested, the innermost table is 
considered to be the one holding the data. 

•  The title of the table is extracted and used as metadata 
for each cell. 

                                                                 
1 Score for each question is the reciprocal of the rank of the first 

correct response, or 0 if there is no correct response. The mean 
of these scores is reported. 



•  The first cell of the table (upper left hand corner) is also 
applied to each cell and is appended to the title. 

•  The remaining cells in the first row are considered 
headers for each column. If the last cells in a row are 
blank, take this as a sign of a multi-row header, and 
continue using the next row to add to the header text. 

The header for each column is associated with each cell 
below it. 

•  The first cell in each data row is considered the row 
header and the text is associated with each cell in the 
row. 

 

 
Figure 5. HTML Table Examples 

 
Each cell is written out as a sentence: title, column header, row 
header, data, since the scoring algorithm expects its data in the 
form of a sentence. A transformed cell can be seen in Figure 5b. 
A QA experiment similar to the one used for text tables was 
performed. A page from MapStats was chosen, 
http://www.fedstats.gov/qf/states/30000.html, and 20 questions 
were generated from the data in the “Montana” column.  The 
twenty questions were run against the same two databases as 
before.  Five documents were retrieved for each question, and we 
recorded the MRR and the number of questions with an answer 
not found in the top five documents.  The results are in Table 6. 
Again, we found the results encouraging. 

Table 6. Experimental Results, HTML QA 

Montana Questions Unprocessed DB QuASM 

MRR 0 .367 

# Not Found 20 12 

 

5. QUESTION CLASSIFICATION AND 
ENTITY IDENTIFICATION 
In order to find a likely answer to a question, an idea needs to be 
developed as to what the answer will look like. Is it the name of a 
person? A location? A number? A specific type of number? 
Figure 6 shows the categories classes used by QuASM. In 

addition to classifying questions, the answer entities must also be 
identified in the text being searched. 

 
Figure 6. Question and Entity Classes 

5.1 Classification Experiments 
The initial approach was to develop regular expressions to 
classify questions. While this approach works well for standard 
questions (Who is the CEO of GE? How much does a barrel of oil 
cost?), it works less well when the question strays from the 

Original Table (a) 

  People MapStats Montana USA 
 Population, 2000  902,195 281,421,906
 Population, net change, 1990 to 2000  103,130 32,630,981
 Population, percent change, 1990 to 2000  12.9% 13.1%
 Population under 5 years old, 2000  54,869 19,175,798
 Persons under 5 years old, percent, 2000  6.1% 6.8%
 Population 65 years old and over, 2000  120,949 34,991,753
 Persons 65 years old and over, percent, 2000  13.4% 12.4%

<QA_SECTION> 
<QA_METADATA> 
People MapStats , Population definition and source info Population, 2000 , Montana </QA_METADATA> 
People MapStats , Population definition and source info Population, 2000 , Montana , 902,195 .</QA_SECTION> 

Cell Corresponding to Population 2000, Montana (b) 

QuASM Classes 
URL   EMAIL 
TEMPERATURE  LENGTH 
HEIGHT   MASS 
PERIOD   AREA 
SPACE (VOLUME)  SPEED 
DENSITY   ENERGY 
POWER   ORDEREDNUMBER 
NUMBER   BIOGRAPHY

Identifinder Classes 
PERSON   LOCATION 
ORGANIZATION  DATE 
PERCENT   MONEY 
TIME



expected form.  Rather than try to develop more and more regular 
expressions, a language modeling approach was adopted. 
The idea behind the language model is to discover the probability 
of the question (Q) given a question class (C). A unigram 
language model looks at the probability of individual words 
(Equation 1). The unigram model assumes that each word occurs 
independently 7]. A bigram model looks at the probabilities of 
pairs of words (Equation 2). The probability of a new word 
depends on the context, in this case the previous word [9]. 

)|(*...*)|(*)|()|( 21 CwPCwPCwPCQP n=  

Equation 1 - Unigram Model 

),|(*...*),|(*)|()|( 1121 −= nn wCwPwCwPCwPCQP  

Equation 2 - Bigram Model 
Language models for each question class were developed using 
three sets of classified questions: 

•  Questions extracted from GovBot logs and hand 
classified by our lab. GovBot was a database of US 
government web sites developed by the Center for 
Intelligent Information Retrieval (CIIR) at the 
University of Massachusetts and available for public 
search. 

•  Questions classified by Thomas Morton of the 
University of Pennsylvania. 

•  TREC Questions, also classified by Thomas Morton. 
For each question, certain words were replaced with named 
entities. The idea behind this was that the entity LOCATION, 
for example, conveys more information than the name of a 
specific place.  So a question like, “Who is the president of the 
US?” becomes “Who is the president of the LOCATION?” 
Unigram and bigram models were built for each question class 
using these transformed questions. 
The questions containing named entities were transformed again, 
using part of speech tagging to label nouns.  “Who is the 
president of the LOCATION?” then becomes, “Who is the 
NOUN of the LOCATION?”  Unigram and bigram models 
were again built for each class.  
The reason for building models with and without part of speech 
tagging is that information is both gained and lost by doing so. 
Certain nouns, such as “percentage,” give more clues to the 
question class left as is. By building models two ways, we hope 
to capture as much information as possible. 
A 5-fold cross validation experiment was performed using the 
TREC questions. Precision for each of the four language models 
and the regular expression classifier are reported in Table 7 
(tagging refers to entity and part of speech tagging). 

Table 7. Experimental Results, Question Classification 

Model Precision 

Regular Expressions .59 

Unigrams, no tagging .74 

Unigrams, with 
tagging 

.56 

Bigrams, no tagging .73 

Bigrams, with tagging .60 

 
Results with the language model can be improved by heuristically 
combining the three best scoring models above (unigrams with no 
tagging and the two bigram models).  Aslam [1] uses the rank of 
documents returned by different search engines to combine the 
results of those search engines. Similarly, a weighted voting 
scheme was used to combine two models, unigrams with no 
tagging (M1) and bigrams with no tagging (M2). This voting 
scheme is a variation of a Borda Count, which Saari [8] shows to 
be a correct voting method. A score was assigned to the top five 
classes ranked by each model, with the top ranked class getting a 
score of 0.5 then down to 0.25 for 2nd, 0.1 for 3rd, 0.05 for 4th and 
0.01 for 5th. M1 is given a weight of .6, M2 .4.  The score for a 
class is then determined by a linear combination of the weight for 
the model times the score for the rank of that class by the model, 
M1*R1+M2*R2. 
The model bigrams with tagging (M3) can improve performance 
in one special case. If M1 and M2 differ on the top ranked class, 
but agree on the 2nd ranked class, and M3 ranks the agreed 2nd 
ranked class first, then that class wins. This results in increasing 
precision to .75. 
Neither method (regular expressions or language model) for 
classifying questions was ideal. However, the language model 
would often make mistakes that the regular expression classifier 
would judge correctly.  To use this information to improve the 
precision, the two methods are combined using the following 
algorithm: 

•  Rank the classes based on language model score. 

•  Find all classes that match the question with a regular 
expression 

•  Choose as the answer the regular expression match 
ranked highest by the language model. 

Using this method we were able to obtain a precision of .81 
testing on the TREC questions. 

5.2 Entity Identification Experiment 
For entities not marked by IdentifinderTM, regular expressions are 
used to locate entities in the retrieved text.  We are also careful 
not to reclassify entities already marked by IdentifinderTM. 
For entities representing numbers, a two-step approach is taken.  
A regular expression is used to find a string representing a 
number (either in words, digits or a combination of the two). 
Once a number has been located, the following token is checked 
to see if the number can be further classified into a unit of 
measure.  Once the number has been identified, it is tagged with a 
NUMEX tag, and the type field of this tag is set with the 
appropriate name (Figure 6).   
For the non-number entities, a regular expression is used for each 
class to search the text for entities.  Each match is tagged with an 
OBJECT tag, and the type field of this tag is set with the 
appropriate name (Figure 6). 
 

Table 8. Experimental Results, Entity Identification 

Number of entities in documents 8043 

Number of entities recognized 8315 

Number of entities recognized 7926 



correctly 

Precision (correct/recognized) .9532 

Recall (correct/total) .9855 

To test entity identification, entities were hand labeled and 
compared against the output of our program for precision and 
recall (Table 8). 

6. QUESTION ANSWERING 
EXPERIMENTS 
The web crawl and content selection resulted in a collection of 
177,670 documents.  From these, a random set of documents was 
selected.  These documents were used to generate 73 questions 
used in testing.  The questions covered data in text tables, html 
tables and prose. 
The experiment was designed to compare a QA system based on 
unaltered web files with a QA system based on files processed 
into smaller information units as described above. The original 
documents were indexed into an Inquery database (Unprocessed 
DB).  Separately, the same documents were processed for text and 
html tables, and the remaining text sectioned into smaller units.  
These processed documents were also indexed into an Inquery 
database (QuASM).  (These are the same DB used in the text and 
HTML table experiments.) 
The 73 questions were spilt into groups of ~15 for batch runs.  
Each batch run was timed to see if there was an improvement in 
efficiency. 
Table 9. Experimental Results, QuASM vs. Unprocessed Data 

Test Questions Unprocessed 
DB 

QuASM 

MRR .209 .253 

# Not Found 54 50 

% Not Found 74.0% 68.5% 

Avg. CPU Time per Question 
(in seconds) 

137.5 8.1 

6.1 Discussion 
The goal of our work is to improve performance and efficiency 
when answering questions from web data.  Our results indicate a 
first step in that direction. MRR was increased, while the average 
time to process a question was lowered.  
Two factors make this a task more difficult than a TREC 
experiment. The emphasis on answering questions of a statistical 
nature, where the answers require finding a named entity, 
increases the difficulty of the search, especially when the entity is 
not in the middle of a sentence (in a table, for example). The data 
is from a more heterogeneous environment and unlike news 
articles; there is little consistency in format. These factors lead to 
lower scores versus systems reported in TREC QA tracks. 
Processing documents into smaller units had a dramatic effect on 
efficiency. The size of web documents varies greatly, from a few 
bytes to millions of bytes. The action of table extraction and 
document sectioning reduce this variability and ensure the answer 
identifier has a reasonable amount of information to search. Time 
to process the average question was reduced by better than a 
factor of sixteen.  

While the improvement in MRR was modest, there are indications 
that this score can be raised.  Of the questions that had a correct 
answer in the top five, thirteen were answered by both systems. It 
would appear processing tables and prose both enhances and 
diminishes the information available for finding answers.  
As shown in the experiments on text and HTML tables, there is an 
information gain through table transformations. Sectioning can 
also lead to an information gain. The question, “What is the 
molecular weight of calcium cyanamide?” is answered correctly 
by QuASM but incorrectly by the previous system, despite the 
fact that the correct document is retrieved from the unprocessed 
DB.  The original document has a number of blank lines between 
the weight (80.11) and the units (g/mol).  This is not proximate 
enough for the entity identifier to correctly tag 80.11 as a MASS.  
When the document is sectioned, however, the blank lines are 
stripped away, and the entity identifier correctly labels the weight. 
The question, “What percent of watersheds does the EPA want to 
restore by 2005?” sheds light on how information is diminished 
by the processing.  In the original document containing the 
answer, the query term percent does not appear near the answer 
to the question (a % is used). The term percent does appear later 
in the document.  When the document is sectioned, the term 
percent is lost entirely to the small unit containing the answer.  
Other sectioned documents enhance the term frequency (tf) of 
EPA by repeating it in the metadata, increasing the score for 
retrieval.  These two factors lead to the failure to retrieve the 
sectioned document containing the answer.  
We have postulated that a two stage retrieval system could solve 
this problem.  Documents are sectioned, but the sections remain in 
a single document for retrieval by the search engine.  A second 
function then determines the best sections for the query, and only 
those are searched for an answer.  This will be part of our future 
work. 
The question classifier correctly identified 51 of the 73 questions 
(70%).  Some incorrectly classified questions have pointed to 
deficiencies in the regular expressions for these classes, which 
underscores the need to develop better models for these 
classifications.  For example, the question "What is the surface 
area of Lake Ontario?" is classified as a LOCATION, due to the 
language model giving that class a higher score. 

7. FUTURE WORK 
This implementation of QuASM used query formation heuristics 
based on previous work. This makes initial IR sensitive to how 
the question is formed.  For example, in the test on text tables, if 
we phrase the question as, “How many acres were planted with 
onions in the spring of 1997in AZ?” the query generated treats 
“spring of 1997” as a phrase, and fails to find the table documents 
since terms are spread throughout the cell metadata.  One area of 
research will be to change query generation to create more table 
friendly queries. 
HTML and text table algorithms currently assume the first 
column contains the row name.  Often, the row name or label is 
spread over a few columns. Better row and column names should 
give a boost to performance. 
The heuristics that locate an answer in a document is another area 
of future study.  One of the changes we made to this part of the 
system was to look for the last name entity match when the 
document represents a table cell (since we know the data is at the 



end of the document).  Improving these heuristics for this task 
will be a continuing area of research. 
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