
QuASM: A System for Question Answering
Using Semi-Structured Data

David Pinto, Michael Branstein, Ryan Coleman, W. Bruce Croft, Matthew King,

Wei Li and Xing Wei
Computer Science Department

University of Massachusetts
Amherst, MA 01003

{pinto, michaelb, ryanc, croft, matthewk, weili, xwei}@cs.umass.edu

ABSTRACT
This paper describes a system for question answering using semi-
structured metadata, QuASM (pronounced “chasm”). Question
answering systems aim to improve search performance by
providing users with specific answers, rather than having users
scan retrieved documents for these answers. Our goal is to
answer factual questions by exploiting the structure inherent in
documents found on the World Wide Web (WWW). Based on
this structure, documents are indexed into smaller units and
associated with metadata. Transforming table cells into smaller
units associated with metadata is an important part of this task. In
addition, we report on work to improve question classification
using language models. The domain used to develop this system
is documents retrieved from a crawl of www.fedstats.gov.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – information filtering, search process.

General Terms: Algorithms, Measurement, Performance,
Design, Experimentation.

Keywords: Question answering, semi-structured, tables,
question classification, content documents, metadata, language
model

1. INTRODUCTION
Traditional information retrieval (IR) systems use a query to
return a set of documents that may be relevant to the user’s
information need. In the case of a user looking for a specific,
short answer to a question, these documents must be scanned to
achieve this goal. Answers may be buried deep in tables, or far
down in the document, making this process tedious.
Question answering (QA) systems augment IR systems by taking
over the scanning task. A separate search and scoring algorithm is
executed to locate answers in the retrieved documents
(Voorhees[10]). Most QA systems have dealt with TREC data,
where the determination of an answer is based in part on the

syntactic structure of the language in the documents. QA
performed on web pages could potentially exploit the structure
inherent in the HTML markup (semi-structured data) – especially
for tabular data.
This paper describes a system called Question Answering using
Semi-structured Metadata (QuASM). QuASM is built on
previous work in cross language question answering [5].
Experiments were performed to determine if the semi-structured
nature of web documents could improve the performance of these
systems.
One way of taking advantage of the structure is to determine if a
document contains suitable data for answering questions. Many
of the documents obtained from the WWW do not contain useful
content. Pages may, for example, simply provide navigational
links to other documents. If these pages can be removed, the
initial document retrieval phase of a QA system should be
improved. Finn, Kushmerick and Smyth [4] developed a way of
identifying text sections in documents. This method was adapted
for selecting content documents.
Once content documents have been identified, they can be
transformed based on their structure. QA systems look for
answers in close proximity to query terms [10]. When a table is
used to display data, a cell of the table may be at a distance from
where the query terms are likely to reside (e.g. column and row
headers). Pyreddy and Croft [7] developed heuristics for
identifying text tables and their components. As an extension of
this work, the desired components of a table can be matched with
each cell. The same can be done for more structured tables found
in Hypertext Markup Language (HTML) documents.
Like tables, the prose sections of a document can be transformed.
In a document on farming, there is no need to search for answers
to questions about potatoes in a section about cows. The semi-
structured nature of web documents offer clues to where sections
begin and end, as well as their subject matter. Using these clues, it
is our belief that documents can be broken into smaller units that
are topically homogeneous. Our hypothesis is that by indexing
smaller parts of documents for IR, the answer search will be more
effective.
The QuASM experiments also involved query classification. In
order to find answers, a relationship must be established between
the question being asked and possible target answers in the
document. Questions need to be classified on the basis of the type
of answer that is expected. These answer entities must also be
recognized in retrieved documents so the answers can be located.
Regular expressions have been commonly used to classify

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
JCDL’02, July 13-17, 2002, Portland, Oregon, USA.
Copyright 2002 ACM 1-58113-513-0/02/0007…$5.00.

questions, but we found them lacking as the number of classes of
questions were expanded and as we attempted to classify real
world questions. In IR, language models have been used to
estimate the probability that a document generates a query (Ponte
and Croft [6], Song and Croft [9]). Our idea for improving
question classification is to use language models of question
classes to estimate the probability that the answer class generated
the question.
The rest of this paper looks in detail at the components of the
QuASM system. Section 2 presents an overview of the
components. Section 3 discusses content selection in detail.
Section 4 explains table transformation, with 4.1 concentrating on
text tables and section 4.2 dealing with HTML tables. Section 5
presents query classification and entity identification. Section 6
evaluates the overall system and Section 7 looks to future work.

2. OVERVIEW
Figure 1 is a diagram of the acquisition and data processing
modules of the QuASM system. The components are discussed
below and in more detail in later sections.

2.1 Database Acquisition
Database acquisition consists of two tasks. The first is obtaining
pages by means of a web crawl. The second is extracting pages
that contain content (and thereby answers) from these documents.
The goal of the crawl was to extract pages related to the
www.fedstats.gov site, as the questions we desired to answer
would be of a statistical nature. A tiered search was used to
accomplish this. All pages in the fedstats.gov domain were
collected first. As pages were collected, links to pages outside
that domain were also collected. Once a domain was exhausted,
the program could move on to the next tier and repeat the process.
Scripts were developed to allow the stopping and restarting of the
crawl at each level.
Other heuristics were added to ignore error pages, ignore binary
files, (including .pdf files), ignore popular web domains, and
compensate for duplicate pages that appear to be unique.
Not all documents retrieved from the web crawl will contain
content appropriate for question answering. Documents are
screened to separate documents with answer content from those
that are navigational or interactive (query pages). Results are
discussed in section 3.

2.2 Document Processing
Documents are processed to break them up into smaller
information units. Two of the processing methods transform table
cells into short documents consisting of cell data and metadata. A
third process breaks text documents into smaller sections for
faster processing of questions.

2.3 Text Tables
Tables present an interesting problem for question answering. QA
systems look for potential answer entities in close relation to
query terms. However, in a data table, the answer may be rows
and columns away from the text that could contain the query
terms; the row names, column headers, titles and captions.

Figure 1. Data Acquisition and Processing

Text tables in particular make this difficult, since the layout of
these tables is as varied as their composers. Cell spacing is
random. Some use characters (-,|,!,+) to delineate rows and
columns. Columns may have multiple headers, or one header may
exist over a number of rows. Numerous heuristics have been
developed to generally place the correct designators with the
proper cell data. A full explanation of the heuristics and
experimental results can be found in section 4.1.

2.4 HTML Tables
Unlike text tables, HTML tables offer a clearer structure. The
beginning and end of these tables are marked with HTML tags, as
are the column headers and individual cells. However, there is no
standard that forces an HTML author to adhere to these.
An efficient algorithm was designed to make one pass through the
data to join titles, row and column headers with cell data. The
first row of the table is considered the header row and the first
column of the table contains the row names. For any particular
cell not in the first row or first column, the corresponding table
title, row name and column header are written out with the cell
data as a sentence. A more thorough discussion is found in section
4.2

Indexed for IR

WEB
Crawl

Content Selection

Text Tables

Sectioned
Documents

Acquisition

Data
Processing

HTML
Tables

2.5 Document Sectioning
The purpose of document sectioning is two-fold; to produce small
snippets of documents on a single subject, and to find metadata
for those snippets.
HTML tags provide clues about the organization of a document
and its subject matter. Words tagged as bold or italics, or that
appear in different levels of headings convey information about
the section. Paragraph and body tags provide a good indication of
the end of a logical section.
To find sections, the program creates and performs a series of
operations on a tag depth array. The tag depth array contains two
pieces of information about each line in the file; the text of the
line and the depth of the line inside tags. Each time an important
tag (BIG, BOLD) is encountered, we increase the depth by 1.
When we find the end of that tag, the depth is decreased by 1, but
never below zero. Certain other tags are reset tags (such as the
start of a paragraph), and always reset the depth to zero. Each line
of text is assigned the current depth.
Once each line is tagged with a depth value, the lines are arranged
into sections. First, adjacent sections with the same depth are
combined. Then consecutive sections are combined until a depth
of 0 is reached, at which point a new section starts. Lines with
depth greater than zero are saved as metadata.
Other heuristics are applied for special cases and better
performance. An attempt is made to keep sections between 100
and 500 characters. For documents with no HTML markup, other
clues must be used to section a document, such as capitalization
and numbering. Once processing is complete, each section is
written out as a separate document.

2.6 Answer Retrieval
Figure 2 represents the answer retrieval module of the QuASM
system. Documents are indexed using the Inquery search engine
[3]. The question classification and entity identifier are discussed
below and in more detail in later sections.

2.7 Question Classification
In order to answer questions correctly, the query must be
classified so an answer of the same type can be located in the
retrieved documents. These question classes can be general
(NUMBER, LOCATION) or more specific (AREA, MASS).
A number of techniques have been employed to identify the
answer class of a question. Entity tagging, part of speech tagging,
regular expressions and language models all combine to produce a
class for a question. A more thorough discussion and evaluation
of this work are in section 5.1.
Once passages have been retrieved, possible answer entities are
tagged using BBN’s IdentifinderTM (described in [2]) and a
program developed as part of this project to find entities
corresponding to answer classes not covered by IdentifinderTM. A
more thorough discussion of this work is presented in section 5.2.

Figure 2. Answer Retrieval

3. CONTENT SELECTION EXPERIMENT
Rather than indexing every web page retrieved from the crawl, a
filtering program was put in place to determine which documents
were more likely to contain content. Content in this instance
refers to prose and tables that convey information useful in
answering questions, as opposed to navigational aids.
Our selection algorithm is based on work by Finn, Kushmerick
and Smyth, [4] who explored text extraction from HTML files. A
document is represented as a binary vector. Tokens representing
HTML tags are given the weight one, all others weight zero. We
modified this algorithm by setting certain HTML tags to have
weight 0, since they were likely to occur in content sections (font
changes, headings), or indicate content (table tags). From this
vector, a document slope curve (DSC) is generated. The entries in
the DSC array correspond to the total of the binary vector up to
and including that token. Long, low sloping regions of this graph
represent content (text without tags). If these regions are large
enough the document is classified as containing content.
Figure 3 contains two examples of document slope curves. The
graph labeled non-content page is from a document that contains
a list of hyperlinks. The HTML tags in this document occur
regularly, so the graph shows a steady rise. The graph labeled
content page is an article from the EPA web site. The beginning
and end of the document contain hyperlinks and HTML
formatting tags, while the middle of the article is text. The curve
has high slope at the beginning and end, but is flat in the middle.
The algorithm for determining content is as follows:

• Create the binary vector (BV).

• From this binary vector, create a DSC.

• The length of the document (in tokens) is used to
determine a window size. This window will be used to

Inquery
Database

Question IR

Entity
Tagging

Passage
Scoring Answer!

Question
Classification

determine the average slope of each section. The
minimum window size is 8 (for documents less than 200
tokens) and the maximum size is 50 (for documents
greater than or equal to 5000 tokens.

• Record the average slope of the document

• Starting at the beginning of the DSC, and moving the
window half the window length at a time, look for three
consecutive sections that have an average slope less
than 50% of the average slope of the document. A low
slope area has now been located. Classify each of these
areas as low slope until three consecutive sections
where the slope is greater than 50% of the average
document slope have been found.

• Once the low slope sections have been identified,
determine the number of tokens in those sections. If
this number is less than 10% of the tokens in the
document, reject the document as having no content.

• If the document passes the above test, check the average
slope of the low slope sections. If this average slope is
less than 50% of the average slope of the document,
accept it as having content.

Figure 3. Document Slope Curves

After tuning the parameters on training data, documents were
randomly extracted from the web crawl and judged by hand to be
content or non-content. Then these documents were classified by
the algorithm and compared to the judgments. Table 1 shows the
result of this experiment.

Table 1. Experimental Results, Content Selection

Total Documents 188

Judged As Content 87

Identified as Content 109

Correctly Identified as Content 75

Recall .862

Precision .688

4. DOCUMENT PROCESSING
The goal in processing documents was to break the pages into
multiple small information units with the following properties:

• The small units were about a single fact or related ideas.

• If needed, the data was transformed to associate
potential query terms with the data.

Three separate filters were applied to the documents in
succession. Text tables were transformed and removed, HTML
tables were transformed and removed, and the remaining text was
processed into sections. Experiments with text and HTML tables
are discussed here.

4.1 Text Table Experiments
There is a large amount of content information within our web
crawl stored as non-HTML tables (text tables). Our goal was to
build on previous work to associate the cells of these tables with
metadata. The hypothesis is that transforming the tables in this
way will lead to better answers for questions about the table data.

4.1.1 Table Identification
The first step in extracting table data is to locate the tables in the
file. An example of a text table can be seen in Figure 4a. We built
upon the TINTIN system by Pyreddy and Croft [7]. A Character
Alignment Graph (CAG) is created to look for white space
alignment in blocks of contiguous lines of texts. A number of
heuristics are applied to this CAG:

• A row with more than two gaps may be a table row.
Gaps are large areas of white space in a row, and may
indicate column structure.

• A row with more than four continuous white spaces
may be a table row.

• The density of table rows (number of rows marked as
belonging to a table) indicate the presence of a table.

• Simple rows (with less than 3 cells) can indicate the
beginning or ending of a table.

• Rows at the beginning of the table are likely to be less
regular than the rest of the table.

• The number of simple rows in the table should be small.

• Non-table rows and blank rows are a sign of the end of
a table.

• A number of consecutive signs of the end of a table will
indicate the end of a table.

Non-Content Page

Content Page

Figure 4. Text Table Examples

To test table identification, we selected files at random from the
set of content files and identified by hand the number of table
lines, and compared this to the output of the program. Totals are
from 103 files containing 109 tables (Table 2).

Table 2. Experimental Results, Table Identification

Total number of lines 91578 --

Total number of table and caption lines 10944 --

Total number of lines extracted by table
extractor

10786 --

Total number of table and caption lines
missed

1075 9.8%

Total number of extraneous lines extracted 917 8.4%

While this result is not as good as TINTIN[7], it should be noted
that TINTIN was tested on tables from Wall Street Journal news
stories only, while the tables in this collection came from a more
heterogeneous source; the Web.

4.1.2 Header Identification
The second step in extracting table data is to match data cells with
their appropriate headers. This was new research with regard to
table extraction. Figure 4b contains an example of a processed
table cell, with the header information between the COLUMN
tags.
Column headers are difficult to detect; they can span multiple
lines. They can be split from the data by lines containing other
information. They can have sub-headers and super-headers.

Onions: Area Planted and Harvested by Season, State,

and United States, 1996-98

Season : Area Planted : Area Harvested

and :--

State : 1996 : 1997 : 1998 : 1996 : 1997 : 1998

: Acres

:

Spring :

AZ : 2,100 2,100 2,500 1,900 2,100 2,500

CA : 10,100 9,900 7,000 9,600 9,600 6,800

GA : 16,000 16,200 15,000 14,700 15,800 13,900

TX : 15,300 12,400 12,000 13,000 9,800 11,400

Total : 43,500 40,600 36,500 39,200 37,300 34,600

<QA_SECTION><QA_METADATA>

<TITLE> Onions: Area Planted and Harvested by Season, State, and
United States, 1996-98 </TITLE>

<CAPTIONS> Season : Area Planted : Area Harvested and :------------

-------------- State : 1996 : 1997 : 1998 : 1996 : 1997 : 1998 :
Acres Spring : </CAPTIONS>

<ROW> AZ :</ROW>

<COLUMN> Area Planted -- 1997 Acres
</COLUMN>

</QA_METADATA>

<TITLE> Onions: Area Planted and Harvested by Season, State, and
United States, 1996-98 </TITLE>

<CAPTIONS> Season : Area Planted : Area Harvested and :------------
-- State

: 1996 : 1997 : 1998 : 1996 : 1997 : 1998 :
Acres Spring : </CAPTIONS>

<ROW> AZ :</ROW>

<COLUMN> Area Planted -- 1997 Acres
</COLUMN>.

2,100 </QA_SECTION>

Original Table (a)

Cell Corresponding to Area Planted, 1997, AZ (b)

Whereas the TINTIN system was only interested in marking rows
as tables or captions, our system extended this to find rows that
contain header information. A number of heuristics were used to
accomplish this:

• Simple rows at the beginning of a table are probably
titles.

• Other rows at the beginning of a table are probably
caption rows.

• Simple rows in the middle of a table are likely caption
rows.

• Rows in a table with a similar number of cells are likely
data rows.

• The most common number of cells in a row represents
the number of cells in a data row, and rows with that
number of cells are marked as such. Authors of text
tables often leave cells without data blank. This makes
these rows to appear to have fewer cells.

• Data rows with integer numbers in the range 1700 to
2100 are likely caption rows, since these number
probably represent years. (These are likely year headers
for US government studies, given the age of the
country.)

• When data rows are made up of cells containing digits,
data rows made up of alphabetic characters are probably
caption rows.

• If a cell in a caption row can cover multiple cells in a
data row, it is included in the headers for all those
columns.

• Caption rows in the middle of a table indicate a new
section of the table, and the headers from that row
should only apply to the next section.

• Cells in the first column are used as row headers.
The same set of 103 documents was used to test caption
identification. The results are in Table 3. Here we show an
improvement over TINTIN.

Table 3. Experimental Results, Caption Identification

Actual number of captions 1049 --

Number of captions miss-tagged as table
lines

37 3.53%

Actual number of table lines 9895 --

Number of table lines miss-tagged as
captions

387 3.9%

One of the most important parts of the above heuristics was
determining if a cell in a caption row covered multiple cells in a
data row. The most common number of cells in a line is
calculated by creating a histogram of the cells in each line and
picking the entry with the highest value. For a line with this
number of cells, the character position where each cell begins and
ends is recorded. Then for a caption line with fewer cells, the
beginning and ending character positions of each cell is recorded.
Any columns that fall under the span of the caption row cell get
this cell as a piece of its metadata.

To test this, we selected 62 tables that had column headers and
table rows, and checked to see if we were capturing the column
header information. The results are in table 4.

Table 4. Header Capture Experiment

Number of Columns 425

Columns, Header Text Missing 27

Columns, All Header Text
Captured

398

Percent, All Header Text Captured 93.6

Of the 398 columns for which we captured all the header
information, 327 of those included extraneous text. We believe
QuASM will work better with a small amount of extra
information than it would by missing relevant metadata. Once all
the lines of the table have been marked, titles, caption, row and
column data is written to a metadata section, and that same data is
repeated with the cell data to be passed on to the scoring
algorithm after retrieval.
As a check to see if text table processing would improve QA, the
following experiment was performed. Sixteen questions were
generated from the data in the table in Figure 4a, all variants on
“In 1997, how many acres were planted with onions in the spring
in AZ?” changing the state, the year, or substituting harvested for
planted. The sixteen questions were run against two different
databases. The first database contained the original content files
indexed for retrieval with the Inquery search engine (Unprocessed
DB). The second database contained the content files with tables
extracted and prose sectioned, also indexed for retrieval
(QuASM). Five documents were retrieved for each question, and
we recorded the mean reciprocal rank1 (MRR) [10] and the
number of questions without an answer found in the top five
documents. The results are in Table 5. We found these results
encouraging.

Table 5 Experimental Results, Text Table QA

Onion Questions Unprocessed DB QuASM

MRR 0 .781

Not Found 16 0

4.2 HTML Tables
HTML Tables present a somewhat easier problem than text tables.
The <table></table> tags clearly delineate the start and end of an
author’s construct. An example of an HTML table is shown in
Figure 5a.
The heuristics for extracting table data are simple and effective.

• When tables are nested, the innermost table is
considered to be the one holding the data.

• The title of the table is extracted and used as metadata
for each cell.

1 Score for each question is the reciprocal of the rank of the first

correct response, or 0 if there is no correct response. The mean
of these scores is reported.

• The first cell of the table (upper left hand corner) is also
applied to each cell and is appended to the title.

• The remaining cells in the first row are considered
headers for each column. If the last cells in a row are
blank, take this as a sign of a multi-row header, and
continue using the next row to add to the header text.

The header for each column is associated with each cell
below it.

• The first cell in each data row is considered the row
header and the text is associated with each cell in the
row.

Figure 5. HTML Table Examples

Each cell is written out as a sentence: title, column header, row
header, data, since the scoring algorithm expects its data in the
form of a sentence. A transformed cell can be seen in Figure 5b.
A QA experiment similar to the one used for text tables was
performed. A page from MapStats was chosen,
http://www.fedstats.gov/qf/states/30000.html, and 20 questions
were generated from the data in the “Montana” column. The
twenty questions were run against the same two databases as
before. Five documents were retrieved for each question, and we
recorded the MRR and the number of questions with an answer
not found in the top five documents. The results are in Table 6.
Again, we found the results encouraging.

Table 6. Experimental Results, HTML QA

Montana Questions Unprocessed DB QuASM

MRR 0 .367

Not Found 20 12

5. QUESTION CLASSIFICATION AND
ENTITY IDENTIFICATION
In order to find a likely answer to a question, an idea needs to be
developed as to what the answer will look like. Is it the name of a
person? A location? A number? A specific type of number?
Figure 6 shows the categories classes used by QuASM. In

addition to classifying questions, the answer entities must also be
identified in the text being searched.

Figure 6. Question and Entity Classes

5.1 Classification Experiments
The initial approach was to develop regular expressions to
classify questions. While this approach works well for standard
questions (Who is the CEO of GE? How much does a barrel of oil
cost?), it works less well when the question strays from the

Original Table (a)

 People MapStats Montana USA
 Population, 2000 902,195 281,421,906
 Population, net change, 1990 to 2000 103,130 32,630,981
 Population, percent change, 1990 to 2000 12.9% 13.1%
 Population under 5 years old, 2000 54,869 19,175,798
 Persons under 5 years old, percent, 2000 6.1% 6.8%
 Population 65 years old and over, 2000 120,949 34,991,753
 Persons 65 years old and over, percent, 2000 13.4% 12.4%

<QA_SECTION>
<QA_METADATA>
People MapStats , Population definition and source info Population, 2000 , Montana </QA_METADATA>
People MapStats , Population definition and source info Population, 2000 , Montana , 902,195 .</QA_SECTION>

Cell Corresponding to Population 2000, Montana (b)

QuASM Classes
URL EMAIL
TEMPERATURE LENGTH
HEIGHT MASS
PERIOD AREA
SPACE (VOLUME) SPEED
DENSITY ENERGY
POWER ORDEREDNUMBER
NUMBER BIOGRAPHY

Identifinder Classes
PERSON LOCATION
ORGANIZATION DATE
PERCENT MONEY
TIME

expected form. Rather than try to develop more and more regular
expressions, a language modeling approach was adopted.
The idea behind the language model is to discover the probability
of the question (Q) given a question class (C). A unigram
language model looks at the probability of individual words
(Equation 1). The unigram model assumes that each word occurs
independently 7]. A bigram model looks at the probabilities of
pairs of words (Equation 2). The probability of a new word
depends on the context, in this case the previous word [9].

)|(*...*)|(*)|()|(21 CwPCwPCwPCQP n=

Equation 1 - Unigram Model

),|(*...*),|(*)|()|(1121 −= nn wCwPwCwPCwPCQP

Equation 2 - Bigram Model
Language models for each question class were developed using
three sets of classified questions:

• Questions extracted from GovBot logs and hand
classified by our lab. GovBot was a database of US
government web sites developed by the Center for
Intelligent Information Retrieval (CIIR) at the
University of Massachusetts and available for public
search.

• Questions classified by Thomas Morton of the
University of Pennsylvania.

• TREC Questions, also classified by Thomas Morton.
For each question, certain words were replaced with named
entities. The idea behind this was that the entity LOCATION,
for example, conveys more information than the name of a
specific place. So a question like, “Who is the president of the
US?” becomes “Who is the president of the LOCATION?”
Unigram and bigram models were built for each question class
using these transformed questions.
The questions containing named entities were transformed again,
using part of speech tagging to label nouns. “Who is the
president of the LOCATION?” then becomes, “Who is the
NOUN of the LOCATION?” Unigram and bigram models
were again built for each class.
The reason for building models with and without part of speech
tagging is that information is both gained and lost by doing so.
Certain nouns, such as “percentage,” give more clues to the
question class left as is. By building models two ways, we hope
to capture as much information as possible.
A 5-fold cross validation experiment was performed using the
TREC questions. Precision for each of the four language models
and the regular expression classifier are reported in Table 7
(tagging refers to entity and part of speech tagging).

Table 7. Experimental Results, Question Classification

Model Precision

Regular Expressions .59

Unigrams, no tagging .74

Unigrams, with
tagging

.56

Bigrams, no tagging .73

Bigrams, with tagging .60

Results with the language model can be improved by heuristically
combining the three best scoring models above (unigrams with no
tagging and the two bigram models). Aslam [1] uses the rank of
documents returned by different search engines to combine the
results of those search engines. Similarly, a weighted voting
scheme was used to combine two models, unigrams with no
tagging (M1) and bigrams with no tagging (M2). This voting
scheme is a variation of a Borda Count, which Saari [8] shows to
be a correct voting method. A score was assigned to the top five
classes ranked by each model, with the top ranked class getting a
score of 0.5 then down to 0.25 for 2nd, 0.1 for 3rd, 0.05 for 4th and
0.01 for 5th. M1 is given a weight of .6, M2 .4. The score for a
class is then determined by a linear combination of the weight for
the model times the score for the rank of that class by the model,
M1*R1+M2*R2.
The model bigrams with tagging (M3) can improve performance
in one special case. If M1 and M2 differ on the top ranked class,
but agree on the 2nd ranked class, and M3 ranks the agreed 2nd
ranked class first, then that class wins. This results in increasing
precision to .75.
Neither method (regular expressions or language model) for
classifying questions was ideal. However, the language model
would often make mistakes that the regular expression classifier
would judge correctly. To use this information to improve the
precision, the two methods are combined using the following
algorithm:

• Rank the classes based on language model score.

• Find all classes that match the question with a regular
expression

• Choose as the answer the regular expression match
ranked highest by the language model.

Using this method we were able to obtain a precision of .81
testing on the TREC questions.

5.2 Entity Identification Experiment
For entities not marked by IdentifinderTM, regular expressions are
used to locate entities in the retrieved text. We are also careful
not to reclassify entities already marked by IdentifinderTM.
For entities representing numbers, a two-step approach is taken.
A regular expression is used to find a string representing a
number (either in words, digits or a combination of the two).
Once a number has been located, the following token is checked
to see if the number can be further classified into a unit of
measure. Once the number has been identified, it is tagged with a
NUMEX tag, and the type field of this tag is set with the
appropriate name (Figure 6).
For the non-number entities, a regular expression is used for each
class to search the text for entities. Each match is tagged with an
OBJECT tag, and the type field of this tag is set with the
appropriate name (Figure 6).

Table 8. Experimental Results, Entity Identification

Number of entities in documents 8043

Number of entities recognized 8315

Number of entities recognized 7926

correctly

Precision (correct/recognized) .9532

Recall (correct/total) .9855

To test entity identification, entities were hand labeled and
compared against the output of our program for precision and
recall (Table 8).

6. QUESTION ANSWERING
EXPERIMENTS
The web crawl and content selection resulted in a collection of
177,670 documents. From these, a random set of documents was
selected. These documents were used to generate 73 questions
used in testing. The questions covered data in text tables, html
tables and prose.
The experiment was designed to compare a QA system based on
unaltered web files with a QA system based on files processed
into smaller information units as described above. The original
documents were indexed into an Inquery database (Unprocessed
DB). Separately, the same documents were processed for text and
html tables, and the remaining text sectioned into smaller units.
These processed documents were also indexed into an Inquery
database (QuASM). (These are the same DB used in the text and
HTML table experiments.)
The 73 questions were spilt into groups of ~15 for batch runs.
Each batch run was timed to see if there was an improvement in
efficiency.
Table 9. Experimental Results, QuASM vs. Unprocessed Data

Test Questions Unprocessed
DB

QuASM

MRR .209 .253

Not Found 54 50

% Not Found 74.0% 68.5%

Avg. CPU Time per Question
(in seconds)

137.5 8.1

6.1 Discussion
The goal of our work is to improve performance and efficiency
when answering questions from web data. Our results indicate a
first step in that direction. MRR was increased, while the average
time to process a question was lowered.
Two factors make this a task more difficult than a TREC
experiment. The emphasis on answering questions of a statistical
nature, where the answers require finding a named entity,
increases the difficulty of the search, especially when the entity is
not in the middle of a sentence (in a table, for example). The data
is from a more heterogeneous environment and unlike news
articles; there is little consistency in format. These factors lead to
lower scores versus systems reported in TREC QA tracks.
Processing documents into smaller units had a dramatic effect on
efficiency. The size of web documents varies greatly, from a few
bytes to millions of bytes. The action of table extraction and
document sectioning reduce this variability and ensure the answer
identifier has a reasonable amount of information to search. Time
to process the average question was reduced by better than a
factor of sixteen.

While the improvement in MRR was modest, there are indications
that this score can be raised. Of the questions that had a correct
answer in the top five, thirteen were answered by both systems. It
would appear processing tables and prose both enhances and
diminishes the information available for finding answers.
As shown in the experiments on text and HTML tables, there is an
information gain through table transformations. Sectioning can
also lead to an information gain. The question, “What is the
molecular weight of calcium cyanamide?” is answered correctly
by QuASM but incorrectly by the previous system, despite the
fact that the correct document is retrieved from the unprocessed
DB. The original document has a number of blank lines between
the weight (80.11) and the units (g/mol). This is not proximate
enough for the entity identifier to correctly tag 80.11 as a MASS.
When the document is sectioned, however, the blank lines are
stripped away, and the entity identifier correctly labels the weight.
The question, “What percent of watersheds does the EPA want to
restore by 2005?” sheds light on how information is diminished
by the processing. In the original document containing the
answer, the query term percent does not appear near the answer
to the question (a % is used). The term percent does appear later
in the document. When the document is sectioned, the term
percent is lost entirely to the small unit containing the answer.
Other sectioned documents enhance the term frequency (tf) of
EPA by repeating it in the metadata, increasing the score for
retrieval. These two factors lead to the failure to retrieve the
sectioned document containing the answer.
We have postulated that a two stage retrieval system could solve
this problem. Documents are sectioned, but the sections remain in
a single document for retrieval by the search engine. A second
function then determines the best sections for the query, and only
those are searched for an answer. This will be part of our future
work.
The question classifier correctly identified 51 of the 73 questions
(70%). Some incorrectly classified questions have pointed to
deficiencies in the regular expressions for these classes, which
underscores the need to develop better models for these
classifications. For example, the question "What is the surface
area of Lake Ontario?" is classified as a LOCATION, due to the
language model giving that class a higher score.

7. FUTURE WORK
This implementation of QuASM used query formation heuristics
based on previous work. This makes initial IR sensitive to how
the question is formed. For example, in the test on text tables, if
we phrase the question as, “How many acres were planted with
onions in the spring of 1997in AZ?” the query generated treats
“spring of 1997” as a phrase, and fails to find the table documents
since terms are spread throughout the cell metadata. One area of
research will be to change query generation to create more table
friendly queries.
HTML and text table algorithms currently assume the first
column contains the row name. Often, the row name or label is
spread over a few columns. Better row and column names should
give a boost to performance.
The heuristics that locate an answer in a document is another area
of future study. One of the changes we made to this part of the
system was to look for the last name entity match when the
document represents a table cell (since we know the data is at the

end of the document). Improving these heuristics for this task
will be a continuing area of research.

8. ACKNOWLEDGMENTS
This work was supported in part by the Center for
Intelligent Information Retrieval and in part by NSF grant
#EIA-9983215.
The authors would like to thank Alvaro Bolivar for designing the
web interface, David Fisher and Steve Harding for advice and
technical support, R. Manmatha for his ideas on smoothing, and
Andre Gauthier for the disk space.
Any opinions, findings and conclusions or recommendations
expressed in this material are the author(s) and do not necessarily
reflect those of the sponsor.

9. REFERENCES
[1] Aslam, J. and Montague, M. Bayes optimal

metasearch: a probabilistic model for combining the
results. SIGIR 2000, pages 379-381

[2] Bikel D., Miller S., Schwartz R. and Weischedel R. Nymble:
a high performance learning namefinder, Proceeding of the
fifth Conference on Applied Language Processing,
Washington, USA, 1997

[3] Callan, J.P., Croft, W.B., and Harding, S.M. The INQUERY
retrieval system. In Proceedings of the 3rd International

Conference on Database and Expert Systems Applications
(1992), pages 78-83.

[4] Finn, A., Kushmerick, N. & Smyth, B. Fact or fiction:
Content classification for digital libraries. Joint DELOS-NSF
Workshop on Personalisation and Recommender Systems in
Digital Libraries (Dublin), 2001.

[5] Li, X. and Croft, W.B. Evaluating Question Answering
Techniques in Chinese. Presented as a poster at HLT 2001, in
Notebook Proceedings, pages. 201-206.

[6] Ponte, J.M. and Croft, W.B. A Language Modeling
Approach to Information Retrieval. In Proceedings of SIGIR
’98, pages 275-281. Melbourne, Australia, 1998.

[7] Pyreddy, P. and Croft, W.B. TINTIN: A System for
Retrieval in Text Tables. In Proceedings of the Second
International Conference on Digital Libraries, pages 193-
200, 1997.

[8] Saari, D. and Valgones, F. Geometry, Voting and Paradoxes.
In Mathematics Magazine, pages 243-259, October,
1998.

[9] Song, F. and Croft, W.B. A General Language Model for
Information Retrieval. In Proceedings on the 22nd Annual
International ACM SIGIR Conference, pages 279-280, 1999.

[10] Voorhees, E. The Trec-8 Question Answering Track Report.
In Proceedings of TREC-8, 1999.

