
Question Classification Using Language Modeling

Wei Li

Center for Intelligent Information Retrieval

Department of Computer Science

University of Massachusetts, Amherst, MA 01003

ABSTRACT

Question classification assigns a particular

class to a question based on the type of answer
entity the question represents. In this report, I

present two approaches: the traditional regular
expression model, which is both efficient and
effective for some questions but insufficient

when dealing with others; and the language

model, a probabilistic approach to solving the
problem. Two types of language models have
been constructed: unigram models and bigram

models. Several issues are explored, such as

how to smooth the probabilities and how to
combine the two types of mode ls. As expected,

the language model outperforms the regular
expression model. An even better result can be
achieved by combining the two approaches

together.

1. INTRODUCTION
Question answering is a variant of information

retrieval, which retrieves specific information

rather than documents. A QA system takes a
natural language question as input, transforms

the question into a query and forwards it to an
IR module. When a set of relevant documents
is retrieved, the QA system extracts an answer

for this question. There are different ways of

identifying answers. One of them makes use
of a predefined set of entity classes. Given a
particular question, the QA system classifies it

into those classes based on the type of entity it

is looking for, identifies entity instances in the
documents, and selects the most likely one

from all the entities with the same class as the
question. So this approach involves two tasks.

First, we should be able to identify named

entities. This is a problem in the Information

Extraction area [1], and we can make use of
an existing entity tagger. Second, we need to

classify questions into different classes, and
this is the problem I addressed here.

One approach to question classification is to

determine the question type based on the
sentence structure and key words, which
represent syntactic and semantic information

respectively. A set of patterns are defined and

hard-coded, often with regular expressions.
When a new question comes, it is matched

against those patterns to find the class it
belongs to. As the pattern set gets more
complete and accurate, the performance of this

approach will become better. So to improve

this model, we always have the problem of
defining more and more question patterns.

To make the process of question classification

more dynamic and automatic, we make use of
language modeling, a statistical approach that

has gained much attention recently in the IR
area [2]. In this approach, the models can be
automatically constructed from the training set,

and its performance is competitive to other

approaches. As for the QA task, we build one
language model for every class of questions
based on the training data set. To classify a

question, the probability of generating it is

calculated for each class based on its language
model, and the highest probability determines

the classification.

For the rest of this report, I will present the
implementation of these two approaches and

discuss their performance, with the focus on
language modeling. In section 2, I will talk
about two preparation steps: defining question

classes and preprocessing questions before

classification; section 3 is about the regular
expression model: pros and cons; section 4
discusses language models two experiments

and combination with the regular expression

model; section 5 examines performance in
different cases; section 6 introduces related

work and section 7 is the conclusion.

2. PREPARATION

Defining question classes is the first step in

classification. One important principal when
defining these classes is that all the classes we
use to mark questions should be recognizable

as entities in the documents. This is because

question classification is not an independent
job, but a component for the QA task. Two

kinds of classes are used. Some entity classes
are naturally related to question classes, such
as person, location, number and so on. Other

classes are created for particular types of

questions. For example, a frequently asked
type of question is: “Who is sb.?” Typically
people want to find quite detailed information

about this person with this question. We don’t

have a good object class corresponding to this
type of question, so we use the term biography

to denote the type of answers for this question
and add it into the question class set.

Another preprocessing step is to re -form the

question to make its underlying pattern clearer.
For example, the “Who is sb.?” questions
always ask for a biography entity no matter

what person’s name appears in the question. In

other words, the important thing is to know
that this question contains a person entity. We

do not care about the specific entity. So we
can safely change questions of this pattern into

“Who is <PERSON>?” without losing any
information useful in determining the question

type. What we actually do is to run an entity
recognizer, the major part of which is
IdentiFinder [3], against questions and replace

all entities with their entity class names.

3. REGULAR EXPRESSION MODEL

The basic idea of this model is to determine a

question type based on the sentence pattern,

which includes the interrogative word, certain
sequences of words and some representative

terms of particular question classes. Those
patterns are defined with regular expressions.
For example, a question starting with “how

many” is very likely to be looking for a

number, and a question starting with “where”
is probably a location question. For a “what”
question, we can look for some key words to

make our decision. For example, “agency”,

“company” and “university” are related to the
organization class.

Here are some regular expressions used for
certain classes of questions:
Questions that start with “what” and ask for a

person entity:
?)|...||)|(|?|(ssenatorteacherieyattorneactresseactor

Questions that start with “how” and ask for a
length entity:

)|(*.||||| radiusdiameterbigclosefarwideshortlong

This approach is very efficient and effective

on some question patterns, such as “how
many” questions. It seldom makes mistakes
for this type of question. But there are difficult

cases that it can hardly handle. For instance,

the answer to a “who” question might be a
person, an organization, and even a location .
Let’s take the question “Who is the largest

producer of laptop computers in the world?”

as an example. People can easily tell this is
asking for an organization, but our program

cannot decide its type just based on the
question pattern. We need additional semantic

information, which is not available in the
regular expression model. The same problem

occurs with the “where” questions. Many
“where” questions are classified as location
while they are actually organization questions.

The only way to solve this kind of problem is

to build a more complete and accurate pattern
set, which involves a great deal of human
work. Instead of building a larger and larger

question pattern model, we turned to a more

automatic and flexible approach: language
modeling.

4. LANGUAGE MODEL
The basic idea of language modeling is that

every piece of text can be viewed as being

generated from a language model. If we have
two pieces of text, we can define the degree of
relevance between them as the probability that

they are generated by the same language

model. In the information retrieval area, we
build one language model for each document.

Given a query, we can decide whether a
document is relevant based on the probability
that its language model generates such a query.

Suppose that the query Q is composed of n

tokens: w1, w2, …wn, and we can calculate the
probability as:

),...,,,|(*...*),|(*)|()|(121121 −= nn wwwDwPwDwPDwPDQP

So to build the language model on a document,

we need to estimate those term probabilities.

Usually, a k-gram assumption is made to

simplify the estimation:
),...,,,|(),...,,,|(1)2()1(121 −−−−−− = ikikiiii wwwDwPwwwDwP

It means that the probability that wi occurs in

the document D will only depend on the

preceding (k-1) tokens [4].

Similar ideas have been introduced into the
question classification task. We build one

language model for each category C of sample
questions. When a new question Q comes, we

calculate the probability P(Q|C) for each C
and pick the one with the highest probability.
The major advantage of language model over

the regular expression model is its flexibility.

The regular expression model is composed of
hard-coded rules, which need to be modified
to handle new cases. The language model,

however, can be automatically maintained.

And we believe that, with larger sets of
training data, the performance of the language

model can be improved.

Two experiments have been conducted, and

both of them include two language models:

unigram and bigram models. The difference
between them is the smoothing technique and
the combination method. However, the two

experiments provide similar performance. The

details will be discussed below.

4.1 EXPERIMENT 1

The unigram and bigram models are the two
simplest to construct, where

)|(*...*)|(*)|()|(21 CwPCwPCwPCQP n=

and

),|(*...*),|(*)|()|(1121 −= nn wCwPwCwPCwPCQP

respectively.

For the unigram model, we need to estimate
the probability of a token w occurring in the
category C , P(w|C) . Intuitively, it should be

proportional to the term frequency F(w|C).

The tricky part is how to deal with tokens that
never occurred in this category. We don’t want
them to have a probability of 0, so some

probabilities must be assigned to them and the

probabilities for other words will be adjusted
accordingly. This kind of smoothing can be

done in several ways, and for this experiment,
we used an absolute discount method. A small

constant amount of probabilities is assigned to
all 0-occurrence tokens, and the probabilities

for other tokens will be subtracted accordingly
[4]. Here is the formula:
Let Total0(C) be the number of 0-occurrence

tokens in category C and S be the smoothing

discount. So we have:

=)|(CwP

)1(*)|(SCwF − if 0)|(≠CwF

)(0/ CTotalS if 0)|(=CwF

The bigram model is built similarly, where we

need to estimate the conditional probability

P(w 2|C,w 1). Let Total0(C,w1) be the number of
tokens that never occur after w1 in category C ,
and S be the smoothing discount. There are

two cases to consider:

Case 1: F(w 1|C) ≠ 0, where the probabilities

for all unseen w2 is S . So we have:

=),|(12 wCwP

)1(*),|(12 SwCwF − if 0),|(12 ≠wCwF

),(0/ 1wCTotalS if 0),|(12 =wCwF

Case 2: F(w 1|C) = 0, where all w2 are unseen.

So P(w2|C,w1) should be the same for every
w2, which is calculated as follows:

),(0/1),|(112 wCTotalwCwP =

To make the estimation more accurate, we try

to combine the two models together. Linear
combination is a straightforward way, where

)|()1()|()|(CQPCQPCQP bu λλ −+=

Different values for λ have been tested, and
the best one is chosen.

4.2 EXPERIMENT 2

In this experiment, we still build the unigram
and bigram models. But a different smoothing

technique and combination method are used.

For the unigram model, we make use of

Good-Turing [5] to estimate the probabilities

for tokens that occur small numbers of times
or never occur. According to the Good-Turing
estimate, P(w|C) should have the following

structure:

=)|(CwP

)|(CwFα if MCwCount >)|(

iq if iCwCount =)|(and Mi ≤≤0

The choices of α , iq and M must satisfy:

1)|(=∑
ω

CwP and ii qq <−1

There are several ways to derive the formula,

and the result is as follows:

Let N be the size of the corpus, and n i(C) be

the number of tokens that occur i times in C .

Actually, we should use E(n i(C)), the expected
value for ni(C). But this value is not available,
so we can only use the directly observed one

instead.

=)|(CwP

)|()
)(

)(
(1 CwF

Cin
Cin

Mi i

Mi i

∑
∑

>

+>

 if MCwCount >)|(

)1)()(
)((1

N
i

Cn
Cn

i

i ++

if iCwCount =)|(and Mi ≤≤0

M is the largest number that satisfies:

)()(
1

))((11
2 CnCn

i
i

Cn iii +−

+
< Mi ,...,1=

and

∑
∑

>

+>+ <
Mi i

Mi i

M

M

Cin

Cin

Cn
Cn

)(

)(

)(
)(11

While the unigram model is built based on the
Good-Turing estimate, a Back-Off model [4]

is developed for bigrams. The basic idea of the

Back-Off model is that P(w2|C,w1) should be
proportional to F(w2|C,w1) only when the

occurrence of (w 1, w2) in C is larger than a
certain number. Otherwise, we just use P(w 2|C)
to estimate P(w 2|C,w 1). Here’s the formula:

=),|(12 wCwP

),|(12 wCwFα if KwCwCount >),|(12

)|(2 CwPβ if KwCwCount ≤),|(12

a is a discount to subtract the probabilities

from large-occurrence bigrams, and we used
the same discount as in the Good-Turing. ß is
chosen for normalization:

∑ =
2

1),|(12w
wCwP

It is a function of w1.
K should be a small number, and we found

that 0 provides the best performance for our

data.

The Back-Off model naturally combines the
unigram and bigram models. So to calculate
the probability P(Q|C), we can just use the

bigram result, i.e.,

)|()|(CQPCQP b=

4.3 COMBINED WITH RE MODEL

Although the language model seems more
attractive, it still has drawbacks. One of them

is unpredictability. For example, as we do not
have any restriction on the classification result

of the language model, it is possible to classify
a question that starts with “how many” as a

person question. On the other hand, this kind
of pattern is easy to capture by the regular
expression model. So we tried to combine

them to improve performance. The language

model is modified to generate a ranked list of
categories based on the belief score, and the
regular expression model returns all categories

compatible with the question pattern. The

combination policy is that the category with
the highest rank that is accepted by the regular

expression model is the final answer. In this
way, the mistake mentioned above will be
avoided.

5. EVALUATION
A set of 693 TREC questions has been used
for evaluation. They belong to the following

classes:

Class Name # of questions

PERSON 116

LOCATION 126

DATE 73

ORGANIZATION 64

NUMBER 74

OBJECT 121

REFERENCE 119

When testing the language models, we need a

training set to build the models. So we did the
experiments in the following way. The whole

question set was randomly divided into five

equally large disjoint parts. One part is chosen
to be the test data, while the other four serve

as the training data. Accuracy is calculated by
comparing the classification result with the

manually classified result. The same process
has been repeated five times, each time a

different test set is chosen. And the average

accuracy is used to measure the performance.

Here are the test results for all the models
discussed above:

Model Accuracy

Regular Expression Model only 57.57%

LM only 81.54%

Experiment1 LM combined with
RE Model

85.43%

LM only 80.96%

Experiment2 LM combined with
RE Model

83.56%

The result shows that the language model
performs better than the regular expression

model, and the performance can be further

improved if we combine them together. A little
surprisingly, the language model in the first

experiment outperforms the second one. We

were expecting the reverse result since both

the Good -Turing Estimate and the Back-Off
Model have been shown to perform well in
practice. One possible explanation is that our

data set is insufficient to apply Good-Turing
Estimate. As discussed above, we used ni(C)

in places of E(ni(C)). These two values should

be close when the data set is large enough. But
in our case, where there are only around 700

questions, this estimation might be quite bad.

6. RELATED WORK
Question classification is a common part in
QA systems. The basic idea is the same: to

classify questions and identify corresponding
entities in documents, but it can be achieved in

different ways. Many systems use techniques

that are similar to the regular expression
model just mentioned.

MURAX is an earlier QA system that makes

use of an online encyclopedia [6]. Its heuristic
is simple: to classify questions based on the
interrogative words. And for “what” questions,

which may ask for several types of entities,
the encyclopedia is searched for the noun

phrase after “what” and the question type is
determined accordingly.

Another QA system using named entities and
question classification is the GuruQA system

described by Prager [7]. It maintains a set of

patterns and compares questions with them to
determine their types. The question type is
used as a query term and the documents have

been processed to add types to the named

entities. In this way, the document containing
a named entity with the same type of the

question is more likely to be retrieved.

7. CONCLUSION

Question answering differs from information

retrieval in that it needs to retrieve specific
fact information rather than whole documents.
This might involve excessive computation if

there is no guidance for possible answers. By

classifying questions and named entities into
the same set of classes, we can eliminate a

large amount of irrelevant information.

This report has investigated two approaches

for question classification: regular expression

model and language modeling. The regular
expression model is a simplistic approach and
has been put into practice in many systems.

Language modeling is a probabilistic approach

imported from IR systems. The models are
constructed in a more flexible and automatic

way. We have built two types of models: a
linear combination of unigram and bigram
models with an absolute-discount smoothing

technique; and a Back-Off bigram model with

Good-Turing estimate.

The test result shows that the language model

outperforms the regular expression model.

And an even better result can be achieved
when the two models are combined together.

Although Good-Turing and Back-Off models
have been proved effective in practice, the

second language model doesn’t improve the
performance over the first one.

ACKOWLEDGMENTS
This material is based on work supported in

part by the Center for Intelligent Information

Retrieval and in part by NSF grant
#EIA-9983215.
The author would like to thank David Pinto,

Bruce Croft, Andres Corrada-Emmanuel and

David Fisher for their help and support.
Any opinion, findings and conclusions or

recommendations expressed in this material
are the authors and do not necessarily reflect
those of the sponsors.

REFERENCES
[1] R. Srihari and W. Li, “Information
Extraction Supported Question Answering”.

[2] J. M. Ponte and W. B. Croft, “A Language

Modeling Approach to Information Retrieval”.
[3] BBN official site about the IdentiFinder:

http://www.bbn.com/speech/identifinder.html.
[4] C. Manning, H. Schutze and H. Schutze,
“Foundations of Statistical Natural Language

Processing”.

[5] F. Jelinek, “Statistical Methods for Speech
Recognition”.
[6] J. Kupiec, “MURAX: A Robust Linguistic

Approach For Question Answering Using An

On-Line Encyclopedia”.
[7] J. Prager, E. Brown and A. Coden,

“Question-Answering by Predicative
Annotation”.

