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ABSTRACT 
 
The most important query words in information 
retrieval are often proper names. In cross language 
retrieval a user issues a query in one language to 
search a collection in a different language.  If the two 
languages use the same alphabet, the same proper 
names can be found in either language.  However, if 
the two languages use different alphabets, the names 
must be transliterated or rendered in the other 
alphabet. In this paper, we present a method for 
automatically learning a transliteration model from a 
sample of name pairs in two languages.  We evaluate 
the model and compare three versions for English to 
Arabic transliteration.   

1. INTRODUCTION 
 

In this paper, we present and evaluate a simple 
statistical technique for English to Arabic 
transliteration. This technique requires no heuristics 
or linguistic knowledge of either language. This 
technique learns translation probabilities between 
English and Arabic characters from a training sample 
of pairs of transliterated words from the two 
languages. Based on these probabilities, it generates 
Arabic transliterations for unknown English words.  
We compare a context-dependent version of the 
model with a context-independent version. This 
technique could be used for any language pair. 

Transliteration is the representation of a word or 
phrase in the closest corresponding letters or 
characters of a different alphabet or language so that 
the pronunciation is as close as possible to the 
original word or phrase. The method of transliteration 

depends on the characteristics of the source and target 
languages (in this case English and Arabic) and on 
the larger purpose the transliterator is meant to serve. 
Transliteration techniques are useful in several areas 
including machine translation and information 
retrieval. 

It is commonly observed that proper names are 
important query words in information retrieval. For 
example, in the list of queries for TREC 2001 cross 
language track [6], all 25 queries contained proper 
names. In cross language retrieval, a user queries a 
system in one language to find documents in a 
different language. There are three common 
approaches to this problem:  machine translation of 
the query, dictionary-based translation and expansion 
of the query, and retrieval using a cross-lingual 
language model.  For all of these approaches, if a 
query word is not found in the dictionary or model, 
one needs a way to render the unknown word. When 
the query language and the document language share 
the same alphabet it is sufficient to use the word from 
the query language as is. However, when the two 
languages have different alphabets, the best strategy 
is to transliterate the word from the query language 
alphabet to the document language alphabet.  

We have been working on English-Arabic cross 
language retrieval, using the TREC 2001 corpus of 
383,872 Arabic documents from Agence France 
Presse, covering the years 1994-2000.  Newspapers 
contain many proper names that are not found in 
bilingual dictionaries.  Here are a few examples from 
the TREC corpus (see the Appendix for an 
explanation of the phonetic notation used in the third 
column): 

 



New York � (nyü yürk) 

Wall Street � (üal strEt) 

Sarah Ferguson � (sar-& fErgsün) 

 

These examples show that transliteration is 
commonly used for proper names, even when the 
words could be translated. “Wall Street” in Arabic 
could be represented by translating “wall” and 
“street,” but it is not. 

In the case of English-to-Arabic transliteration, an 
English word can have more than one equivalent in 
Arabic. There are several reason for this 
indeterminacy:   

1. The irregularity of English spelling 

2. A name can have more than one correct 
spelling, for example “Anderson” and 
“Andersen”, or alternative pronunciations, for 
example the name “Dubois” can be, dü-'bois 
or dü-'bwä. Each of these pronunciations has 
a different spelling in Arabic -  “� “, and 
“ “, respectively. 

3. The differences in phonetic inventories of the 
two languages – for example, Arabic has no p 
sound, but it has two different t’s. 

4. Short vowels are commonly not represented 
in Arabic orthography.  In transliterating an 
English word with short vowels, one 
approach would be to leave the short vowels 
out of the Arabic transliteration; another 
would be to write the words using Arabic 
long vowels.  Both approaches are commonly 
found. 

For example, we found four different versions of the 
name “Clinton” with little effort. Two different 
translations were found in the TREC2001 corpus: 

 

Clinton (1)�  (klEntün) 

 (2)�  (klEntn) 

 

Two web-based machine-translation engines [1][2] 
and an Arabic Proper Names list available on the web 
[3] each give a different (single) translation of  
“Clinton”: 

 

Clinton (3)�  (klntn) 

 (4)�  (klEntün) 

 (5) � (klEnTün) 

�

While these are all reasonable transliterations of the 
word “Clinton”, only one of the second group, (4), 
matches a form of the word found in the TREC 
corpus. If we had chosen either of the other two 
resources as sources for transliterations in cross-
language queries, we would have failed to find 
documents mentioning Clinton.  All three sources 
would have failed to find the documents that used 
spelling (2). 

This example makes it clear that a transliterator for 
information retrieval must generate multiple 
alternative Arabic spellings, in order to cover the 
variations that are found in Arabic text.   

2. PREVIOUS WORK 
Most prior work in Arabic-related transliteration has 
been for the purpose of machine translation.  Arbabi 
et al. [4] developed a hybrid neural network and 
knowledge-based system to generate multiple English 
spellings for Arabic personal names.  Knight and 
Graehl [8] developed a five stage statistical model to 
do back transliteration, that is, recover the original 
English name from its transliteration into Japanese 
Katakana.  Stalls and Knight [10] adapted this 
approach for back transliteration from Arabic to 
English of English names. These systems are very 
complex, involving a great deal of human design, 
probably because they were dealing with a more 
difficult problem than that of forward transliteration. 
However, as the Clinton example reveals, forward 
transliteration for information retrieval is not as  
simple as the problem of forward transliteration for 
machine translation, in which one reasonable 
transliteration is good enough.   

 Darwish et al described a hand-crafted English to 
Arabic transliteration system [5]. Each English letter  
was mapped to the closest sounding Arabic letter or 
letters. These mappings were decided manually. Most 
English letters were given a single Arabic equivalent; 
a few had more than one.  Darwish’s system has the 
same purpose as ours.  However, our system differs in 
that it learns the mappings automatically from data, 
one version of our system can take into account 
phonetic context, and we attempt to evaluate the 



performance of our transliterator.  Darwish presents 
no evaluation of his transliteration system. 

 

3. STATISTICAL TRANSLITERATION 
3.1 Monogram Transliteration Model 
The transliterator is based upon a generative 
statistical model of how a string of English characters 
is converted to Arabic characters.  In its simplest 
form, the Arabic string is generated by converting 
individual English characters (monograms).  The 
model is a set of probability distributions over 
English and Arabic characters.  Each English 
character e can be transliterated to any Arabic 
character ai with probability P(ai | e).  In addition, the 
English and Arabic character inventories can each 
include NULL, which allow the generation of Arabic 
strings with a different length than the English 
strings. In practice, most of the probabilities are zero, 
or small enough to be considered zero.  For example, 
the probability distribution for the character “s” in 
English might look like this: 

P(�  |s) = .60  

P(  | s) = .30  

P(  | s) = .07  

P(  | s) = .03  

 

The basic issues for such a model are: 

1. How to estimate these probabilities, i.e., how 
to train the model.  There are (m+1) (n+1) 
probabilities to estimate, where m is the 
number of English characters (m+1 includes 
NULL) and n is the number of Arabic 
characters.   

2. How to use the model to generate new 
transliterations. 

Using the model generatively is very straightforward.  
One can either generate a single transliteration by 
taking the highest probability transliteration for each 
character, or by taking one transliteration for each 
character at random, according to the character 
transliteration probabilities.  One can generate all the 
possible transliterations using all the mappings with 
nonzero probabilities.  One can compute the 
probability for the whole transliteration as the product 
of individual character probabilities, rank order them, 

and then select a subset based on some probability 
threshold, or to take a fixed number of top ranking 
transliterations.   

The first issue, of estimating the probabilities, is also 
fairly straightforward.  In order to estimate P(ai | e), 
we need a training sample of English-Arabic pairs in 
which English and Arabic characters are aligned so 
that we can count up the number of times ai is aligned 
with e, and divide by the total number of times e 
occurs in the aligned training sample.  We discuss 
alignment in below in section 3.3. 

A probability threshold can be applied, so that small 
probabilities can be set to zero, greatly reducing the 
number of transliterations possible for a given 
English character e.   

The monogram model works well for a surprisingly 
large proportion of English proper nouns, such as   
the following two examples in which a character-by-
character transliteration gives the correct answer. 

 

New York �  (nyü yürk) 

Colin  (külEn) 

 

However, many other English to Arabic 
transliterations cannot be handled with monograms.   

3.2 Bigram Transliteration Model 
A more sophisticated model would have probabilities 
for character pairs (bigrams) rather than single 
characters.   

For example, the English character “x” as in “Ajax” 
has no single Arabic character equivalent. It is usually 
transliterated as a sequence of two Arabic characters, 
kaaf and seen, “� ”. Conversely, two English 
characters can be transliterated as a single Arabic 
character.  The English bigram “sh” is usually 
mapped to the Arabic character sheen, “ ”, as in: 

 

Bush  (büS)�

Parshalville � (barSalfEl)�

 

There is also the more complex case where two 
English characters, e1 and e2, when they appear as a 
bigram, e1e2, map to a specific sequence of Arabic 
characters, a1a2. For example, “c” usually maps to 



kaaf, “ ”, and “h” usually maps to ha, “ ” or hha, 
“ ”. However, when they appear as “ch”, they are 
transliterated as “ ” (tS) as in . 

Belchertown  (bltSrtaün) 

Smidovich  (smEdüfEtS) 

Bigrams can address these problems.  However, such 
a model has many more parameters.  There are 
potentially (m+1)2 (n+1)2 probabilities to estimate, 
though in practice, there are far fewer. This is 
because not all the (m+1)2 (n+1)2 possible bigrams 
occur in Arabic text.  

3.3 Alignment 
Training the model requires an aligned training 
sample so that one can count up the number of times 
each character e (or bigram) is aligned with each 
Arabic character ai.   

We used GIZA++ [7] to align English words with 
Arabic words. GIZA++ is an extension of the 
program GIZA, which is part of the SMT toolkit 
EGYPT. Its operation is described by Och and Ney 
[9].  

GIZA++ was designed for word alignment of 
sentence aligned parallel corpora.  We used it to do 
character alignment of word-aligned pairs. Alignment 
worked very well.  A small sample of alignments was 
examined manually. All of the word-pairs in this 
sample were correctly aligned. 

Here is an example of how GIZA works: 

  Barnes   (barnz)�

GIZA++ aligns these two words as: 

B � �

A �

R �

N  

E NULL 

S  

In addition to GIZA++ alignment, we also considered 
an “unaligned” baseline in which no alignment is 
performed.  Details are described in the next section.�

4. EXPERIMENTS 
 

The data we used to train and test the system was a 
parallel list of 148,599 English and Arabic proper 

nouns obtained from NMSU [3]. The list contained 
both person names and place names.  

Four training sets of size 5,000, 10,000, 50,000, and 
100,000 were randomly selected from the list.   

Five sets of 200 randomly selected words that did not 
occur in the training sets were used for testing.  The 
results were averaged across these five sets. 

Three experimental conditions were compared: 

1. Monograms, unaligned 

2. Monograms, aligned 

3. Bigrams, aligned 

 

4.1 Monogram Conditions 
For the “monograms” conditions, the model was a 
probability distribution over context-independent 
characters.  To train the model, character mappings 
were counted.  For each English character e, and each 
Arabic character a, a translation probability P(a|e) 
was obtained by counting up the number of times a 
was aligned with e in the training set and dividing by 
the total number of times e occurred in the training 
set.   Probabilities below 0.05 were set to zero.   

In the “unaligned” condition, the training set was 
restricted to pairs where the English word and its 
corresponding Arabic word had the same number of 
characters.  We assumed a 1-1 correspondence, and 
aligned each character in the English word with the 
character in the same position of the Arabic word.  In 
the unaligned condition, each English character 
mapped onto exactly one Arabic character in the word 
pairs.   

In the “aligned” condition, we used the alignment tool 
GIZA++ for character alignment on corresponding 
words of the training set. From these aligned data, we 
could count the number of times an English character 
was mapped onto an Arabic character (or NULL), and 
derive probabilities once the matrix was filled in.   

4.2 Bigram Condition 
In the “bigrams” condition, English bigrams, or word 
pairs e1e2  were mapped onto Arabic characters.  We 
did not map English bigrams onto Arabic bigrams, 
because we needed to control the size of the model.  
The bigram e1e2 should be thought of as e2 in the 
context of e1.  The training and testing procedures 
were very similar to that described for monograms, 



except that an extra step was carried out to represent 
the words as context dependent characters.   

An example illustrates this step.  The word “Laos” is 
shown broken into bigrams.  Note that the symbol “#” 
indicates the beginning of the word, and the pair “#L” 
indicates “L” at the beginning of a word.  Word ends 
were not represented. 

 Laos ������������ OS 

In other words, “Laos” is made up of 4 bigrams, 
which can be thought of as “word initial L”,  “A in 
the context of (or following) L, “O in the context of 
A,” and “S in the context of O.” 

GIZA++ is used to align these bigrams with the 
Arabic characters that make up the transliterations for 
all the word pairs in the training set.  From these 
alignments, counts are obtained for all the e1e2 a 
mappings and converted to probabilities as before. 

 

5. EVALUATION 
The same procedure was used to evaluate all three 
models. After the model was trained, it was tested by 
generating all possible Arabic transliterations for each 
word in each test set.  In the case of monograms, a 
probability for each transliteration was obtained by 
multiplying the individual character mapping 
probabilities.  The alternatives were then ranked by 
this probability.  Test words were scored in two 
different ways.  One method considered only the top 
scoring transliteration.  A test item was considered 
correctly transliterated if the top ranked 
transliteration matched the “official” version from the 
Arabic Proper Names Dictionary.  The other method 
considered all the transliterations.  The test item was 
considered correct if the “official” answer occurred 
anywhere in the list of alternative transliterations.  
The second method is more realistic.  In using the 
transliterator in an operational IR system we would 
actually use many alternative transliterations rather 
than the top ranked choice. 

In the case of bigrams, in order to generate a 
transliteration for an unknown or test English word, 
the English word is first represented in bigrams, and 
transliterations are generated and scored for this 
bigram representation using the bigram probability 
model in exactly the same way that we did this for 
monograms. 

 

The final accuracy reported for each condition was 
obtained by averaging the accuracy scores (percent 
correct) from each of five test sets. 

Table 1 shows the results for all three conditions, all 
training set sizes, and both scoring methods. The 
results for one of the scoring methods, where all 
transliterations are considered, are shown in Figure 1. 

 

Table 1: Transliteration Accuracy 
Training set size in thousands  Scoring 

Method 5 10 50 

1 25.6 21.5 25.6 Monograms 

unaligned All 30.2 26.6 30.6 

1 34 35.1 36 Monograms 

aligned All 53.5 54.4 59.4 

1 40.6 41.1 43.4 Bigrams 

aligned All 70.3 77.3 81.1 

 

It can be seen clearly from the above table that the 
accuracy of the model increases with the size of the 
training set in both aligned conditions. Aligned 
training is more effective than unaligned training, and 
bigrams are more effective than monograms.  Not 
surprisingly, the correct answer is obtained more 
often when all the alternative transliterations are 
accepted than when only the top-ranked 
transliteration is accepted. 
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Figure 1:  Transliteration accuracy as a function of training 
set size 



6. CONCLUSIONS 
We have demonstrated a simple transliteration system 
that works well, given large amounts of training data.  
Not surprisingly, context-dependent characters are 
better than context independent characters, and the 
system gets better with more training data. 

We have so far evaluated this system with respect to 
how well it can generate correct Arabic 
transliterations from the Arabic Proper Names 
dictionary for a test set of English words, after 
training on a non-overlapping set of word-pairs from 
the same source.  However, the main requirement for 
information retrieval is that the transliterator find the 
spellings that are actually used in the Arabic 
collection being searched. 

We are currently building a test set of names that 
occur in the TREC 2001 corpus so we can address the 
following questions: 

 

•  How often does the transliterator produce 
Arabic spellings that match the form found in 
the corpus? 

•  Are the alternate spellings harmless?  Do they 
not occur in the collection, or do they 
erroneously match other words in the 
documents? 

•  What is the number of transliterations the 
system should output to achieve the best 
tradeoff between the need to get the correct 
string(s) on the list, but not get strings that 
match other words? 

•  Is it better to train on multiple sources of 
word pairs (like those obtained from the 
transliterators in the online machine 
translation systems) rather than from a single 
source.  

 

We have demonstrated a model for transliteration 
which is purely statistical, and uses no heuristics or 
hand-tuning. This approach could be used for many 
different language pairs. 

 

 

 

 

7. APPENDIX 
 

Phonetic notation used for examples 

Symbol Pronunciation 

b, f, k, l, m, n, 
r, s, z 

as in normal English 

y as “y” in “yellow” 

ü as “u” in “rule” 

a as “a” in “large” 

S as “s” in “sugar” 

E as “e” in “legal” 

& as “u” in “rule” 

g, t, d, T 
These sounds are not used in 
English. They are velarized forms of 
the English letters. 
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