
English to Arabic Transliteration for Information Retrieval:
A Statistical Approach

Nasreen AbdulJaleel and Leah S. Larkey

Center for Intelligent Information Retrieval
Computer Science, University of Massachusetts

140 Governors Drive

Amherst, MA 01003-4610
1-413-545-

{nasreen, larkey}@cs.umass.edu

ABSTRACT

The most important query words in information
retrieval are often proper names. In cross language
retrieval a user issues a query in one language to
search a collection in a different language. If the two
languages use the same alphabet, the same proper
names can be found in either language. However, if
the two languages use different alphabets, the names
must be transliterated or rendered in the other
alphabet. In this paper, we present a method for
automatically learning a transliteration model from a
sample of name pairs in two languages. We evaluate
the model and compare three versions for English to
Arabic transliteration.

1. INTRODUCTION

In this paper, we present and evaluate a simple
statistical technique for English to Arabic
transliteration. This technique requires no heuristics
or linguistic knowledge of either language. This
technique learns translation probabilities between
English and Arabic characters from a training sample
of pairs of transliterated words from the two
languages. Based on these probabilities, it generates
Arabic transliterations for unknown English words.
We compare a context-dependent version of the
model with a context-independent version. This
technique could be used for any language pair.

Transliteration is the representation of a word or
phrase in the closest corresponding letters or
characters of a different alphabet or language so that
the pronunciation is as close as possible to the
original word or phrase. The method of transliteration

depends on the characteristics of the source and target
languages (in this case English and Arabic) and on
the larger purpose the transliterator is meant to serve.
Transliteration techniques are useful in several areas
including machine translation and information
retrieval.

It is commonly observed that proper names are
important query words in information retrieval. For
example, in the list of queries for TREC 2001 cross
language track [6], all 25 queries contained proper
names. In cross language retrieval, a user queries a
system in one language to find documents in a
different language. There are three common
approaches to this problem: machine translation of
the query, dictionary-based translation and expansion
of the query, and retrieval using a cross-lingual
language model. For all of these approaches, if a
query word is not found in the dictionary or model,
one needs a way to render the unknown word. When
the query language and the document language share
the same alphabet it is sufficient to use the word from
the query language as is. However, when the two
languages have different alphabets, the best strategy
is to transliterate the word from the query language
alphabet to the document language alphabet.

We have been working on English-Arabic cross
language retrieval, using the TREC 2001 corpus of
383,872 Arabic documents from Agence France
Presse, covering the years 1994-2000. Newspapers
contain many proper names that are not found in
bilingual dictionaries. Here are a few examples from
the TREC corpus (see the Appendix for an
explanation of the phonetic notation used in the third
column):

New York � (nyü yürk)

Wall Street � (üal strEt)

Sarah Ferguson � (sar-& fErgsün)

These examples show that transliteration is
commonly used for proper names, even when the
words could be translated. “Wall Street” in Arabic
could be represented by translating “wall” and
“street,” but it is not.

In the case of English-to-Arabic transliteration, an
English word can have more than one equivalent in
Arabic. There are several reason for this
indeterminacy:

1. The irregularity of English spelling

2. A name can have more than one correct
spelling, for example “Anderson” and
“Andersen”, or alternative pronunciations, for
example the name “Dubois” can be, dü-'bois
or dü-'bwä. Each of these pronunciations has
a different spelling in Arabic - “� “, and
“ “, respectively.

3. The differences in phonetic inventories of the
two languages – for example, Arabic has no p
sound, but it has two different t’s.

4. Short vowels are commonly not represented
in Arabic orthography. In transliterating an
English word with short vowels, one
approach would be to leave the short vowels
out of the Arabic transliteration; another
would be to write the words using Arabic
long vowels. Both approaches are commonly
found.

For example, we found four different versions of the
name “Clinton” with little effort. Two different
translations were found in the TREC2001 corpus:

Clinton (1)� (klEntün)

 (2)� (klEntn)

Two web-based machine-translation engines [1][2]
and an Arabic Proper Names list available on the web
[3] each give a different (single) translation of
“Clinton”:

Clinton (3)� (klntn)

 (4)� (klEntün)

 (5) � (klEnTün)

�

While these are all reasonable transliterations of the
word “Clinton”, only one of the second group, (4),
matches a form of the word found in the TREC
corpus. If we had chosen either of the other two
resources as sources for transliterations in cross-
language queries, we would have failed to find
documents mentioning Clinton. All three sources
would have failed to find the documents that used
spelling (2).

This example makes it clear that a transliterator for
information retrieval must generate multiple
alternative Arabic spellings, in order to cover the
variations that are found in Arabic text.

2. PREVIOUS WORK
Most prior work in Arabic-related transliteration has
been for the purpose of machine translation. Arbabi
et al. [4] developed a hybrid neural network and
knowledge-based system to generate multiple English
spellings for Arabic personal names. Knight and
Graehl [8] developed a five stage statistical model to
do back transliteration, that is, recover the original
English name from its transliteration into Japanese
Katakana. Stalls and Knight [10] adapted this
approach for back transliteration from Arabic to
English of English names. These systems are very
complex, involving a great deal of human design,
probably because they were dealing with a more
difficult problem than that of forward transliteration.
However, as the Clinton example reveals, forward
transliteration for information retrieval is not as
simple as the problem of forward transliteration for
machine translation, in which one reasonable
transliteration is good enough.

 Darwish et al described a hand-crafted English to
Arabic transliteration system [5]. Each English letter
was mapped to the closest sounding Arabic letter or
letters. These mappings were decided manually. Most
English letters were given a single Arabic equivalent;
a few had more than one. Darwish’s system has the
same purpose as ours. However, our system differs in
that it learns the mappings automatically from data,
one version of our system can take into account
phonetic context, and we attempt to evaluate the

performance of our transliterator. Darwish presents
no evaluation of his transliteration system.

3. STATISTICAL TRANSLITERATION
3.1 Monogram Transliteration Model
The transliterator is based upon a generative
statistical model of how a string of English characters
is converted to Arabic characters. In its simplest
form, the Arabic string is generated by converting
individual English characters (monograms). The
model is a set of probability distributions over
English and Arabic characters. Each English
character e can be transliterated to any Arabic
character ai with probability P(ai | e). In addition, the
English and Arabic character inventories can each
include NULL, which allow the generation of Arabic
strings with a different length than the English
strings. In practice, most of the probabilities are zero,
or small enough to be considered zero. For example,
the probability distribution for the character “s” in
English might look like this:

P(� |s) = .60

P(| s) = .30

P(| s) = .07

P(| s) = .03

The basic issues for such a model are:

1. How to estimate these probabilities, i.e., how
to train the model. There are (m+1) (n+1)
probabilities to estimate, where m is the
number of English characters (m+1 includes
NULL) and n is the number of Arabic
characters.

2. How to use the model to generate new
transliterations.

Using the model generatively is very straightforward.
One can either generate a single transliteration by
taking the highest probability transliteration for each
character, or by taking one transliteration for each
character at random, according to the character
transliteration probabilities. One can generate all the
possible transliterations using all the mappings with
nonzero probabilities. One can compute the
probability for the whole transliteration as the product
of individual character probabilities, rank order them,

and then select a subset based on some probability
threshold, or to take a fixed number of top ranking
transliterations.

The first issue, of estimating the probabilities, is also
fairly straightforward. In order to estimate P(ai | e),
we need a training sample of English-Arabic pairs in
which English and Arabic characters are aligned so
that we can count up the number of times ai is aligned
with e, and divide by the total number of times e
occurs in the aligned training sample. We discuss
alignment in below in section 3.3.

A probability threshold can be applied, so that small
probabilities can be set to zero, greatly reducing the
number of transliterations possible for a given
English character e.

The monogram model works well for a surprisingly
large proportion of English proper nouns, such as
the following two examples in which a character-by-
character transliteration gives the correct answer.

New York � (nyü yürk)

Colin (külEn)

However, many other English to Arabic
transliterations cannot be handled with monograms.

3.2 Bigram Transliteration Model
A more sophisticated model would have probabilities
for character pairs (bigrams) rather than single
characters.

For example, the English character “x” as in “Ajax”
has no single Arabic character equivalent. It is usually
transliterated as a sequence of two Arabic characters,
kaaf and seen, “� ”. Conversely, two English
characters can be transliterated as a single Arabic
character. The English bigram “sh” is usually
mapped to the Arabic character sheen, “ ”, as in:

Bush (büS)�

Parshalville � (barSalfEl)�

There is also the more complex case where two
English characters, e1 and e2, when they appear as a
bigram, e1e2, map to a specific sequence of Arabic
characters, a1a2. For example, “c” usually maps to

kaaf, “ ”, and “h” usually maps to ha, “ ” or hha,
“ ”. However, when they appear as “ch”, they are
transliterated as “ ” (tS) as in .

Belchertown (bltSrtaün)

Smidovich (smEdüfEtS)

Bigrams can address these problems. However, such
a model has many more parameters. There are
potentially (m+1)2 (n+1)2 probabilities to estimate,
though in practice, there are far fewer. This is
because not all the (m+1)2 (n+1)2 possible bigrams
occur in Arabic text.

3.3 Alignment
Training the model requires an aligned training
sample so that one can count up the number of times
each character e (or bigram) is aligned with each
Arabic character ai.

We used GIZA++ [7] to align English words with
Arabic words. GIZA++ is an extension of the
program GIZA, which is part of the SMT toolkit
EGYPT. Its operation is described by Och and Ney
[9].

GIZA++ was designed for word alignment of
sentence aligned parallel corpora. We used it to do
character alignment of word-aligned pairs. Alignment
worked very well. A small sample of alignments was
examined manually. All of the word-pairs in this
sample were correctly aligned.

Here is an example of how GIZA works:

 Barnes (barnz)�

GIZA++ aligns these two words as:

B � �

A �

R �

N

E NULL

S

In addition to GIZA++ alignment, we also considered
an “unaligned” baseline in which no alignment is
performed. Details are described in the next section.�

4. EXPERIMENTS

The data we used to train and test the system was a
parallel list of 148,599 English and Arabic proper

nouns obtained from NMSU [3]. The list contained
both person names and place names.

Four training sets of size 5,000, 10,000, 50,000, and
100,000 were randomly selected from the list.

Five sets of 200 randomly selected words that did not
occur in the training sets were used for testing. The
results were averaged across these five sets.

Three experimental conditions were compared:

1. Monograms, unaligned

2. Monograms, aligned

3. Bigrams, aligned

4.1 Monogram Conditions
For the “monograms” conditions, the model was a
probability distribution over context-independent
characters. To train the model, character mappings
were counted. For each English character e, and each
Arabic character a, a translation probability P(a|e)
was obtained by counting up the number of times a
was aligned with e in the training set and dividing by
the total number of times e occurred in the training
set. Probabilities below 0.05 were set to zero.

In the “unaligned” condition, the training set was
restricted to pairs where the English word and its
corresponding Arabic word had the same number of
characters. We assumed a 1-1 correspondence, and
aligned each character in the English word with the
character in the same position of the Arabic word. In
the unaligned condition, each English character
mapped onto exactly one Arabic character in the word
pairs.

In the “aligned” condition, we used the alignment tool
GIZA++ for character alignment on corresponding
words of the training set. From these aligned data, we
could count the number of times an English character
was mapped onto an Arabic character (or NULL), and
derive probabilities once the matrix was filled in.

4.2 Bigram Condition
In the “bigrams” condition, English bigrams, or word
pairs e1e2 were mapped onto Arabic characters. We
did not map English bigrams onto Arabic bigrams,
because we needed to control the size of the model.
The bigram e1e2 should be thought of as e2 in the
context of e1. The training and testing procedures
were very similar to that described for monograms,

except that an extra step was carried out to represent
the words as context dependent characters.

An example illustrates this step. The word “Laos” is
shown broken into bigrams. Note that the symbol “#”
indicates the beginning of the word, and the pair “#L”
indicates “L” at the beginning of a word. Word ends
were not represented.

 Laos ������������ OS

In other words, “Laos” is made up of 4 bigrams,
which can be thought of as “word initial L”, “A in
the context of (or following) L, “O in the context of
A,” and “S in the context of O.”

GIZA++ is used to align these bigrams with the
Arabic characters that make up the transliterations for
all the word pairs in the training set. From these
alignments, counts are obtained for all the e1e2 a
mappings and converted to probabilities as before.

5. EVALUATION
The same procedure was used to evaluate all three
models. After the model was trained, it was tested by
generating all possible Arabic transliterations for each
word in each test set. In the case of monograms, a
probability for each transliteration was obtained by
multiplying the individual character mapping
probabilities. The alternatives were then ranked by
this probability. Test words were scored in two
different ways. One method considered only the top
scoring transliteration. A test item was considered
correctly transliterated if the top ranked
transliteration matched the “official” version from the
Arabic Proper Names Dictionary. The other method
considered all the transliterations. The test item was
considered correct if the “official” answer occurred
anywhere in the list of alternative transliterations.
The second method is more realistic. In using the
transliterator in an operational IR system we would
actually use many alternative transliterations rather
than the top ranked choice.

In the case of bigrams, in order to generate a
transliteration for an unknown or test English word,
the English word is first represented in bigrams, and
transliterations are generated and scored for this
bigram representation using the bigram probability
model in exactly the same way that we did this for
monograms.

The final accuracy reported for each condition was
obtained by averaging the accuracy scores (percent
correct) from each of five test sets.

Table 1 shows the results for all three conditions, all
training set sizes, and both scoring methods. The
results for one of the scoring methods, where all
transliterations are considered, are shown in Figure 1.

Table 1: Transliteration Accuracy
Training set size in thousands Scoring

Method 5 10 50

1 25.6 21.5 25.6 Monograms

unaligned All 30.2 26.6 30.6

1 34 35.1 36 Monograms

aligned All 53.5 54.4 59.4

1 40.6 41.1 43.4 Bigrams

aligned All 70.3 77.3 81.1

It can be seen clearly from the above table that the
accuracy of the model increases with the size of the
training set in both aligned conditions. Aligned
training is more effective than unaligned training, and
bigrams are more effective than monograms. Not
surprisingly, the correct answer is obtained more
often when all the alternative transliterations are
accepted than when only the top-ranked
transliteration is accepted.

0

10

20

30

40

50

60

70

80

90

100

5,000 10,000 50,000

Size of tra ining set

P
er

ce
n

t
A

cc
u

ra
cy

Bigram

Monogram(aligned)

Monogram (unaligned)

Figure 1: Transliteration accuracy as a function of training
set size

6. CONCLUSIONS
We have demonstrated a simple transliteration system
that works well, given large amounts of training data.
Not surprisingly, context-dependent characters are
better than context independent characters, and the
system gets better with more training data.

We have so far evaluated this system with respect to
how well it can generate correct Arabic
transliterations from the Arabic Proper Names
dictionary for a test set of English words, after
training on a non-overlapping set of word-pairs from
the same source. However, the main requirement for
information retrieval is that the transliterator find the
spellings that are actually used in the Arabic
collection being searched.

We are currently building a test set of names that
occur in the TREC 2001 corpus so we can address the
following questions:

• How often does the transliterator produce
Arabic spellings that match the form found in
the corpus?

• Are the alternate spellings harmless? Do they
not occur in the collection, or do they
erroneously match other words in the
documents?

• What is the number of transliterations the
system should output to achieve the best
tradeoff between the need to get the correct
string(s) on the list, but not get strings that
match other words?

• Is it better to train on multiple sources of
word pairs (like those obtained from the
transliterators in the online machine
translation systems) rather than from a single
source.

We have demonstrated a model for transliteration
which is purely statistical, and uses no heuristics or
hand-tuning. This approach could be used for many
different language pairs.

7. APPENDIX

Phonetic notation used for examples

Symbol Pronunciation

b, f, k, l, m, n,
r, s, z

as in normal English

y as “y” in “yellow”

ü as “u” in “rule”

a as “a” in “large”

S as “s” in “sugar”

E as “e” in “legal”

& as “u” in “rule”

g, t, d, T
These sounds are not used in
English. They are velarized forms of
the English letters.

8. ACKNOWLEDGMENTS
We thank David Fisher for help in installing and
using GIZA++. This work was supported in part by
the Center for Intelligent Information Retrieval and in
part by SPAWARSYSCEN-SD grant number
N66001-99-1-8912. Any opinions, findings and
conclusions or recommendations expressed in this
material are the author(s) and do not necessarily
reflect those of the sponsor.

9. REFERENCES
[1] Ajeeb. http://tarjim.ajeeb.com/ajeeb/

[2] Almisbar.
http://www.almisbar.com/salam_trans.html

[3] Arabic Proper Names Dictionary from NMSU.
http://crl.nmsu.edu/~ahmed/downloads.html

[4] Arbabi, Mansur, Scott M. Fischthal, Vincent C.
Cheng, and Elizabeth Bar. 1994. Algorithms for
Arabic name transliteration. IBM Journal of
research and Development, 38(2):183-193.

[5] Kareem Darwish, David Doermann, Ryan Jones,
Douglas Oard and Mika Rautiainen. 2001. TREC-
10 experiments at Maryland: CLIR and video. In
TREC 2001. Gaithersburg: NIST.
http://trec.nist.gov/pubs/trec10/t10_proceedings.html

[6] Gey, F. C. and Oard, D. W. 2001. The TREC-
2001 cross-language information retrieval track:

Searching Arabic using English, French, or
Arabic queries. In TREC 2001. Gaithersburg:
NIST.
http://trec.nist.gov/pubs/trec10/t10_proceedings.html

[7] GIZA++. http://www-i6.informatik.rwth-
aachen.de/Colleagues/och/software/GIZA++.html

[8] Knight, Kevin and Graehl, Jonathan. 1997.
Machine transliteration. In Proceedings of the
35th Annual Meeting of the Association for
Computational Linguistics, pp. 128-135. Morgan
Kaufmann.

[9] Och, Franz Josef and Hermann Ney. October
2000. Improved Statistical Alignment Models.
Proc. of the 38th Annual Meeting of the
Association for Computational Linguistics, pp.
440-447, Hongkong, China.

[10] Stalls, Bonnie Glover and Kevin Knight. 1998.
Translating names and technical terms in Arabic
text.
http://citeseer.nj.nec.com/glover98translating.html

