
Details on Stemming in the Language Modeling Framework

James Allan and Giridhar Kumaran
Center for Intelligent Information Retrieval

Department of Computer Science
University of Massachusetts Amherst

Amherst, MA 01003, USA

{allan,giridhar}@cs.umass.edu

ABSTRACT
We incorporate stemming into the language modeling frame-
work. The work is suggested by the notion that stemming
increases the numbers of word occurrences used to estimate
the probability of a word (by including the members of its
stem class). As such, stemming can be viewed as a type of
smoothing of probability estimates. We show that such a
view of stemming leads to a simple incorporation of ideas
from corpus-based stemming. We also present two genera-
tive models of stemming. The first generates terms and then
variant stems. The second generates stem classes and then a
member. All models are evaluated empirically, though there
is little difference between the various forms of stemming.

1. INTRODUCTION
Stemming is the process of collapsing words into their

morphological root. For example, the terms addicted, ad-
dicting, addiction, addictions, addictive, and addicts might
be conflated to their stem, addict. In information retrieval
(IR) systems, stemming serves to aid one or both of:

• efficiency—limiting the number of unique words re-
duces the size of an IR system’s dictionary, can im-
prove compression rates [11], etc.

• effectiveness—in theory, stemming improves a system’s
recall of relevant material. Documents that contain
morphological variants of query words have a good
chance of also being relevant.

Over the years, numerous studies and countless classroom
projects have explored the effectiveness issues of stemming
from almost any angle imaginable: should stemming be used
at all, how can stemmers be improved, what advantages do
different stemmers provide, how can stemming be done in
new languages, and so on.

In this study, we step back from that style of experiment
somewhat and explore the question of what precisely stem-

CIIR Technical Report No. IR-289

ming accomplishes. We are motivated by the observation1

that stemming can be viewed as a form of smoothing, as a
way of improving statistical estimates. If the observation
is correct, then it may make sense to incorporate stemming
directly into a language model rather than treating it as an
external process to be ignored or used as a pre-processing
step. Further, it may be that viewing stemming in this light
will illuminate some of its properties or suggest alternate
ways that stemming could be used.

In this study, we tackle that problem, first by convert-
ing classical stemming into a language modeling framework
and then showing that used that way, it really does look
like other types of smoothing. This view of stemming will
suggest an obvious extension that begs being merged with
ideas from corpus-based stemming.

Once the idea of stemming is embedded in the language
modeling framework, other ways that it can be included
start suggesting themselves. We will briefly touch on two
ways of viewing stemming as a generative process rather
than merely a technique to improve statistical estimates.

The focus of this work is on a different way to view stem-
ming. However, we will also report on a series of experiments
that evaluate the effectiveness of different models along the
way. The experiments will show modest, but rarely statis-
tically significant, improvements in comparison to the sim-
plest form of stemming. All forms of stemming will result
in better accuracy than omitting stemming.

The following section reviews related work in stemming.
In Section 3 we briefly review some ideas from language
modeling, probability estimation, and smoothing that are
central to this paper. We then describe in Section 4 the
experimental setup in which we carried out our empirical
validations. The core of the paper starts in Section 5 where
we incorporate stemming into the language modeling frame-
work and then, in Section 6, briefly flirt with the idea of
partial stemming suggested by doing so. We then show in
Section 7 how stemming can be treated as a form of smooth-
ing. That leads to the obvious idea discussed in Section 8
of allowing different words to contribute differently to the
smoothing of a word’s probability. Then in Section 9 we
switch gears to develop and evaluate two generative models
of stemming, one that is similar in spirit to a translation
model. We summarize our findings in Section 10.

2. PREVIOUS RESEARCH
1An observation that was first expressed to us by Jay Ponte
at a May/June 2001 workshop on language modeling for
information retrieval.

We discuss work exploring the question of whether or not
stemming provides more effective results. We also outline
ideas behind corpus-based stemming, a statistical approach
to generating stem classes.

2.1 Stemming effectiveness
There have been several in-depth studies investigating the

effectiveness of stemming on document retrieval. Harmans
evaluation of the performance of three different stemming
algorithms, namely the S-stemmer, Lovins stemmer, and
Porter stemmer, concluded that stemming failed to deliver
any improvement in performance [3]. While quite a few
queries did benefit from stemming, an equal number were
in fact impaired. The net improvement was thus inconse-
quential. Harman suggested possible improvements in stem-
ming, one of which had to do with treating different words
differently—the formal model of stemming presented in this
study will inspire precisely that idea (though we will not
find a substantial improvement in effectiveness).

Krovetz experimented with an inflectional stemmer, a deri-
vational stemmer, and a revised Porter stemmer that used
a dictionary to check if a resulting stem exists [5]. In con-
trast to Harman’s earlier study, all the stemmers resulted in
improved performance, with the derivational stemmer per-
forming the best. Krovetz also found that stemming was
better suited for short documents and queries.

Hull questioned the use of traditional precision and recall
measures for evaluating experiments involving stemming al-
gorithms [4]. Traditional measures do not reflect the effect
of length of the queries, length of the documents, nature of
the corpus, the number of relevant documents for a query,
and so on. Hull concluded that stemming is almost always
beneficial expect for long queries at low recall levels.

Stemmers that are tailor-made for languages that are highly
inflectional in character definitely influence retrieval perfor-
mance [9, 6].

We know of no work that viewed stemming as a formal
process within a probabilistic framework. Typically stem-
ming has been included in information retrieval systems in
an ad-hoc manner, justified for reasons of efficiency or em-
pirical evaluations. Despite the evidence supporting and
wide adoption of stemming in research systems, modern
Web search engines usually do not stem their collections.
For commercial reasons, they do not support this decision,
but it appears that for queries that are not recall oriented,
their collections are so large that missing Web pages because
of morphological variance is not a concern.

2.2 Corpus-based stemming
Conventional stemming algorithms employ morphologically-

derived rules to conflate word variants to their roots. Al-
though such approaches are generally effective, they do not
consider the influence of the language in specific corpora.
As an example, ford and fordable are related in documents
on nature but are unrelated in documents on automobiles.
In other words, a conflation that is useful for one corpus
might be harmful to another. Similarly, blind application of
rules may result in wrong conflations such as homing with
homely.

One effort to address those problems is called corpus-
based stemming [12]. The hypothesis of that work is that
word forms that should be conflated will co-occur in docu-

ments from the corpus. It starts with a set of rough pre-
liminary stem classes created by another stemmer, perhaps
Porter or something that conflates all words starting with
the same three letters. It then uses co-occurrence analy-
sis of the words in the preliminary class to find ones that
do not appear to belong together. Corpus-based stemming
was found to provide moderate improvement over existing
rule-based stemmers.

The co-occurrence analysis is based on em, a variation of
EMIM (expected mutual information measure). EMIM is
widely used to measure the significance of word associations.

EMIM(a, b) = P (a, b) log
P (a, b)

P (a)P (b)

where P (a) = na/N , P (b) = nb/N , P (a, b) = nab/N , N is
the number of text windows in the corpus, na and nb are
the number of occurrences of a and b in the corpus, and nab
is the number of times both a and b fall in a text window.

The EMIM measure does not work well directly because
it is not normalized over the number of occurrences of a and
b and unfairly favors high frequency words. The em metric
is defined as:

em(a, b) = max

[
nab − En(a, b)

nanb
, 0

]
where En(a, b), the expected number of co-occurrences of a
and b, is knanb, where k is a constant based on the corpus
and window size. k is estimated from a sample of 5000
randomly chosen word pairs:

k =

∑
nab∑
nanb

En(a, b) plays an important role as it reduces the scores of
two words that co-occur simply by chance.

3. LANGUAGE MODELING
In this work, we focus on the query-likelihood variant of

statistical language modeling (as opposed to, for example,
document likelihood models). The techniques model the
query generation process as a random sampling of the prob-
abilistic model of a topic as suggested by a document [8].
That is, given a query Q = q1q2q3 . . . qn, and a document
D = d1d2d3 . . . dn, we wish to estimate P (Q|D), the proba-
bility that the query would be generated by the document.
We make the traditional assumption of term independence
to get:

P (Q|D) =

n∏
i=1

P (qi|D)

Strictly speaking, the value D in that equation represents a
model (probability distribution), the only information about
which we have is that D comes from the model. A good deal
of research in the field investigates how to reliably estimate
a model given such sparse information [7, 14]

To start with, however, almost every language modeling
approach uses a maximum likelihood estimate:

PML(w|D) =
c(w;D)∑n
i=1 c(wi;D)

where c(w;D) represents the number of times that term w
occurs in document D.

Table 1: Statistics of the corpora used for empirical
validation of the models in this study.

Dataset NumDocs Size QueryIDs
AP89 84,678 254Mb 1-50 routing
AP90 78,321 237Mb 101-150 ad-hoc
FBIS 130,471 470Mb 1-243 routing
TREC5 524,929 1.9Gb 251-300 ad-hoc
TREC8 528,155 2.05Gb 401-450 ad-hoc

Unfortunately, a problem arises when a term does not
appear in the document D. Irrespective of the counts of
the other terms in the query, P (Q|D) will end up being
zero because one of the P (qi|D) will be estimated as zero.
To avoid this problem, smoothing is employed to assign a
non-zero probability to the unseen words—and as an added
benefit, to improve the estimation of word probabilities in
general (because D is only one sample and may not be a
great sample for every word).

A wide range of smoothing techniques have been adapted
for information retrieval [8, 15, 16]. Broadly speaking, these
methods discount the probabilities of the terms observed,
and assign some extra probability mass to the unseen terms
according to some fallback model. In information retrieval,
a technique called Jelinek Mercer smoothing [15] is most
often employed. This simple mixture model involves the
interpolation of the maximum likelihood model with an es-
timate derived from a large collection of documents (called
a “background” or a “general english” model). Thus:

P (w|D) = (1− λ)Pml(w|D) + λPml(w|collection) (1)

where the coefficient λ is used to control the influence of
each estimate. The value of the coefficient can be set via
training data, heuristically, or based on a more elaborate
theory of modeling language [16].

Throughout this study, we will always smooth our prob-
ability estimates using the entire evaluation set as a back-
ground collection (e.g., queries run against AP89 will use
the entire AP89 collection to form a background model).
Whatever means we use to estimate the probability from
just the document (e.g., maximum likelihood) we will also
employ to estimate the background probability. Then we
will interpolate those two estimates based on the value of λ.

4. EXPERIMENTAL SETUP
In the remainder of this study, we will investigate sev-

eral views of stemming within the language modeling frame-
work. We will run experiments showing the impact—usually
negligible—of the different choices by using five different col-
lections taken from the TREC corpora as listed in Table 1.

The FBIS documents are from TREC volume 5, and the
queries are the 50 routing queries from TREC 5’s routing
task. TREC5 is made up of TREC volumes 2 and 4, the set
of documents used for the TREC-5 ad-hoc retrieval track.
TREC8 consists of TREC volumes 4 and 5 with the congres-
sional record removed, the set used for the TREC-8 ad-hoc
track.

The queries used were either the ad-hoc or routing queries
prescribed for each corpus. The title and description por-
tions from each TREC topic were used to formulate the
queries for our experiments.

Table 2: Impact of incorporating stemming into the
unigram language modeling framework.

Dataset Unstemmed Stemmed Improvement
AP89 0.2491 0.2725 +8.58%
AP90 0.2337 0.2632 +12.6%
FBIS 0.1010 0.1460 +44.5%
TREC5 0.1356 0.1565 +15.4%
TREC8 0.2167 0.2626 +21.1%

We used version 1.1 of the open source Lemur system2

for all of our experiments, with substantial modification to
support a variety of stemming methods. We used the 418
stopwords included in the stop list used by InQuery [2]. We
ran Lemur with its normal stemming disabled so that it
indexed all forms of words; we will reintroduce stemming
in several alternate ways below. When we use the Porter
stemming algorithm [10] to find stem classes, we are using
the implementation provided as part of Lemur.

5. STEMMING IN LANGUAGE MODELS
Given a collection of documents that has been indexed

without any stemming, the normal model described above
represents using a language modeling approach without stem-
ming:

Punstem(w|D) = Pml(w|D) =
c(w;D)∑n
i=1 c(wi;D)

(2)

(smoothed with a background corpus according to λ).
The simplest way to incorporate stemming into the lan-

guage model would be to stem the collection before indexing—
i.e., to index documents consisting of word stems. Short of
doing that, we can simulate a stemmed collection by calcu-
lating the probability of a word using all words in its stem
class. For example, to estimate the probability that addicted
occurs in a model, we could count not just occurrences of
addicted as in Equation 2, but also occurrences of addicting,
addiction, addictions, and so on. This leads to:

Pstem(w|D) =

∑
wj∈E(w) c(wj ;D)∑n

i=1 c(wi;D)

=
∑

wi∈E(w)

Punstem(wi|D) (3)

where E(w) represents the equivalence or stem class of w—
that is, all words wi that have the same stem as w (obviously,
w ∈ E(w)).

Calculating the query likelihood based on Equation 3 pro-
vides exactly the same results as if Equation 2 were used on
a stemmed version of the collection. Similarly, if Equation 3
is used with stem classes of size one (i.e., no stemming), it
reduces to Equation 2.

We used Equations 2 and 3 to provide baseline runs for
all five of our test collections. All runs were done using un-
stemmed versions of the collections; “stemming” was done
at query time by using Equation 3 to calculate the prob-
abilities. Table 2 summarizes the mean average precision
numbers for all collections, with and without stemming.

It is clear that stemming provides a noticeable improve-
ment in effectiveness when used with a very simple language

2http://www.cs.cmu.edu/~lemur

model. Figure 1 shows the recall precision tradeoff graphs
for the AP89 collection, where gain from stemming is the
least. The tradeoff graphs are similar for the other collec-
tions.

Table 3 shows results for all of the approaches that will
be discussed in this paper. Perhaps the most surprising
result is that although there are huge differences in average
precision when stemming is applied, the difference is rarely
statistically significant.

6. PARTIAL STEMMING
It is common in language modeling to combine multiple

estimates to provide a better estimate. The interpolation
of Jelinek Mercer smoothing (Equation 1) is an example of
combining an estimate from a small sample of text with an
estimate from a larger background corpus.

Equations 2 and 3 are both ways of estimating the prob-
ability of occurrence of a word (though the latter actually
estimates the probability of the word class), which immedi-
ately suggests the possibility of combining those estimates
by interpolation:

Ppartial(w|D) = αPunstem(w|D) + (1− α)Pstem(w|D)

In a sense, the probability is a combination of the estimate
on a small sample (a single word’s occurrences) combined
with that of a larger sample (all words in the stem class).
This combination allows a system to progress smoothly be-
tween stemming (α = 0) and no stemming (α = 1), and
begs the question of what it means for α to lie in the middle
of the range.

We tried some experiments to see if a globally optimal
value of α could be found that was somewhere between the
extremes. For any given set of data and queries, we could
easily find values that improved upon the endpoints. For
example

• For the AP89 collection, setting λ = 0.6, α = 0.8
resulted in an average precision of 0.2811, meaning
that 80% stemming resulted in a 3% improvement over
100% stemming.

• For the TREC5 collection, optimal performance ap-
peared with λ = 0.5, α = 0.3, resulting in a modest
improvement of 1% to 0.1586.

We were unable to find values of α and λ that would work
on a range of collections, and were unsuccessful in devising
a strategy for estimating the parameters.

Another way to treat α, though, is to have it vary on a
query-by-query (or even word-by-word) basis. That is, if it
were possible to decide for a query (or a word) whether or
not stemming was appropriate, perhaps performance could
be improved. We “cheated” in Figure 2 to find out how good
a system might be able to do if it could decide whether α
should be 0 or 1, by selecting the value that did this best.
The graph makes it clear that being able to decide whether
to stem would be a win. Unfortunately, we were unable to
establish criteria for selecting α: Harman’s conclusions [3]
may be irrefutable.

7. STEMMING AS SMOOTHING
The previous section uses smoothing (interpolation of two

estimates) to incorporate stemming into the language mod-

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

AP89

Unstemmed
Stemmed

Best of Unstemmed and Stemmed

Figure 1: Unstemmed and stemmed retrieval recall–
precision graphs for the AP89 collection.

 AP89

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1
Recall

Pr
ec

is
io

n

Unstemmed
Stemmed
Best of Unstemmed and Stemmed

Figure 2: For the AP89 collection, shows perfor-
mance for stemming, not stemming, and a system
that selects one or the other on a per-query basis.
These numbers were obtained by knowing the an-
swer.

Dataset Metric Unstemmed Stemmed Xu& Co-occur 1,000 Term Class
Croft Stemmers Gen Gen

AP89 AvgPrec 0.2491 0.2725 0.2819* 0.2799 0.2799 0.2779* 0.2726
P@20 0.2389 0.2378 0.2478* 0.2411 0.2441 0.2389 0.2378

AP90 AvgPrec 0.2337 0.2632 0.2660 0.2650 0.2650 0.2650 0.2656
P@20 0.3410 0.3460 0.3530 0.3510 0.3510 0.3570 0.3600

FBIS AvgPrec 0.1010 0.1460 0.1403* - - 0.1453 0.1460
P@20 0.2100 0.2222 0.2222 - - 0.2200 0.2222

TREC5 AvgPrec 0.1356 0.1565 - - - - -
P@20 0.2340 0.2570* - - - - -

TREC8 AvgPrec 0.2167 0.2626* 0.2639 - - 0.2636 0.2626
P@20 0.3750 0.4040 0.4090 - - 0.4050 0.4040

Table 3: Performance of algorithms discussed in paper, measured in terms of average precision and precision
at 20 documents retrieved. An asterisk indicates results that are significantly different (P < 0.05) from the
stemmed results, except in the stemmed column where it is compared to the unstemmed results. Missing
values represent experiments that were not run.

eling framework. However, it does not really treat stemming
as actual smoothing.

The format of Equation 3 is reminiscent of the formula
for smoothing (Equation 1). The similarity is clearer if the
former is rewritten:

P (w|D) = Pml(w|D) +
∑

wi ∈ E(w)
wi 6= w

Pml(wi|D)

The conversion to smoothing is accomplished by adding an
interpolation parameter β:

P (w|D) = βPml(w|D) + (1− β)
∑

wi ∈ E(w)
wi 6= w

Pml(wi|D)

When β = 1, the equation reduces to unstemmed retrieval.
When β = 0.5 all words in the stem class (including the
original word w) are treated equally. In that case, even
though the probabilities would be different, the ranking of
the system would be identical to that of Pstem. We do not
perform any experiments on this approach since the ranking
would not change.

We have now represented stemming as a true smoothing
process. The probability of a word is calculated as an in-
terpolation of its own probability and the probability of all
other words in its stem class.

8. ADHOC MIXTURE MODELS
We generalize the view of stemming in the previous section

as follows:

Pmix(w|D) =
1∑

j f(wj , w)

∑
wi∈E(w)

f(wi, w)Pml(wi|D)

where f(wi, w) is a function that indicates how much signif-
icance term wi has in calculating the probability for word
w. This results in an interpolation over the probabilities for
all of the words in the stem class. This general form admits
a range of possibilities depending on how f() is defined.

If f(wi, w) = 1 when wi = w and 0 otherwise, then
Pmix = Punstem, because in that case only the actual word
form will be used to estimate its probability.

On the other hand, if f(wi, w) = 1/|E(w)|, then Pmix ∝
Pstem. In fact, Pmix = Pstem/|E(w)| which means that
they differ only by a constant. The resulting probabili-
ties will be different, but the ranking of documents in an
information retrieval system will not be affected. This is
equivalent to the formula at the end of Section 7, where
β = 1/|E(w)|.

Note that although the rankings given by Pmix and Pstem
are identical, the probabilities are differently motivated. In
the case of Pstem, the probability of a word is calculated
by treating the entire stem class as if it were that word.
We are really calculating the probability of the stem class.
For Pmix, on the other hand, the probability of a word is
the average of a set of estimates, one from each word in the
stem class. The probability that a particular word would be
generated depends not only on its probability in the model,
but also on the probability of other, related, words.

All of the ways of estimating P (w|D) that we have dis-
cussed so far treat every word in a stem class identically or
privilege only the original word w. However, it may make
more sense to give priority to terms that are meaningfully
related to the original query term. For example consider
an equivalence class generated by the Porter stemmer: ap-
pend, appended, appendicitis, and appending. In estimating
the probability of the term append using a mixture model,
the influence of the term appendicitis would ideally be given
very little weight, and certainly much less weight than would
appended.

To address this idea, we now consider variations of Pmix
that use different forms of f(). We explore two possibilities.
In the first, we use the co-occurrence analysis of corpus-
based stemming to determine the value of f(). In the second,
we imagine large numbers of stemmers and let f() represent
the chance that words would be put together by those stem-
mers.

8.1 Corpus-based stemming

AP89

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1
Recall

P
re

ci
si

on

Stemmed [0.2725]
Corpus-Based Stemming [0.2819]
Mixture Model Using em Score Ratios [0.2800]

Figure 3: Recall/precision curve obtained for AP89
collection using the co-occurrence based mixture
model. The curve is compared with that obtained by
stemmed retrieval, as well as corpus-based stemmed
retrieval.

In corpus-based stemming (see Section 2.2), em scores
are calculated for every pair of terms in the preliminary
class. Then a threshold is determined, scores below that
are discarded, and the class is partitioned into its resulting
connected components. The hope is that non-co-occurring
words are not actually morphologically related (in this cor-
pus) and should be in different classes.

In our case, we are not interested in selecting a thresh-
old. However, we are interested in a measure that predicts
whether or not two words are likely to be morphological
variants of the same word. That is, a measure that will give
a high score to ford and fordable in a nature corpus, but a
low score in an automobile corpus. To that end, we define
Pem to be Pmix with f(wi, w) = em(w,wi), so:

Pem(w|D) =
1∑

j em(wj , w)

∑
wi∈E(w)

em(wi, w)Pml(wi|D)

(As always, we also smooth this estimate using the back-
ground collection as indicated by the value of λ.)

Figure 3 compares this approach to the stemmed base-
line and to the corpus-based stemming approach of Xu and
Croft; results are also included in Table 3 for comparison.
Although the heuristic techniques used for corpus-based stem-
ming outperform the co-occurrence model based on em, they
both do better than simple stemming, and the differences are
small.

8.2 Many stemmers
Here we consider an alternate method of determining the

likelihood that two words are in the same stem class. We
will implement it using the corpus-based stemming approach
just outlined, but that is a convenience and not a necessity.

Suppose that we had access to 1,000 different stemming
algorithms and that we had applied them all to our corpus.3

3This idea was suggested by Jay Ponte.

AP89

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

Recall

Pr
ec

is
io

n

Stemmed [0.2725]
Corpus-Based Stemming [0.2819]
Co-occurence Based Mixture Model [0.2800]

Figure 4: Recall/precision curve obtained for AP89
collection using the co-occurrence based mixture
model that works by utilizing 1,000 different stem-
ming algorithms. The curve is compared with that
obtained by simple stemmed retrieval and corpus-
based stemming.

We could measure the probability that words wi and wj are
in the same stem class by just counting the proportion of
those 1,000 stemmers that conflated them. If n(w,wi) is
the number of stemmers that put a and b into the same
stem class, we could then set f(w,wi) = n(w,wi)/1000 to
get,

P1000(w|D) =

∑
wi∈E(w) n(w,wi)Pml(wi|D)∑

j n(wj , w)

We create our 1,000 different stemmers by varying the thresh-
old on the corpus-based stemming algorithm described above.4

So for the first stemmer, the original equivalence classes are
used. For the second, very weak connections are broken. By
the 1000th stemmer, all connections have broken and every
word is in its own stem class (i.e., no stemming). Word pairs
that are very tightly related in the corpus will have a high
em score and so will be together for most threshold values,
meaning a high probability of being in the same class.

The results of this approach are summarized in Table 3.
We also illustrate the differences with two recall precision
graphs. The first, Figure 4 compares simple stemming,
corpus-based stemming, and the 1,000-stemmers model. The
new model falls between the other two. The difference be-
tween the models appears to lie mostly in the top-ranked
documents, so Figure 5 shows the precision across the those
documents. Interestingly, after about 30 documents retrieved,
there seems to be no difference at all in the different stem-
mers.

9. GENERATIVE MODELS
All of the models above provided ad-hoc techniques for

mixing the probabilities of words in a stem class. In this

4We cannot imagine creating even 100 truly distinct algo-
rithms.

AP89

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20 40 60 80 100 120
Number of Documents

P
re

ci
si

on

Stemmed
Corpus Based Stemming
Co-occurence Based Model

Figure 5: Precision for top-ranked documents for
the AP89 collection using the co-occurrence based
mixture model that works by utilizing 1,000 differ-
ent stemming algorithms. The curve is compared
with that obtained by simple stemmed retrieval and
corpus-based stemming.

section we consider two alternate approaches to modeling
stemming, both based on a generative model.

For our first approach, consider this process for generating
a (query) word given a document model. First we generate
a random word wi from the vocabulary. Then we select a
(query) word w (which might be wi itself) that is a morpho-
logical variant of wi and output w. This term generative
model can be represented as:

Ptgen(w|D) =
∑
wi

P (w|wi)P (wi|D)

where P (wi|D) is the probability of selecting the word wi
from the model and P (w|wi) is the probability of selecting
w as the morphological variant of wi to output. We esti-
mate the latter probability by the proportion of windows
containing wi that also contain w:

P (w|wi) = n(w,wi)/n(wi)

This term generation approach is the same as the translation
models that are common in language modeling approaches
to cross-language retrieval [13] or to within-language re-
trieval [1]. The difference is that any “translations” are done
within the same language and are restricted to words within
the same stem class. (In theory, the summation is over all
words in the vocabulary, but any words w outside the stem
class have P (w|wi) = 0.)

These effectiveness of this term generation technique is
included in Table 3. It is comparable in effectiveness to the
other approaches.

Another type of generative model is based on the intuition
that a writer might think of a concept and then choose the
appropriate variant of that concept depending on the sit-
uation. Specifically, the model first generates a stem class
c and then selects from that class one of its words w to
output—by earlier notation, c = E(w), but we choose the

class and then the word. Formally,

Pcgen(w|D) =
∑
c

P (w|c)P (c|D)

where P (c|D) represents the probability of choosing a par-
ticular class and P (w|c) is the chance that the word w would
be chosen. We estimate the latter as the collection frequency
of the term w divided by the sum of the collection frequen-
cies of all the terms in the equivalence class c(i.e., common
words in the class are more likely to be generated). P (c|D)
can be calculated by counting the number of words in the
stem class c that occur in D and dividing the the length of
D (i.e., the proportion of D’s words that are in stem class
c).

The effectiveness of the class generative approach is given
in Table 3. The results are comparable to the other models.

10. CONCLUSIONS
We have examined word stemming from a language mod-

eling perspective. We showed how stemming could be brought
into the language modeling framework and how that sug-
gested a notion of partial stemming. We were able to find
parameter values that made partial stemming outperform
both stemming and not-stemming, but we did not find a
way to estimate those parameters reliably.

We then developed a model of stemming as the interpola-
tion of probability estimates from each word within a stem
class. That led to the obvious generalization that treated
different words in the class differently, allowing different
styles of stemming depending on the corpus or the context.
We showed how this idea could be integrated with corpus-
based stemming in two different ways.

Finally we presented two generative models of stemming,
one that is an analogue to a translation model and another
that is more unique to the stemming process.

In all cases we provided empirical results showing how
well the various approaches to stemming worked on a vari-
ety of collections. On these corpora with a simple unigram
language modeling approach, stemming provide definite im-
provements over not stemming (Section 5). However, the
several alternative views of stemming rarely improved on
the effectiveness of stemming and, when they did, did so
only by a small amount.

The work in this paper has not resulted in a vast improve-
ment in stemming capabilities. We hope that by treating
stemming in a range of probabilistic ways, some aspects may
be better illuminated. For example, this approach suggests
that we might be able to make use of better estimates of the
probability of two words being in the same class. It also in-
dicates that having more information about the probability
of a particular morphological variant being chosen (which
words are more common) can be readily incorporated.

It is our hope that better probability estimates may actu-
ally improve the effectiveness of retrieval systems, and that
additional work will suggest alternate and more powerful
models for representing the stemming process. We intend
to move forward in those directions. We are also pondering
the concept of creating 1,000 different stemmers.

11. ACKNOWLEDGMENTS
This work was supported in part by the Center for Intelli-

gent Information Retrieval and in part by SPAWARSYSCEN-

SD grant numbers N66001-99-1-8912 and N66001-02-1-8903.
Any opinions, findings and conclusions or recommendations
expressed in this material are the author(s) and do not nec-
essarily reflect those of the sponsor.

12. REFERENCES
[1] A. Berger and J. D. Lafferty. Information retrieval as

statistical translation. In Proceedings of ACM
SIGIR1999, pages 222–229, 1999.

[2] J. P. Callan, W. B. Croft, and S. M. Harding. The
INQUERY retrieval system. In Proceedings of
DEXA-92, 3rd International Conference on Database
and Expert Systems Applications, pages 78–83, 1992.

[3] D. Harman. How effective is suffixing? Journal of the
American Society for Information Science, 42(1):7–15,
1991.

[4] D. A. Hull. Stemming algorithms: A case study for
detailed evaluation. Journal of the American Society
for Information Science, 47(1):70–84, 1996.

[5] R. Krovetz. Viewing morphology as an inference
process. In Proceedings of ACM SIGIR93, pages
61–81, 1998.

[6] L. Larkey, L. Ballesteros, and M. Connell. Improving
stemming for arabic information retrieval: Light
stemming and co-occurrence analysis. In Proceedings
of ACM SIGIR, pages 269–274, 2002.

[7] V. Lavrenko and W. B. Croft. Relevance-based
language models. In Proceedings of ACM SIGIR2001,
pages 120–127, 2001.

[8] J. Ponte and W. Croft. A language modeling approach
to information retrieval. In Proceedings of
ACMSIGIR98, pages 275–281, 1998.

[9] M. Popovic and P. Willett. The effectiveness of
stemming for natural language access to slovene
textual data. JASIS, 43(5):191–203, 1993.

[10] M. F. Porter. An algorithm for suffix stripping.
Program (Automated Library and Information
Systems), 14(3):130–137, 1980.

[11] I. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes. Morgan Kaufmann Publishing, San
Francisco, California, 1999.

[12] J. Xu and W. Croft. Corpus-based stemming using
co-occurrence of word variants. ACM Transactions on
Information Systems, 16(1):61–81, 1998.

[13] J. Xu, R. Weischdel, and C. Nguyen. Evaluating a
probabilistic model for cross-lingual information
retrieval. In Proceedings of ACM SIGIR2001, pages
105–109, 2001.

[14] C. Zhai and J. D. Lafferty. Document language
models, query models, and risk minimization for
information retrieval. In Proceedings of ACM
SIGIR2001, pages 111–119, 2001.

[15] C. Zhai and J. D. Lafferty. A study of smoothing
methods for language models applied to ad hoc
information retrieval. In Proceedings of ACM
SIGIR2001, pages 334–342, 2001.

[16] C. Zhai and J. D. Lafferty. Two-stage language models
for information retrieval. In Proceedings of ACM
SIGIR2002, pages 49–56, 2002.

