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1. INTRODUCTION
Recent interest in the area of music information retrieval is ex-

ploding. However, very few of the existing music retrieval tech-
niques take advantage of recent developments in statistical model-
ing. In this report we discuss an application of Random Fields to
the problem of statistical modeling of polyphonic music. With such
models in hand, the challenges of developing effective searching,
browsing, and organization techniques for the growing bodies of
music collections may be successfully met. 1

Polyphonic music can be thought of as a two-dimensional stochas-
tic process. Unlike text, the musical vocabulary is relatively small,
containing at most several hundred discrete note symbols. What
makes music so fascinating and expressive is the very rich structure
inherent in musical pieces. Whereas text samples can be reasonably
modeled using simple unigram or bi-gram language models, poly-
phonic music is characterized by numerous periodic symmetries,
repetitions, and overlapping short- and long-term interactions that
are beyond the capabilities of simple Markov chains.

Random Fields are a generalization of Markov chains to multi-
dimensional spatial processes. They are incredibly flexible, al-
lowing us to model arbitrary interactions between elements of data.
Recently random fields have found applications in large-vocabulary
tasks, such as language modeling and information extraction. One
of the most influential works in the area is the 1997 publication of
Della Pietra et al. [2], which outlined the algorithms used in parts
of this paper. Berger et al. [1] were the first to suggest the use of
maximum entropy models for natural language processing.

While our work was inspired by applications of random fields
to language processing, it bears more similarity to the use of the
framework by the researchers in computer vision. In most natural
language applications authors start with a reasonable set of features
(which are usually single words, or hand-crafted expressions), and
the main challenge is to optimize the weights corresponding to these
features. This works well in natural language, where words bear
significant semantic content. In our case, induction of the random
field is the crucial step. We will use the techniques suggested by
[2] to automatically induce new high-level, salient features, such as
chords and melodic progressions.
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2. RANDOM FIELDS FOR MUSIC
For this work, the music information appropriate to our model

is pitch. A piece of music is organized into sequences of 12-bit
(octave equivalent) binary vectors, where the value of a bit (ni,t)
represents the presence or absence of an onset of the pitch value i
at time t in the sequence:

n0,1 n0,2 n0,3 n0,4 . . . n0,t

n1,1 n1,2 n1,3 n1,4 . . . n1,t

. . .
n11,1 n11,2 n11,3 n11,4 . . . n11,t

Our goal is to develop a model that will allow us to predict the
value ni,t from the values of the surrounding variables. In other
words, we would like to develop an estimate for the probability
distribution P (ni,t|{nj,s : j �=i or s �=t}). It is important to stress
that we do not want to assume independence among the variables,
or restrict the conditioning to the immediate neighbors of ni,t. On
the contrary, we believe that the value of ni,t is strongly influenced
by both its short-range and long-range neighbors in the lattice.
However, for the scope of this paper we will impose two limitations
on what kind of dependencies may exist in our field.

The first limitation we impose concerns the temporal nature of
music. In our initial model will restrict the dependencies to only
those notes that precede the target note in the sequence. For every
note ni,t we define the concept of history or neighborhood Hi,t to
include the notes that either occur before time t, or notes that occur
at time t, but have an index lower than i. Notes in Hi,t are the ones
that can be examined (observed) when we are making the prediction
regarding ni,t. In other words, we assume that the probability of
note i playing at time t is completely determined by Hi,t.

The second limitation we impose on the conditional probabil-
ity P (ni,t|Hi,t) concerns the nature of dependencies that will be
modeled by a field. For the sake of simplicity we will deliberately
restrict dependencies to binary questions of the form: “was some
set of notes S played at some point before t?”. The answer to
a question of this form will be called the feature function fS , and
S will be referred to as the support of f . Defined in this manner,
our feature functions are always binary.

The above figure depicts a few examples of musical feature
functions that may be induced to predict the probability of note
2 being played at time t. Black circles represent notes that are
part of the feature function. The boxed black circle denotes the
note n2,t. The boxed area represents the history H2,t. From
left to right, the features are: {n2,t n1,t}, {n2,t n2,t−1 n2,t−2},
{n2,t n1,t n3,t−1 n3,t−2}, {n2,t n0,t n2,t−2 n0,t−2}



3. EXPONENTIAL FORM
At this point we are ready to select the parametric form that we

will be using for computing the probabilities P (ni,t|Hi,t). There
are a number of different forms we could choose, but it turns out that
for random fields there is a natural formulation of the distribution
that is given by the maximum-entropy framework:

P̂ (ni,t|Hi,t) =
1

Zi,t,Λ,F
exp

��
�
�
f∈F

λff(ni,t, Hi,t)

��
� (1)

In equation (1), the set of scalars Λ = {λf : f ∈ F} is the
set of Lagrange multipliers for the set of structural constraints F .
Intuitively, the parameter λf ensures that our model predicts feature
f as often as it should occur in reality. Zi,t,Λ,F is the normalization
constant that ensures that our distribution sums to unity over all
possible values of ni,t.

Our goal now is to develop a probability distributionP̂ (ni,t|Hi,t)
that will accurately predict the notes ni,t in the music. The max-
imum entropy principle leads us to select the most uniform distri-
bution P̂ (n|H) that is consistent with the structure imposed by the
random field F . To clarify what we mean by the structure consis-
tency, suppose f ∈ F is a feature of the field. Let Ẽ[f ] denote
the empirical expected value of f , which is simply how often the
feature actually occurs in the training data T :

Ẽ[f ] =
1

12T

T�
t=1

11�
i=0

f(ni,t, Hi,t) (2)

Similarly, our estimate P̂ (n|H) gives rise to the predicted ex-
pectation Ê[f ] for the function f . This is simply how often our
model “thinks” that f should occur in the training set:

Ê[f ] =
1

12T

T�
t=1

11�
i=0

�
n∈{0,1}

P̂ (n|Hi,t)f(n, Hi,t) (3)

The maximum entropy principle leads us to choose a model such
that (2) and (3) are as similar as possible, but otherwise the least
amount of assumptions about the data are made.

4. FEATURE INDUCTION
Our model from the previous section depends on two primary

components. The first is the the structure of the field F itself,
which is given by a set of constraints or feature functions f∈F .
The second component is the set of weights Λ = {λf}, one for
each feature f∈F . Learning the feature weights is a heavily studied
problem and is beyond the scope of this paper [3]. In this section
we instead describe how we can incrementally induce the structure
F of the field, starting with a very flat, almost meaningless structure
and slowly improving on it.

Our approach to inducing the structure of the field closely follows
the algorithm proposed by Della Pietra et al. [2]. We start with
field that contains only individual notes, without any dependencies:
F0 = {ni,t : i = 0. . .11}. Now, suppose F = {fS} is the
current field structure. Also assume that the corresponding weights
Λ are optimized with respect to F . We would like to add to F a
new feature g that will allow us to further increase the likelihood
of the training data. In order to do that we first need to form a set
of candidate features G that could be added. We define G to be the
set of all one-note extensions of the current structure F ; in other
words, we form new candidate features g taking an existing feature
f and attaching a single note nj,s that is not too far from f in time
(in our case, not more than by two simultaneities). Naturally, we
do not include as candidates any features that are already members
of F .

Now, following the reasoning of [2], we would like to pick a
candidate g∈G that will result in the maximum improvement in the
objective function. Due to some simplying algebra made possible
by the fact that both our data (the notes ni,t) as well as the feature
functions over that data are binary, the improvement or gain offered
by g is computable in closed form. This final form is particularly
interesting, since it represents the Kullback-Leibler divergence be-
tween two Bernoulli distributions with expected values Ẽ[g] and
Ê[g] respectively:

Gain = Ẽ[g] log
Ẽ[g]

Ê[g]
+ (1 − Ẽ[g]) log

1 − Ẽ[g]

1 − Ê[g]
(4)

So the algorithm proceeds as follows:
1. Initialize (learn) weights on F0.
2. Induce a feature by enumerating candidates and adding the

one with the highest gain
3. Update all the weights of the new larger set of constraints
4. Goto 2 until there is no noticible change in likelihood
5. Return F and Λ as the induced field for that piece of music.

5. RESULTS AND CONCLUSION
We measure the performance of our model by its ability to predict

the notes in a collection of polyphonic music. The collection con-
sists of 2,806 classical pieces (16 million notes). We randomly split
the collection into 1% training and 99% testing portions, induce a
random field from the training portion and use it to predict every note
ni,t in the testing set. The random field correctly predicted 82% of
all testing notes (with a 41% precision at 40% recall). By compar-
ison, a well-tuned (high-order) Markov chain model achieves 74%
accuracy (26% precision at 40% recall).

Qualitatively, we examine the features produced by training a
model on Variation 6 of “Ah vous dirai-je, maman” by Mozart (also
known as “Twinkle, Twinkle Little Star”). Our algorithm quickly in-
duced ≈8,000 features and learned their associated weights. Those
features with the highest weights were a C major triad, the sequential
notes b-c-b, a major 3rd and a perfect 5th on C, a semi-arpeggiated
C major triad (the note c followed by the dyad e-g), an F major
triad (subdominant of C), and a perfect 5th on G (dominant of C).
These features are highly characteristic of this piece and are strong
qualitative evidence for the success of our modeling and feature
induction techniques.

Future Works: Our algorithm is a starting point for an ad hoc
music retrieval system in which a model P̂ , consisting of a set of
induced features and their associated weights, is estimated for every
piece of music in a collection. When a query is given, pieces are
ranked by the likelihood of each piece’s model having generated that
query. The main advantage of Random Fields is their flexibility:
rather than memorizing large chunks (Markov chain approach), they
rely on inducing salient features of each piece and then discerningly
matching these features to the query.
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