
Using Temporal Profiles of Queries for Precision Prediction

Fernando Diaz
∗

Center for Intelligent Information Retrieval
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

fdiaz@cs.umass.edu

Rosie Jones
Yahoo! Research Labs

74 N Pasadena Ave, 3rd Floor
Pasadena, CA 91103

jonesr@yahoo-inc.com

ABSTRACT
A key missing component in information retrieval systems
is self-diagnostic tests to establish whether the system can
provide reasonable results for a given query on a document
collection. If we can measure properties of a retrieved set
of documents which allow us to predict average precision,
we can automate the decision of whether to elicit relevance
feedback, or modify the retrieval system in other ways. We
use meta-data attached to documents in the form of time
stamps to measure the distribution of documents retrieved
in response to a query, over the time domain, to create a
temporal profile for a query. We define some useful features
over this temporal profile. We find that using these tem-
poral features, together with the content of the documents
retrieved, we can improve the prediction of average precision
for a query.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Query formulation

General Terms
Algorithms, Experimentation, Theory

Keywords
time, clarity, precision prediction, language models

1. INTRODUCTION
Many document collections, such as email and news, have

a timestamp attached to each document. Although many
systems have been evaluated using such corpora, few of these
systems have explicitely considered this temporal informa-
tion.

∗This research was carried out while this author was at Yahoo!
Research Labs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’04, July 25–29, 2004, Sheffield, South Yorkshire, UK.
Copyright 2004 ACM 1-58113-881-4/04/0007 ...$5.00.

Swan and Jensen [9] studied temporal information in the
context of retrieving Topic Detection and Tracking topics
from a stream of news. The authors perform feature dis-
covery with the matching documents, and characterize the
queries into types, based on the number of features found by
TimeMines. They describe those queries for which TimeM-
ines found many features as having many subtopics. They
suggest that queries for which few or no features were dis-
covered can be described as topics which are fairly static.

Li and Croft proposed the inclusion of temporal evidence
into the document prior of a language modeling retrieval sys-
tem [8]. The authors first manually triaged TREC queries
into temporal classes based on the distribution of known
relevant documents. Queries in particular classes were then
given different document priors. This work demonstrates
how to incorporate temporal information if we know which
temporal class a query belongs to.

We would like to investigate the role of time when the sys-
tem is ignorant of the true class or temporal distribution of
a query. To this end, we consider the task of precision pre-
diction. Cronen-Townsend et al. introduced content clarity
[3] as a content-based method for predicting system perfor-
mance given a query. We expand on this work by adding
time to the content features.

The remainder of this paper is organized as follows. We
begin in Section 2 by describing the estimation of temporal
profiles for arbitrary queries. In Section 3, we define a set
of features over these temporal profiles used in performance
prediction. In Section 4, we describe the TREC collections
and regression models used in our experiments. We conclude
in Section 5 by showing that we improve precision prediction
over the consideration of content-based features alone.

2. TEMPORAL PROFILES
One way to analyze a query is to look at the type of doc-

uments it retrieves. This can be accomplished by inspecting
the top N documents of an initial retrieval and calculating
the statistical properties of terms occurring in this set of
documents [3, 7]. In a language modeling context, we rank
the documents in the collection according to their likelihood
of having generated the query:

P (Q|D) =
�

w∈V

P (w|D)qw (1)

Here, qw is the number of times the word w occurs in the
query. Document language models, P (w|D), are estimated
using the words in the document [2]. Using this ranking, we

can build a query language model, P (w|Q), out of the top
N documents,

P (w|Q) = �
D∈R

P (w|D)
P (Q|D)�

D′∈R
P (Q|D′)

(2)

where R is the set of top N documents and there is a uniform
prior over the documents.

We are interested in describing the temporal nature of a
query. Thus we wish to examine a temporal profile of the
query, by analogy with the content-based profile described
above. Our temporal query model is initially defined as

P̃ (t|Q) = �
D∈R

P̃ (t|D)
P (Q|D)�

D′∈R
P (Q|D′)

(3)

where the granularity is on the day scale and

P̃ (t|D) = � 1 if t is equal to the document date, tD

0 otherwise

(4)

It is often helpful to smooth maximum likelihood mod-
els such as P̃ (t|Q). We used a two-stage process to smooth
our models. First, we smoothed P (t|Q) with a background
model. Background smoothing plays two roles. Firstly,
background smoothing handles potential irregularities in the
collection distribution over time. For example, certain dates
may have a large number of articles compared to others.
Secondly, background smoothing replaces zero probability
events with a very small probability, allowing us to assign
a very small likelihood of a topic being discussed on days
where we have no explicit evidence. We use the distribution
of the collection over time as a background model. This
collection temporal model is defined by

P̃ (t|C) =
1

|D|
�
D

P̃ (t|D), (5)

Our estimate can then be linearly interpolated with this
reference model such that

P
′(t|Q) = λP̃ (t|Q) + (1 − λ)P̃ (t|C) (6)

Since our model is discrete at the level of a single day,
and news stories on a single topic may occur over a period
of several days, we smooth our estimate of the model for a
single day with the model for adjacent days. These kinds
of smoothing techniques have been explored in the field of
time series analysis. We use simple moving average smooth-
ing. The smoothed estimate for a particular day is defined
according to the previous p days,

P (t|Q) =
1

φ

φ−1�
i=0

P
′(t − i|Q) (7)

In our experiments, the period, φ, is always 14, smooth-
ing the probability for a day with the 14 preceding days,
but not subsequent days. Improvements could be made by
smoothing with days both before and after the reference day.
P (t|Q) is our final estimate of the distribution.

Figure 1 shows the temporal profile for the query, “lever-
aged buyouts”.

3. FEATURES OF TEMPORAL PROFILES
In the previous section, we described the estimation of

temporal profiles. Figure 2 depicts the temporal profile for

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 100 200 300 400 500 600 700

P
(t

)

days

AP88-89

"earthquake in armenia"
collection

Figure 1: Temporal profile, P (t|Q), of the query “earth-

quake in armenia” using the AP88-89 collection. The

collection distribution, P (t|C), is shown for reference.

the query “poaching” over the AP88-89 corpus. Expect-
edly, this profile represents a query with relatively uniform
representation in the corpus. This stability is clearer when
compared to the temporal profile for the query “hostage
taking” shown in Figure 3. In this section, we will define
a set features for discriminating between temporal profiles.
These features will then be used in Section 5 to predict the
precision of queries.

3.1 Kullback-Leibler Divergence
In language model based information retrieval, query clar-

ity [3] is meant to capture the effectiveness of the query at
retrieving a precise topic. This content clarity measure as-
sumes that the distribution of words in documents retrieved
for a good query will be distinct from the background dis-
tribution. The clarity measure is defined as the Kullback-
Leibler (KL) divergence between the query language model
P (w|Q) and the collection language model. Formally, the
clarity score is defined as,

DKL(P (w|Q), P (w|C)) = �
w∈V

P (w|Q) log
P (w|Q)

P (w|C)
(8)

A larger KL divergence indicates a clearer query. We will
refer to this clarity measure as content clarity.

We propose an analog to content clarity for the temporal
domain, by measuring the difference between the distribu-
tion over time of documents retrieved in response to a query,
and the distribution over time of documents in the collec-
tion as a whole. This can be quantified by taking the KL
divergence between the collection temporal model and the
query temporal model. That is,

DKL(P (t|Q), P (t|C)) =
T�

t=1

P (t|Q) log � P (t|Q)

P (t|C) � (9)

We will refer to this feature as temporal KL divergence,
or temporalKL. The spiky nature of our example query,
“hostage taking” (Figure 3) is clearly captured by this fea-
ture. At the same time, the relatively a-temporal query,
“poaching”, exhibits a much lower KL divergence.

Note that although temporalKL shows the deviation of
documents retrieved for a query from the general distribu-
tion of documents over time, it may not allow us to distin-
guish between queries corresponding to events taking place
at a single time, (such as “turkish earthquake 1999”) and
temporally ambiguous queries (such as “iraq war”).

3.2 Autocorrelation
While the KL divergence gives us a test of similarity to the

temporal background model (P (t|C)), it does not provide a
measure of the randomness of the query time series. To test
this, we use the first-order autocorrelation of the time series,

r1 =

T−1�
t=1

(P (t|Q) − 1

T
)(P (t + 1|Q) − 1

T
)� T

t=1
(P (t|Q) − 1

T
)2

(10)

The autocorrelation of a uniform distribution is r1 = 0. A
high autocorrelation value suggests a structure to the time
series. This will be the case for queries which contain a
strong inter-day dependency. For example, autocorrelation
is high in cases where a high P (t|Q) tends to predict a high
P (t+1|Q); likewise with low values. Such behavior indicates
that there is predictability to the time series.

In Figure 3, the bursty episodes indicative of hostage
events contribute to a higher autocorrelation. Similarly,
the relative uniformity of the “poaching” query leads to a
smaller autocorrelation.

3.3 Statistics of the Rank Order of P (t|Q)

Another way to capture the dynamics of the time series is
to consider the rank order of the time series. In these cases,
we reorder the days in decreasing P (t|Q). The features then
are the statistical properties of the decay of P (t|Q). Specifi-
cally, we look at the kurtosis of the rank order. The kurtosis
is defined by,

kurtosis =
µ4

µ2

2

. (11)

where µi is the ith central moment. The kurtosis measures
the “peakedness” of the curve.

As with temporalKL, the peaky nature of Figure 3 is rep-
resented in this feature. However, in this case, we inspect
the rank ordered distribution.

3.4 Burst Model
An alternative measure for temporality follows from Klein-

berg’s burst model [5]. In this model we assume a state
machine which emits some number of relevant documents in
each state. In one state, the low or idle state, few documents
are emitted. In the other state, the event state, relatively
more documents are emitted. If our time series is assumed
to have been generated by such a machine, the idle state cor-
responds to a uniform distribution of N documents over the
time span being considered. The event state corresponds to
a faster rate of document production.

We should note here that we are dealing with the origi-
nal document sample (the top N retrieved documents) used
to estimate the temporal profile, not any estimated model,
P (t|Q), described in Section 2. That is, we look at the ac-
tual number of documents occuring on a day as opposed
to a probability. A description of the full algorithm is be-
yond the scope of this paper. We implement Kleinberg’s B2

s

automaton.

Given this automaton, we can use dynamic programming
to find the most likely state sequence which replicates the
data. For our two-state model, we are interested in the tran-
sitioning behavior of the machine. We chose three features
of this transition sequence. First, we can compute what
Kleinberg refers to as the weight of a burst. The weight of a
burst is essentially the savings of taking the burst path over
the idle path in the decoding. Second, we can compute the
average length of time the machine is in the idle state before
transitioning into the event state. Finally, we can compute
the number of transitions to the event emission state.

We expect the burst weight to show the “intensity” of
the time profile when relevant documents are found. This
may reflect queries corresponding to high-intensity situa-
tions which are distinct from the background model. The
average length of time the machine is in the idle state gives
a measure of the overall significance of the topic over the
time span in the collection. The number of transitions may
capture the number of episodes present in the collection.

The burst model for the profile for “poaching” (Figure
2) spends most of the time in the idle state and has few
transitions into the event state. Meanwhile, the model for
“hostage taking” (Figure 3) transitions 5 times and spends,
on average, half as much time in the idle state. Combined
with the intensity measure, these features point to a more
temporally structured query.

4. EXPERIMENTAL SETUP
Our goal is to evaluate the contribution of temporal fea-

tures to predicting average precision. In this section we
define a training and test collection, as well as performance
measures. We use three performance measures. We selected
Spearman rank correlation and linear regression because
their explanatory power in showing correlation between fea-
tures and average precision. We selected neural networks as
they allow us to model complex nonlinear relationships for
best predictive power.

4.1 Dataset
All retrieval experiments use the TREC collection of news

documents and queries. TREC collections often consist of
several different sources covering different periods of time.
In order to ensure that documents evenly cover the time pe-
riod, we deal with subsets of the TREC collections. Specif-
ically, we used the AP documents in the range 1988-1989
and Wall Street Journal documents from 1987-1992. Un-
less otherwise noted, the Lemur language modeling toolkit
was used for text retrieval [1]. Query likelihood ranking
was performed with a document model smoothing of 0.6.
All documents and queries were stopped using the SMART
stopword list and stemmed using the Krovetz stemmer [6].

Both the AP and WSJ collections have roughly 100 TREC
queries associated with them. Because the queries were
constructed with respect to the larger collections, we often
found queries with few relevant documents in our AP and
WSJ collections. Therefore, we only used queries with more
than 15 relevant documents in our collections.

4.2 Spearman Rank Correlation
The Spearman rank correlation coefficient allows us to

examine the relationship between predictor and predicted
variables, without assuming any particular structure to that
relationship. For example, with the Spearman rank correla-

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 100 200 300 400 500 600 700

P(
t)

days

AP-88-89

poaching
collection

Feature Value Value’

temporalKL 0.247 0.000
autocorrelation 0.921 0.611
kurtosis 2.476 0.000
burst weight savings 5.313 0.001
average amount of time in idle state 341.0 0.993
number of transitions into event state 2 0.000
content clarity 1.796 0.451

average precision 0.565 0.565

Figure 2: Temporal profile and raw and normalized feature values for the query “Poaching” over the AP88-89

collection. We normalized feature values by shifting and scaling them to lie between zero and one. This query had

the minimum score for both temporal KL and number of transiitons into the event state, and so the scores for both

of these features are zero after normalization.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 100 200 300 400 500 600 700

P(
t)

days

AP-88-89

hostage taking
collection

Feature Value Value’

temporalKL 0.570 0.126
autocorrelation 0.938 0.719
kurtosis 3.921 0.124
burst weight savings 8.465 0.025
average amount of time in idle state 132.6 0.225
number of transitions into event state 5 0.429
content clarity 1.422 0.265

average precision 0.139 0.139

Figure 3: Temporal profile and raw and normalized feature values for the query “Hostage Taking” over the AP88-89

collection. We normalized feature values byshifting and scaling them to lie between zero and one.

tion coefficient, we can measure whether increases in content
clarity lead to increases in average precision, without assum-
ing that these are, for example, linear increases. Positive
correlation using the Spearman rank correlation test tells us
that there is a relationship between the variables. However,
it does not tell us how to predict one variable from the other.
The Spearman rank correlation is also not defined over mul-
tiple variables simultaneously. Thus we cannot use it to find
whether we can improve our understanding of the average
precision of a query by combining predictor variables.

4.3 Linear Regression
Linear regression allows us to combine multiple predictor

variables, to predict linear changes in the average precision.
That is, we are finding a linear relationship between our
predictor variables and average precision. The coefficients
of the variables show us their relative importance in predict-
ing average precision, though two variables which are corre-
lated may wind up with lower coefficients. For this reason
we will also show the coefficients for each variable when used
in isolation for predicting average precision. Since linear re-
gression looks for linear relationships between variables, it
is a stronger test with strong assumptions about the rela-
tionship between variables. We are less likely to find sta-
tistically significant correlations with linear regression than
with Spearman rank correlation, particularly when the un-
derlying relationship is nonlinear.

4.4 Neural Networks
Neural networks allow us to model nonlinear relationships

between combinations of predictor variables. The hidden
layers allow the representation of sub-combinations of fea-
tures, which may aid with prediction. A neural network
outputs a prediction of average precision for any input, and
we can then compare the prediction with the actual average
precision for a query. We measure the difference between
actual and predicted average precision.

5. PREDICTING AVERAGE PRECISION
Cronen-Townsend et al. [3] showed that content clarity

correlates with average precision, when using the Spearman
rank-correlation test. This allows an information retrieval
system to rank a set of queries by the likely quality of re-
sults. This may allow further processing or feedback from
the user to improve results. However, it does not permit
the system to predict the likely precision of any individual
query, beyond a binary classification. In this section we an-
alyze the Spearman rank correlation of temporal features
with average precision. We also build models to predict the
average precision of queries using a combination of temporal
and content features, that is, using the temporal features we
described in Section 3 along with content clarity as a fea-
ture describing the content. While any relationship between
these features and average precision may be nonlinear, we
first perform linear regression. This will allow us to compare
the importance of features by examining their coefficients.
We then use our measures of temporal clarity along with
content clarity as input features to a neural network for pre-
dicting average precision.

For all experiments described in this section, we normalize
the input features to lie between zero and one, by shifting
and scaling the values.

AP WSJ
Feature R2 Prob R2 R2 Prob R2

autocorrelation 0.36 0.01 -0.05 0.72
burstAverageIdleTime 0.10 0.50 -0.02 0.87
burstWeightSavings 0.28 0.05 0.05 0.73
contentClarity 0.54 5.0e-05 0.50 2.0e-04
kurtosis 0.14 0.32 0.22 0.12
temporalKL 0.01 0.94 0.14 0.31

Table 1: Spearman rank correlation coefficient for cor-

relation with average precision, for content clarity, and

our proposed temporal features, for AP and WSJ. Sta-

tistically significant rank-correlations are shown in bold

along with their significance levels.

Independent Variables Correlation Coefficient
AP WSJ

train test train test
content clarity 0.33 0.21 0.41 0.36
temporal features 0.40 0.15 0.38 0.17
content + temporal features 0.71 0.52 0.75 0.60

Table 2: Correlation from Linear Regression: Average

precision is the dependent variable. Independent vari-

ables are content clarity, and our measures of temporal

clarity. Test correlation was found by cross-validation,

by fitting the line using training data, then measuring

correlation with held-out test data. For the row labeled

“content + temporal features” we use all our temporal

features, as well as content clarity as inputs to the linear

regression.

5.1 Spearman Rank Correlation
Table 1 shows the Spearman rank correlation with av-

erage precision for each feature in isolation. We see that
the correlation of content clarity with average precision is
much higher than all other features, and that this correla-
tion is statistically significant. This reproduces the results
obtained by Cronen-Townsend et al. [3]. For our tempo-
ral features, the correlation is much lower, and for most
features the measure of correlation is not statistically signif-
icant. This means that most of the temporal features are
not predictive of average query precision, when used in iso-
lation. However, note that a combination of these features
may be predictive of average query precision. For the AP
dataset, autocorrelation was positively correlated with the
rank of average query precision at the 0.01 level, and burst
weight savings was correlated at the 0.05 level. That means
these two features may contribute to an improved predictive
model of average precision, when combined with each other
and content clarity, if they are not redundantly correlated
with one another.

5.2 Linear Regression
Table 2 shows the correlation using linear regression lines

between average precision and measures of query clarity.
Test correlation was found by cross-validation, by fitting the
line using training data, then measuring correlation with
held-out test data. Note that for both AP and WSJ, the
combination of content and temporal measures shows a much
stronger correlation with average precision than content clar-
ity or temporal features alone. This means that our mea-

Feature Coeff. AP (s2) Coeff. WSJ (s2)
autocorrelation 0.43 (0.22) -0.24 (0.19)
burstAverageIdleTime - (0.19) 0.70 (6.58)
burstNumTransitions 0.19 (0.19) 1.0 (8.23)
contentClarity 0.97 (0.34) 0.96 (0.13)
kurtosis 0.28 (0.31) - (0.21)
temporalKL -1.3 (0.45) -0.83 (0.26)

Table 3: Coefficients of individual features in linear

ridge regression for predicting average precision for AP

and WSJ data. In brackets is shown the sample stan-

dard deviation over 10,000 iterations of bootstrapping

pairs linear regression, without normalization.

sures of temporal clarity contribute to the understanding
of the likely effectiveness of a query with respect to a cor-
pus. Note also that the correlation scores remain high when
tested using cross-validation.

The variables with strong predictive power are shown in
Table 3 with their coefficients for predicting average pre-
cision. The coefficients shown are with ridge regression,
which performs normalization and removes potentially ir-
relevant feature. This led to the best predictive results. To
estimate the standard deviation of the coefficients, we per-
formed pairs bootstrapping for 10,000 iterations, without
normalization. Thus these standard deviations give an up-
per bound on the uncertainty of the estimates of coefficient
strength. Note that while some of the features are unstable,
we obtain high correlation scores, even on a held-out set of
data not used for fitting the regression lines.

Interestingly, the magnitude of the coefficient for content
clarity is not the largest. We find that temporalKL has a
negative coefficient. This shows that queries with temporal
profiles very different from the background model are likely
to have low average precision. This suggests that queries
which retrieve documents from an unusual subset of days
in the collection are likely to perform poorly. These may
be good candidates for a relevance feedback interface which
highlights the days on which retrieved documents appeared,
and allows the user to select the appropriate timeframe. We
discuss a possible interface of this form in related work [4].

How do we explain temporal KL, which does not predict
average precision when used in isolation, but which has a
negative coefficient in conjunction with the other features?
We can infer that it explains some parts of average precision
which are not explained by the other features, but only when
we know the values of the other features.

5.3 Neural Networks
Neural networks can be used to learn non-linear functions.

We used the Weka implementation of neural networks [10].
Our target function is average precision. In all cases we used
one hidden layer. In the case of content clarity only as an
input feature, we used a single node in the hidden layer. In
all other cases we used three nodes in the single hidden layer.
All input features are connected to all nodes in the hidden
layer. We used a learning rate of 0.3 and momentum of
0.2, 10% validation set and 500 training epochs, with early
termination of training if the accuracy on the validation set
grew worse over 20 epochs. We used 80% of the data for
training, 10% for validation, and 10% for testing.

As a baseline, we guessed the mean average precision over

Input AP WSJ
Features RMSE RRSE RMSE RRSE
baseline 0.20 100% 0.22 100%
NN: content clarity 0.53 101% 0.18 87%
NN: temporal features 0.31 98% 0.27 131%
NN: content +
temporal features 0.27 88% 0.13 63%

LR: content +
temporal features 0.23 92% 0.18 82%

Table 4: Error in predicting average precision using a

neural net with 1 hidden layer. RMSE is root mean

squared error of the predicted value on a held-out test

set. RRSE is root relative squared error on the held-out

test set. In the final row we show these measures on the

model built with linear regression. We see that neural

networks performed better at prediction than linear re-

gression, so we gain predictive power from the non-linear

transformations.

all queries. The mean average precision was 0.28 over all
queries on WSJ, and 0.30 over all queries on AP. When we
use this value for average precision for every query in the test
set, we can calculate how much each query deviates from this
level of average precision, and calculate root-mean squared
error (error in terms of difference between predicted and
actual query average precision), and root relative squared
error (error in terms of a percentage of the actual average
precision of a query). With these baseline average precision
values, predicted average precision was on average 0.20 from
the true value (root mean squared error), with 100% root
relative squared error, as shown in the first row of Table 4.
By using the other features as input to a neural network, we
hope to gain predictions of average precision for each query
which are more reliable than guessing these baselines.

We see in Table 4 that content clarity in isolation reduced
the root relative squared error for WSJ to 87%, and that
temporal features in isolation do not reduce the root relative
squared error. However, the final row of Table 4 shows that
using the combination of temporal and content clarity with
a neural net, we can reduce both the root mean squared
error and the root relative squared error from the default.
This means that we are able to predict average precision
with greater accuracy than the default, and greater accuracy
than using content clarity alone. In the final row we show
these measures on the model built with linear regression.
We see that neural networks performed better at prediction
than linear regression, so we gain predictive power from the
non-linear transformations.

6. CONCLUSIONS AND FUTURE WORK
We have presented the concept of temporal profiles of

queries. In addition to defining this representation of a
query, we also presented results on the use of these pro-
files in information retrieval settings. We showed that we
are able to improve prediction of the average precision of a
query by adding information from the temporal profile.

This is an important step towards self-diagnosing infor-
mation retrieval systems, that perform extra computation
or relevance feedback, or elicit other information from the
user or a user profile, depending on expected quality of the
results. We showed that the temporal profile of a query

can provide valuable information about the likely quality of
query results. While some of our features proved unstable
depending on the sample, we were able to improve prediction
across two corpora. This opens up a broad range of research
questions, about identifying features for prediction of aver-
age precision, both in the temporal domain and using other
features of queries and document collections. Another im-
portant question is whether models of query precision gen-
eralize across query sets and document collections.

7. ACKNOWLEDGMENTS
This work was supported in part by the Center for Intelli-

gent Information Retrieval. Any opinions, findings and con-
clusions or recommendations expressed in this material are
the authors’ and do not necessarily reflect those of the spon-
sor. We would like to thank Ed Fox, Dave Pennock and the
anonymous reviewers for helpful comments and feedback.

8. REFERENCES
[1] J. Allan, J. Callan, K. Collins-Thompson, B. Croft,

F. Feng, D. Fisher, J. Lafferty, L. Larkey, T. N.
Truong, P. Ogilvie, L. Si, T. Strohman, H. Turtle, and
C. Zhai. The lemur toolkit for language modeling and
information retrieval.
http://www-2.cs.cmu.edu/˜lemur/, 2003.

[2] W. B. Croft and J. Lafferty. Language Modeling for
Information Retrieval. Kluwer Academic Publishers,
2003.

[3] S. Cronen-Townsend, Y. Zhou, and W. B. Croft.
Predicting query performance. In Proceedings of the
25th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR 2002), pages 299–306, August 2002.

[4] F. Diaz and R. Jones. Temporal profiles of queries.
Technical Report YRL-2004-022, Yahoo! Research
Labs, 2004.

[5] J. Kleinberg. Bursty and hierarchical structure in
streams. In Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD 2002), pages 91–101, July 2002.

[6] R. Krovetz. Viewing morphology as an inference
process. In Proceedings of the Sixteenth Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR
1993), pages 191–203, 1993.

[7] V. Lavrenko and W. B. Croft. Relevance-based
language models. In Proceedings of the 24th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR
2001), pages 120–127. ACM Press, 2001.

[8] X. Li and W. B. Croft. Time-based language models.
In Proceedings of the 2003 ACM CIKM International
Conference on Information and Knowledge
Management (CIKM 2003), pages 469–475. ACM,
November 2003.

[9] R. Swan and D. Jensen. TimeMines: Constructing
timelines with statistical models of word usage. In
Proceedings of the 6th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD 2000), pages 73–80, August 2000.

[10] I. H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques with Java

Implementations. Morgan Kaufmann, 1999.
http://www.cs.waikato.ac.nz/ml/weka/.

