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ABSTRACT
Query expansion is a well-known technique that has been
shown to improve average retrieval performance. This tech-
nique has not been used in many operational systems be-
cause of the fact that it can greatly degrade the performance
of some individual queries. We show how comparison be-
tween language models of the unexpanded and expanded
retrieval results can be used to predict when the expanded
retrieval has strayed from the original sense of the query. In
these cases, the unexpanded results are used while the ex-
panded results are used in the remaining cases (where such
straying is not detected). We evaluate this method and oth-
ers on a wide variety of TREC collections and show how to
automatically compute a decision threshold for a collection.
We demonstrate the ability of the method to enhance the
effectiveness and reliability of the query expansion technique
in information retrieval.
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1. INTRODUCTION
When examining the results of any query expansion method

over a large number of queries, one always finds that nearly
equal numbers of queries are helped and hurt by the tech-
nique. A good technique for a given type of query and col-
lection helps, on average, slightly more than it hurts. Thus
the best simple strategy to improve the average performance
is often to treat every query the same and expand every one.
This strategy has the unfortunate effect of making the re-
sults for certain queries much worse than for retrieval with-
out expansion.

In this paper we develop a method for discriminating be-
tween queries and deciding when not to use the results of an

expansion technique that is likely to hurt the retrieval per-
formance for that particular query. We explore our method
in a language modeling framework where ordinary retrieval
is done by the query likelihood method[18] and expanded
retrieval is done using relevance models[15, 8]. Our best
method uses only the documents and their ranks in the
ranked list to form language models. So, since our method
compares models of each ranked list of documents it can
be applied to any choice between two retrieval techniques,
whether they are based on language modeling or not. One
of the ranked lists could be influenced by user feedback, for
example.

These techniques are important because they are the first
reliable steps at solving the crucial problem of consistency in
applying query expansion to real systems. Thus the correct
measure of these techniques is not in their admittedly small
effect on global retrieval effectiveness. Although they have
some success at detection of bad-to-expand queries, this is
only part of their significance. Most importantly they pro-
vide an extensible framework that makes the first steps to-
ward solving a previously unassailable, but very important,
problem.

First we examine the unexpanded and expanded retrieval
methods we use. In the next section we introduce three
methods to predict queries for which expanded retrieval per-
forms poorly relative to unexpanded retrieval and compare
the methods. We go on to examine how to set a deci-
sion threshold for the best method, model comparison, to
make the method applicable to real collections of documents.
Then we discuss related work, future work on our methods,
and conclusions.

2. RETRIEVAL
The first step in predicting poor expansion results is per-

forming expanded and unexpanded retrievals themselves.
The difference in the average precision of these retrievals
(expanded minus unexpanded) becomes the figure-of-merit
of most interest to us for developing and testing methods.
We term this average precision change the improvement of
the query on expansion, and we seek to predict when it will
be significantly negative. By working with TREC test col-
lections, where the improvement can be calculated, we seek
to develop a method robust enough to be applied confidently
to new collections.

In our case, we adopt a language modeling framework[9]
where the simplest retrieval technique, query likelihood, is



the obvious choice for our unexpanded (baseline) result for
each query. For our expanded retrieval results for each
query, we use relevance model retrieval[15, 8]. Relevance
model retrieval is a conceptually simple, principled, and ef-
fective expansion technique that fits cleanly into our lan-
guage modeling framework. It ranks the documents by the
closeness of their language models to a mixture of models
of top documents for the query, where the mixing weight
for each document model is its likelihood of generating the
query.

2.1 System details
Our collections are indexed in standard Lemur fashion[16]

with upper case and punctuation ignored. Single characters
and digits and terms on the InQuery stop list[3] are removed
and Krovetz stemming[13] is applied.

Throughout this we work we use a language modeling
framework. In our case, a language model refers to an es-
timated probability distribution over vocabulary terms, ap-
proximated as occurring independently. We utilize two kinds
of language models, document models of the language usage
in individual documents, and a collection model where the
probability estimate for each term is simply taken to be the
relative frequency of the term in the entire collection of doc-
uments.

2.2 Unexpanded retrieval
For unexpanded retrievals, we use query likelihood[18]

where each document is scored by the likelihood of its model
generating the query.

To calculate this score, we construct a smoothed uni-
gram language model, P (w|D), for each document, D, which
is simply a probability distribution over term occurrences.
Here w represents any term, but we only need to compute
the probability estimates, P (w|D), for w being a query term
for this calculation. We perform a query likelihood retrieval
by scoring each collection document, D, by

P (Q|D) =
�
q∈Q

P (q|D), (1)

where Q is the query and q is a query term[18]. P (Q|D) is an
estimate of the likelihood of a document’s model generating
the query terms under an independence approximation.

In constructing the document model probability estimates
for query terms, we found it important to use Dirichlet
smoothing[21] rather than the linear smoothing originally
used to compute clarity scores[11]. In particular,

P (w|D) = λPML(w|D) + (1 − λ)PML(w|coll), (2)

where PML(w|D) is simply the number of times w occurs
in document D divided by the number of term occurrences
in D. PML(w|coll) is an identical estimate for the entire
collection. For Dirichlet smoothing λ is different for each
document, with

λ =
‖D‖

‖D‖ + µ
, (3)

where ‖D‖ is the number of term occurrences in D and µ is
a constant. Substitution of Equation (3) into Equation (2)
and simplification yields the usual expression for Dirichlet-
smoothed estimates given in [21].

We used a consistent Dirichlet prior of µ = 1000 across
all collections, for simplicity. This choice gave reasonable

retrieval performance across collections and allowed us to
focus on the prediction task, rather than tuning the retrieval
task in a way that would not be possible with a new collec-
tion without test queries and relevance information.

2.3 Expanded retrieval
The key to expanded retrieval with a relevance model is

estimating the relevance model itself. Each collection docu-
ment is then scored for retrieval by the closeness of its model
to this relevance model. From the query expansion point of
view, the relevance model is the expanded query that has a
probability (weight) for every term in the vocabulary[15].

2.3.1 Relevance models
The first step in estimating a relevance model was already

done for the unexpanded retrieval; it is the scoring of doc-
uments with Equation (1). We use the identical scores de-
scribed above and used for the unexpanded retrieval. From
P (Q|D) we obtain P (D|Q) by Bayes Rule:

P (D|Q) ∝ P (Q|D)P (D). (4)

Since P (Q) does not depend on D the proportionality holds.
With uniform prior probabilities, P (D), for the documents
this amounts to a normalization since we require P (D|Q) to
sum to 1 over documents.

The second step actually estimates the relevance model,
P (w|Q), as a weighted average of document models, with
the estimates of P (D|Q) serving as mixing weights:

P (w|Q) = �
D∈R

P (w|D)P (D|Q). (5)

The documents models that are mixed are linearly smoothed
with λ = 0.9 in Equation 2. Using the P (D|Q) as mixing
weights ensures that documents containing as many of the
query terms and frequently dominate the average. Models
of the top 50 documents are mixed with Equation 5 and the
models are truncated to the top 1000 terms for efficiency.

2.3.2 Relevance model retrieval
The actual retrieval is a third step where each document

is scored by the closeness (judged with cross-entropy) of a
its model to the relevance model constructed in the first
two steps. Here the document models over all terms are
estimated using linear smoothing with λ = 0.2 in Eq. 2.

Each of the three steps in relevance model retrieval re-
quires individualized smoothing for good performance[14].
The choices of smoothing types (Dirichlet, linear, and linear,
respectively) and parameters given above were made on the
basis of reasonable mean average precision across different
collections. We kept the parameters constant across collec-
tions to keep the emphasis on application of our methods
to new collections where relevance information is not avail-
able to tune the parameters. But since we did not tune the
parameters for each collection, our results are not strictly
comparable to papers on retrieval methods where many pa-
rameters are tuned for each test collection individually for
best retrieval performance. We state all the parameter set-
tings we use, in order to allow reproduction of our results.

3. EXPANSION PREDICTION TASK
We now introduce three different methods we have tried

to predict queries that perform poorly when expanded. The



three methods are the clarity method, the overlap method,
and the model comparison method. The first method uses
the clarity score of a query as a potential predictor, the
second uses the overlap in the document IDs that occur in
the top ranks of expanded and unexpanded ranked lists,
and the third, and most successful, uses a direct comparison
between models of the unexpanded and expanded ranked
lists.

3.1 Clarity method
Our simplest idea for expansion prediction is to base it

on the clarity measure used for predicting the average preci-
sion of document retrieval[11]. If a query has a high clarity
score in a collection (predicting an effective query likelihood
retrieval), perhaps expanding it is unwise, on average. This
idea is the basis of the clarity method.

To calculate a clarity score for a query in a collection we
estimate a relevance model for the query in the collection, as
described previously. The same relevance model computed
for relevance retrieval (see Section 2.3.1) is used for clarity
score calculation in our implementation. A query is scored
by how different its relevance model is from an overall aver-
age model of the collection. We now describe clarity scores
in more detail.

3.1.1 Weighted clarity scores
The clarity score was originally defined[10] as the rela-

tive entropy (also known as the Kullback-Liebler(KL) di-
vergence[7]) between a query’s relevance model in the collec-
tion, P (w|Q), and a model of the entire collection P (w|coll)
by

clarity = D(P (w|Q)||P (w|coll)) (6)

For the collection model in this study we mean a language
model with a relative frequency in the entire collection used
to estimate the probability of each term.

We extend clarity scores by using the weighted relative
entropy[19, 1]

D(A||B; U) =
1

E(A;U)
�

events,i

uiai log2

ai

bi

, (7)

where A and B represent probability distributions and U
represents a vector of weights over events. The normaliza-
tion factor E(A;U) = � j ajuj , where ai and bi represents
the probability of event i according to the A and B distri-
butions, respectively. The weighted relative entropy is the
expectation value of the quantity Log2

A
B

using a weighted
version of the A distribution instead of the plain A distri-
bution as in standard relative entropy(KL).

In the cases we present, an event is the occurrence of a
term. A generalized clarity measure is then defined by the
weighted relative entropy from the relevance model, P (w|Q),
to the collection model P (w|coll)

clarity = �
w∈V

u(w)P (w|Q)

� w′∈V u(w′)P (w′|Q)
log2

P (w|Q)

P (w|coll)
, (8)

where u(w) are the term weights and V is the vocabu-
lary of the collection. When u(w) ≡ 1 for all terms in
the vocabulary this expression is just the usual Kullback-
Liebler(KL) divergence[7] and leads to the clarity scores
used previously[11]. The ordinary KL divergence is the ex-
pectation value in the first (A)distribution of the difference
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Figure 1: The rank correlation between clarity score
and query likelihood document retrieval average
precision as a function of the query term weight,
γ, for the 1804 queries of the TREC 9 Query Track
aggregate against TREC Disk 1.

in the log probabilities of an event in the two distributions
(since log2

a
b

= log2 a− log2 b. The weighted relative entropy
is an expectation value of the same quantity with a weighted
version of the first distribution being used to calculate the
expectation value.

We became interested in this formulation of clarity scores
as we realized that differences in the probability estimates
for some terms are more meaningful than others. This dif-
ference can be described in the weight or utility vector u(w).

The most important term information in information re-
trieval is whether or not each vocabulary term occurs in the
query. To reflect this, we tried giving each query term weight
u(q) = γ and all other terms weight u(w) = 1. Here γ rep-
resents how many times more significant the occurrence of
a query term is than the occurrence of another term in a
document. We also tried giving each query term, q, weight
n(q)γ where n(q) is the number of times the given term
appears in the query. Even in test collections such as the
TREC 9 QueryTrack aggregate where query terms do re-
peat on occasion, the results of the two schemes are nearly
identical. With either implementation, the identical large
improvement is seen in the rank correlation between the
clarity scores and the average precisions of the queries.

As shown in Figure 1 for the TREC 9 Query Track, the
clarity score predicts average precision better as the weight
of query terms in measuring the degree difference from the
collection model is increased. The value R = 0.50 at γ = 1
(unweighted) is significantly higher than the value of R =
0.39 reported for the original clarity score method for the
Query Track aggregate[11]. This difference is due to our use
of Dirichlet smoothing, rather than linear smoothing, for the
scoring of documents by query likelihood. As the relative
importance of query terms to the comparison is increased,
the correlation rises to a maximum of R = 0.62 at γ = 30.

At γ = ∞, the clarity score is computed over just the
terms that appear in the query. This setting gives more
correlation with retrieval performance (R = 0.53) than using
the entire relevance model for comparison (R = 0.50). Thus,
in applications requiring retrieval precision prediction where
a full relevance model is not needed, a reduced relevance
model may be computed solely for the purpose of clarity
score computation. For these reduced relevance models the
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Figure 2: A scatter plot of ∆ average precision
versus the clarity score for each of the 50 queries
of TREC 8. The ∆ average precision is the value
with relevance retrieval(Rel) minus the value with
query likelihood retrieval(QL). The clarity scores
are calculated as described in Section 3.1.1, without
weighting, on models formed as described in Section
2.3.1.

probabilities only need be estimated for the query terms
themselves. This calculation can be done with just the lists
of documents containing each query term and the number of
term occurrences in each. Since this information is typically
stored in indices for information retrieval, this computation
can be made extremely efficient.

The optimal value of γ for predicting retrieval perfor-
mance does not vary much over the collections we tested.
Very good performance is always found for γ ≈ 30.

Initial tests with the original formulation of clarity scores
[10, 11] showed little relationship between clarity score and
expansion gains, but we found that using Dirichlet smooth-
ing to score the documents improved the predictive ability of
the relevance models for predicting expansion improvements
as well as predicting document retrieval performance.

3.1.2 Results
The clarity method has the advantage that it does not

require doing the expanded retrieval to calculate the score.
Bad-to-expand queries have a high score quite reliably, as
well, as seen in Figure 2. Unfortunately, good-to-expand
queries also rather frequently have high scores. For example,
The query “salvaging, shipwreck, treasure” which is good-
to-expand has almost the same high clarity score as “super-
critical fluids,” which is bad-to-expand. Since we know no
way of distinguishing the two kinds of high-scoring queries,
automatic thresholding of this score seems impossible. The
most a system could say, given a high-scoring query, is that
the query might behave badly on relevance model expan-
sion. In such a case a system could save the cost of doing
the expanded retrieval sometimes by showing the query like-
lihood retrieval results and making the expanded retrieval
optional for the user. Query term weighting was not con-
sistently helpful (as it is in retrieval prediction). The same
weighted comparisons become crucial in the model compar-
ison method, however. The effect of the clarity method
on global retrieval effectiveness (using unweighted clarity
scores) is seen in the fourth column of Table 1, when an
estimated Bayes optimal decision threshold is used.

3.2 Overlap method
The overlap method measures the overlap of document
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Figure 3: A scatter plot of ∆ average precision and
the overlap score for each of the 50 queries of TREC
8. The ∆ average precision is the value with rele-
vance retrieval(Rel) minus the value with query like-
lihood retrieval(QL). The overlap score is the frac-
tion of the top 100 documents in the unexpanded
ranked list that are also in the top 100 of the ex-
panded ranked list. The same 7 queries are labelled
as in Figure 4.

IDs in the unexpanded and expanded ranked list. It was
proposed by Chris Buckley and Ellen Voorhees while sum-
marizing the work of the recent ARDA Northeast Regional
Research Center (NRRC) workshop on Reliable Information
Access (RIA) and is the only method competing with the
clarity method and the model comparison method that we
know of.

Though the method was a work in progress at the time
we learned of it, we have attempted to reproduce it for the
sake of comparison. We implement it as the simple fraction
of documents in the top N documents of the unexpanded
ranked list that are also present in the top N documents of
the expanded ranked list. See Sections 2.2 and 2.3 for how
we carry out the retrievals. For best prediction we settled
on N = 100 for the overlap scores in this paper.

This score is low when the two retrievals do not share
many documents in the top N and a low score provides ev-
idence that expansion would hurt the results. This is the
opposite of the two statistical measures (clarity and model
comparison) we propose here, where a high score is evidence
not to expand the query. The improvement (change in av-
erage precision on expansion) is shown against the overlap
scores for each of the 50 TREC 8 queries in Figure 3.

The only complication in implementing the technique is
posed by the rare queries that returned fewer than 100 re-
sults for query likelihood retrieval in Lemur[16], the informa-
tion retrieval system we use for our implementations. This
is possible since Lemur currently only scores documents in
query likelihood retrieval that contain at least one query
term. So in the case of rare query terms that only occur in
a small number of collection documents it is possible to get
fewer than 100 documents scored. In these cases we simply
padded the lists with null documents so that there were 100
documents for the overlap calculation. This implementation
should not affect the performance of the technique since it
only affects a couple queries per collection and it results in
consistently low overlap scores for these queries (since their
max possible overlap is limited to n/N where n is the num-
ber of documents returned by the system). Even if this score



Collection Queries Relevance Clarity Document ID Model Comparison Perfect
Model Overlap top terms Choice

AP88-90 #51-#150 title 0.2875 0.2744 flip ident 0.3046
TREC
1+2+3

#51-#150 title 0.2490 ident flip ident 0.2589

TREC 5 #251-#300 title 0.1609 0.1556 0.1526 0.1644(∗) 0.1837
TREC 6 #301-#350 title 0.2013 0.2168(∗) 0.2141(∗) 0.2115(∗) 0.2468
TREC 7 #351-#400 title 0.2524 0.2229 0.2005 0.2212 0.2711
TREC 8 #401-#450 title 0.2715 0.2719(∗) 0.2692 0.2756(∗) 0.3011
Query Track
Aggregate

1804 Variations:
#51-#100

0.2219 0.2082 0.1707 0.2188 0.2387

Table 1: Selective mean average precision(MAP) with estimated Bayes optimum thresholds chosen using the
full relevance information in each test set. The fourth line indicates that on the TREC 6 ad hoc collection
with the titles of TREC topic #301-#350 as queries the performance with all relevance model retrieval is
0.2013. The “Perfect Choice” values are the upper bound MAP if the best retrieval method is chosen on a
query-by-query basis knowing the performance of each method. “ident” indicates that the score distribu-
tions for positive improvement queries and negative improvement queries are nearly identical and “flipped”
indicates the opposite relationship between extreme scores and performance is exhibited by the estimated
score distributions. A (∗) indicates a mean average precision higher than using relevance model retrieval for
every query.

is artificially low, that generally leads to the correct decision
for these rare queries: do not expand because the overlap is
very low.

3.2.1 Results
The overlap method has the advantage that, once the

two retrievals are done, it is very simple to compute. As
seen in Figure 3, bad-to-expand queries usually have low
overlap scores. However, the method suffers from the same
problem that the clarity method does, namely some good-
to-expand queries have scores that are similar to scores of
bad-to-expand queries. For example, the overlap score of
the good-to-expand query, “tourists, violence,” is only a lit-
tle higher than the score of the bad-to-expand query “Lyme
disease.” Thus a low overlap score could only indicate a
suspicious query, not one that would perform badly with
expansion on average.

The effect of the overlap method on global retrieval ef-
fectiveness, when an estimated Bayes optimal threshold is
used, is seen in the fifth column of Table 1.

This leads us to the model comparison method, which
takes into account commonalities in word usage between
ranked lists, rather than just commonalities in document
IDs. We describe this method next.

3.3 Model Comparisons
The model comparison method, our best method for ex-

pansion prediction, compares models of the language usage
in the unexpanded retrieval ranked list (model A) and in the
expanded retrieval ranked list (model B). With this com-
parison we attempt to sense when an expanded retrieval
has strayed from the original sense of a query. Compari-
son scores focussed on important terms in the unexpanded
model are high when expanded results use these important
terms much less frequently than unexpanded results. This
usually indicates a poor expansion outcome (negative im-
provement). We next explain how we estimate ranked list
language models and how we compare them.

3.3.1 Ranked List Models
A ranked list model is a mixture model using the rank of

a document in a ranked list to compute its mixing weight.
No probability of relevance (or similar) score according to
a retrieval system is required. This freedom is necessary
for the use of ranked list models in our language modeling
implementation of the model comparison method, since the
cross-entropy scores in relevance model retrieval are not suit-
able for mixing documents. Yet, they rank successfully, and
this technique uses only the ranking to calculate the mixing
weights.

Instead of estimating P (D|Q) using Equation 4 we esti-
mate it directly from the rank of the D in the ranked list for
Q with P (D|Q) = P (rank of D|Q), where P (rank|Q) is the
probability that a document at that rank is relevant (ap-
proximated as independent of Q). We then use Equation 5
to mix the documents and form the ranked list model.

For this study, we use equal probabilities for the top 100
documents in a ranked list and estimates of zero for all other
documents. Thus, each ranked list model used in this study
is an equal mixture of (language models of) the top 100
documents in a ranked list. The model comparison method
simply compares two ranked list models, one for the un-
expanded ranked list and one for the ranked list with ex-
pansion. Equal mixture models of top documents proved
the best simple method, but there is clearly room to hone
these models further. We used a linearly smoothed docu-
ment model with λ = 0.6 to mix the ranked list models for
this study.

3.3.2 Comparing ranked list models
The comparison is done with the weighted relative en-

tropy, Equation 7, as D(A||B; U). We have tried several
methods for the weights U . Using equal weights over all
terms (standard KL divergence) assumes differences between
the models are equally meaningful for all terms in the vo-
cabulary.

A crucial insight is that differences in the usage of all
terms are not equally important. In particular, we want



the comparison to weight the most important terms in the
unexpanded model highly.

Weighting terms based on their probabilities leads to mea-
sures with little relation to expansion performance since it
compares the two models on many generic, commonly oc-
curring terms as well as those that are genuinely important
to the unexpanded model.

To pick the top terms we use the top T terms in contri-
bution to the clarity score of the unexpanded model. We
compute the clarity contributions,

contrib(w) = P (w) ∗ Log2[P (w)/P (w|coll)], (9)

where P (w) is the probability of a term w in the model and
P (w|coll) is the probability of the term in the entire collec-
tion and take the top T terms on this score. Since these
are the terms in the unexpanded model that are most un-
usual relative to the overall collection statistics, this forms
a suitable measure of importance in the model. These top
T terms are all given weight 1 and all other terms are given
weight 0. There is obviously room here for possible improve-
ment of the method, but tests show that the method is not
very sensitive to T as long as it is in the range 5 to 50. By
T = 100 the value of the score as a predictor of expansion
failures suffers noticeably.

The model comparison score is an expectation of the dif-
ference in log probabilities for the important unexpanded
terms in the two models of the ranked lists. Using the top
T important terms, it is an average (under the A distribu-
tion, see Equation 7) of Log2P (w|A) − Log2P (w|B) when
w is each of these important terms. Thus a highly positive
value indicates that the important terms in the unexpanded
model are used much less frequently in the expanded re-
trieval. This often indicates an unsuccessful use of query
expansion. In this case a system would show the user the
unexpanded results for the query. If the score is negative, the
expanded retrieval uses the important terms more than the
original model, which generally indicates a good expansion
result. A score of zero indicates that the two models use the
important terms equally.

Figure 4 shows our model comparison scores applied to the
TREC 8 ad hoc data. Highly positive comparison scores are
an indicator that the performance of the expanded retrieval
may be significantly worse than the unexpanded retrieval.
Moreover, highly positive scores, when they occur, are well
separated from the other scores. This is important because,
to use the scores in a real system, the system must be able
to decide how high a score constitutes justifying a decision
not to use the expansion results. Additionally, we see that
there are no queries in TREC 8 that are good to expand
with extremely high positive scores. All these considerations
are crucial to the success of the automatic thresholding we
discuss in Section 4.

3.3.3 Results
Model comparison, our best method, has the great ad-

vantage that it produces scores for some queries that are
generally very well separated from the scores of queries that
are good-to-expand (see Figure 4). Additionally, the scores
are easily interpreted and reflect the average usage difference
of the most important terms in the original model.

Examining the extreme case queries in the TREC 8 scatter
plot shown in Figure 4 is illuminating. Of the three high-
est scoring queries, all perform badly on expansion. Thus
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Figure 4: A scatter plot of ∆ average precision and
model comparison scores for each of the 50 queries
of TREC 8. The ∆ average precision is the value
with relevance retrieval(Rel) minus the value with
query likelihood retrieval(QL). The model compari-
son score is the KL divergence from a QL ranked list
model to a Rel ranked list model computed over just
the top 10 terms in clarity contribution to the QL
model. The automatic threshold indicating a score
greater than 95% of random one term queries (see
Section 4) is shown as a vertical line labeled ’thres’
and seven extreme case queries are labelled.

the model comparison leads to three correct predictions.
The particular queries are “Lyme disease,” “Greek, philoso-
phy, stoicism,” and “supercritical fluids.” In these cases,
loosening the requirement that documents use the exact
query terms frequently to be highly ranked (by going from
unexpanded to expanded retrieval) ranks documents too
highly that do not contain all the correct jargon terms fre-
quently. In these cases matching the exact technical terms is
what satisfying the information need (TREC topic) requires.
There are no other highly scoring queries to potentially be
confused with these bad-to-expand queries. As far as very
low scoring queries that are good-to-expand (another correct
prediction case) we have the examples “tourists, violence”
and “women clergy.” In both these cases broadening the
search to contain closely related terms can plausibly help,
and the wording of the TREC topics confirms this.

For the one bad prediction case that exists: low scoring
queries that are actually good to expand, we have two exam-
ples. These are the queries “Milosevic, Mirjana Markovic”
and “Legionnaires’ disease.” The existence of queries in this
region of the scatter plot means that not all bad-to-expand
queries can be detected by the model comparison method.
In both cases the models of expanded retrieval use the top
unexpanded terms somewhat more than in the expanded
model. In the case of the “Milosevic, Mirjana Markovic”
query, documents must match some form of Mirjana
Markovitch’s name to be relevant. The model comparison
method is not picking up the fact that the expanded model
is losing those terms in particular because some other top
terms are used more frequently in the expanded model. This
suggests that query terms themselves should be weighted
higher, though simply combining our query term γ weighting
with this top term even weighting scheme does not help con-
sistently. In the case of “Legionnaires’ disease” the impor-
tant comparison is to the correctly predicting query “Lyme



Method score dev average score sep
all queries good(18) bad(7)

clarity 0.867 2.650 3.146 0.57
doc ID overlap 0.159 0.431 0.270 1.01
model comp:
top terms

0.996 0.0656 1.470 1.41

Table 2: TREC 8 separation for the three meth-
ods: clarity, overlap, model comparison. There are
18 “good” queries with ∆ > 0.05 and 7 “bad” queries
with ∆ < 0.05. The separation “sep” is the absolute
value of the difference of the average scores between
good and bad queries, divided by the sample stan-
dard deviation of score for all queries. For the clar-
ity and model comparison methods, queries of high
score are candidates not to expand. With the over-
lap method, queries with low overlap between the
two ranked lists are candidates not to expand.

disease.” The crucial difference is that the expanded doc-
uments can use the top terms related to the unexpanded
model without being about the specific disease at all, since
legionnaire is a synonym for soldiers or veterans and there
are documents using those related terms that also use the
term disease. The “Lyme disease” query does not have this
problem since “Lyme” is a place name and has no other
disease-related usages in the collection.

3.3.4 Three Methods Compared
One way to compare the three methods is to perform each

with an estimated Bayes optimal threshold and to compute
the mean average precision for the selective query expan-
sion process. This produces Table 1. The thresholds are
set by estimating score distributions for the positive im-
provement queries and negative improvement queries using
heavily-smoothed kernel estimates[2] and setting the thresh-
old where the distributions intersect[12]. The tested collec-
tion where the method shines, TRECs 5, 6, and 8, are easily
seen. Further comparison of the three methods will be pos-
sible once automatic thresholding is discussed in Section 4.

Another way to compare the three methods is by quanti-
fying the separation between the scores of good-to-expand
queries and bad-to-expand queries. This is done for two
collections that offer good possibility for improving over all
relevance model retrieval (TREC 8 in Table 2 and TREC 6
in Table 3). With this metric, we see that the model compar-
ison offers a strikingly higher separation between the scores
of good-to-expand and bad-to-expand queries. It is this sep-
aration that makes automatic thresholding of this method a
possibility.

4. THRESHOLDING
Given the great differences in the methods’ separation be-

tween the scores with the opposite meanings, we only at-
tempted automatic thresholding of the model comparison
scores. The basic idea behind our thresholding scheme is
to estimate the probability density for comparison scores in
order to make a meaningful guess at how high a score justi-
fies not showing expansion results. We answer the question
relative to the underlying probability density for the scores.

We estimate the probability density function over scores

Method score dev average score sep
all queries good(14) bad(13)

clarity 0.922 2.714 2.911 0.21
doc ID overlap 0.166 0.452 0.405 0.29
model comp:
top terms

1.251 −0.0404 1.843 1.50

Table 3: TREC 6 separation for the three methods:
clarity, overlap, and model comparison. See Table 2
for column explanations.

by randomly sampling terms from the collection’s vocabu-
lary and using Gaussian kernels to smooth the results[2].
The results for TREC 8 are shown in Figure 5. The distri-
bution estimated by computing the model comparison score
for random one-term queries in the TREC 8 collection bears
striking similarity to the distribution that apparently under-
lies the scores of real TREC test queries (compare Figure 5
and Figure 4). The automatic threshold at score 1.52 is in-
dicated on both plots. Note that there is a high probability
of scores around zero with a shoulder around score 1 and
extremely low probability density for scores greater than 2.
So the three queries above score 2.5 can reliably be identified
as possessing unusually high model comparison scores.

After checking many policies for heuristically setting the
threshold we chose to set the threshold, for any collection,
so that 95% of random one-term queries have a lower model
comparison score. This results in deciding not to expand
queries with objectively very high model comparison scores.
Although these are a small proportion of all queries, they
are almost always bad to expand.

The results of applying this uniform threshold-setting pol-
icy to all of the collections we have studied are shown in
Table 4, along with the breakdown on the expansion im-
provement for all queries above the threshold. We would
not expect to see large improvements in mean average preci-
sion since this method is aimed at improving the consistency
of retrieval by identifying a small number of very bad-to-
expand queries. For certain collections (e.g. TREC 6 and
TREC 8) the effect of the method, even with this automatic
thresholding is quite good: all the queries above the thresh-
old are bad-to-expand or neutral so some important poor
expansions are avoided. This leads to a substantial MAP
improvement for these collections over consistent relevance
retrieval.

Two of the failures of the model comparison method with
automatic thresholding (below the line in Table 4) may show
the way towards improving the method.

One mode of failure is seen in the case of TREC 7. Here
there are only 3 very bad-to-expand queries (∆ average pre-
cision less that −0.1) using relevance model retrieval. So
the method has little opportunity to shine in this collec-
tion, and only 1 of the 3 really bad to expand queries scores
badly enough to be detected with the automatic threshold.
The problem here is related to the small size of the test
query set coupled with the fact that our method with the
automatic thresholds in tuned to detect small proportions
of queries. If we think of construction of the test query set
as a random process, our method is hurt here by random
fluctuations in that process. Another way of looking at it
is that for this particular test query set and collection, rele-
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Figure 5: The estimated probability density func-
tion for comparison scores in the TREC 8 collection
estimated from 100 random one term queries sam-
pled from the vocabulary of TREC 8. The sampled
terms are issued as queries and the model compari-
son is exactly the same way as for user queries. The
distribution is estimated using kernel smoothing on
the samples. A vertical line labelled “thresh” in-
dicates a model comparison score with 95% of the
estimated probability mass below it.

vance model retrieval works particularly well, leaving little
room for improvement in the face of any prediction error at
all.

Another mode of failure is exhibited in the case of the
Query Track aggregate. Here the query sets exhibit high
variability. The Query Track aggregate queries range from
title-like queries to long natural language queries[4] with lots
of different styles.

5. RELATED WORK
Automatic query expansion techniques have been stud-

ied extensively (for example [17, 6, 20, 15]). These studies
typically mention the degree to which the techniques can
lead to very poor performances for some queries as an is-
sue. There also has been much work ([5] for example) on
using user feedback to improve retrieval ranked lists. Since
these systems can suffer from the same sort of straying from
the original sense of the query, they would be candidates for
the use of techniques, such as ours, designed to detect such
straying. We know of no published works on predicting or
sensing automatically when such techniques fail, however.

6. FUTURE WORK
We would like to learn how to tune our model compar-

isons for optimal effectiveness on any collection and type of
query. We would also like to improve the ranked list mod-
els and comparison methods. One possibility is to estimate
the probability of relevance of a document at a certain rank
position in a ranked list from training data.

7. CONCLUSION
We presented a method for improving the consistency of

query expansion results. The method provides a frame-
work for measuring when a new ranked list of documents
(e.g. from expanded retrieval or feedback) has strayed sig-
nificantly from the usage of important terms in an original

Collection Rel Model Comp Above Threshold
Model top terms good neut bad

TREC 6 0.2013 0.2197 0 3 3
TREC 8 0.2715 0.2812 0 0 3
AP88-90 0.2875 0.2894 0 4 1
TREC 5 0.1609 0.1621 0 2 1
QT agg 0.2219 0.2217 13 32 11

TREC 1+2+3 0.2490 0.2451 1 0 0
TREC 7 0.2524 0.2394 2 1 1

Table 4: Mean average precision (MAP) for model
comparison-based selective expansion in contrast to
doing relevance retrieval all the time. The thresh-
old is set at a point where 95% of random one-term
queries from the vocabulary would get a lower score.
The method improves the MAP for test sets in the
top half of the table (above the line) and slightly
hurts average precision performance for test sets
listed below the line. The breakdown is given for
all queries above the threshold, based on the aver-
age precision change on expansion, ∆, where “good”
means average precision ∆ > 0.05, “neut” means
|∆| < 0.05 and “bad” means ∆ < −0.05. The queries
used for each collection are the same as given in
Table 1.

ranked list of documents (e.g. from unexpanded retrieval).
In the case of expansion, not using the expansion results in
these cases will usually avoid one type of expansion failure
by sensing that something has gone wrong.

For language modeling based retrieval, we have shown on
a variety of test collections that the method can generally
improve the consistency (and even the mean average preci-
sion) by catching a small proportion of queries and avoiding
some poor expansions.

This work suggests one meaningful criterion that systems
may use to help avoid showing users the results of techniques
that prove bad for a particular query. We believe that sys-
tems meaningfully distinguishing between queries provides
a very promising approach for improving the performance
of real information retrieval systems.
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