
Optimization Strategies for Complex Queries

Trevor Strohman
strohman@cs.umass.edu

Center for Intelligent
Information Retrieval

Department of Computer
Science

University of Massachusetts
Amherst, MA 01003

Howard Turtle
turtle@cogitech.com

Cogitech
Jackson Hole, WY 83001

W. Bruce Croft
croft@cs.umass.edu

Center for Intelligent
Information Retrieval

Department of Computer
Science

University of Massachusetts
Amherst, MA 01003

ABSTRACT
Previous research into the efficiency of text retrieval systems
has dealt primarily with methods that consider inverted lists
in sequence; these methods are known as term-at-a-time
methods. However, the literature for optimizing document-
at-a-time systems remains sparse.

We present an improvement to the max score optimiza-
tion, which is the most efficient known document-at-a-time
scoring method. Like max score, our technique, called term
bounded max score, is guaranteed to return exactly the same
scores and documents as an unoptimized evaluation, which
is particularly useful for query model research. We sim-
ulated our technique to explore the problem space, then
implemented it in Indri, our large scale language modeling
search engine. Tests with the GOV2 corpus on title queries
show our method to be 23% faster than max score alone, and
61% faster than our document-at-a-time baseline. Our opti-
mized query times are competitive with conventional term-
at-a-time systems on this year’s TREC Terabyte task.

Categories and Subject Descriptors: H3.3 Information
Storage and Retrieval: Information Search and Retrieval

General Terms: Algorithms, Design, Performance

Keywords: Indexing, Query Processing, Efficiency

1. INTRODUCTION
It might seem that the performance of retrieval systems

would not be a major issue anymore, as computer speeds
continue to increase. Unfortunately, the document collec-
tions that users wish to access continue to grow. Perhaps
more importantly, users have been taught by web search en-
gines to expect query results in less than one second, no
matter how large the collection or how complex the query.

Many query optimization strategies have been presented
in the literature in order to deal with this problem. In gen-
eral, these methods take a scoring method, such as cosine

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’05,August 15–19, 2005, Salvador, Brazil.
Copyright 2005 ACM 1-59593-034-5/05/0008 ...$5.00.

similarity or language modeling, and develop an approxi-
mation of this method that can be computed efficiently.
The best of these optimization methods have impressive
speedups over baseline systems and have only a small ef-
fect on retrieval effectiveness.

The fastest known query processing techniques are term-
at-a-time algorithms, some of which use term frequency sorted
lists. These methods use accumulators to store partial scores
of documents during query evaluation. This works well
because these accumulators are small, and by using op-
timization strategies the number of accumulators can be
trimmed to keep memory usage low. However, when term
position information is involved these accumulators must be
much larger. Furthermore, traditional accumulator trim-
ming techniques do not apply to queries using term position
information.

These problems suggest a document-at-a-time evaluation
strategy for complex queries. In document-at-a-time eval-
uation, all inverted lists are considered simultaneously, so
there is no need to store proximity information in memory.
However, there has been much less research into optimizing
document-at-a-time systems than term-at-a-time systems.

Brown [2] and Turtle and Flood [8] present two of the
most promising document-at-a-time query processing strate-
gies. In this paper we show that these strategies are in fact
complementary; by combining the essence of these meth-
ods, we have an optimization method that is significantly
faster than the max score method of Turtle and Flood. How-
ever, it manages to maintain the most desirable properties
of max score; most importantly, the results returned by our
method are exactly those that would be returned by an un-
optimized system. This makes our optimization method par-
ticularly useful for query model research.

2. MOTIVATION
Our research is motivated by the Indri retrieval system, a

new language modeling search engine developed at the Uni-
versity of Massachusetts Amherst. This system incorporates
recent work by Metzler and Croft [6] which combines the
language modeling and inference network approaches to in-
formation retrieval. By leveraging this work, Indri supports
many of the structured query operators from INQUERY [4].
In addition, Indri supports new operators for dealing with
document fields, part of speech and named entity tagging,
passage retrieval and numeric quantities.

A subset of the Indri query language constructs is shown

Construct Name Description
#odN (q1, ..., qn) Ordered window A match occurs if the qi’s appear in order with no more than N

words between adjacent terms
#uwN (q1, ..., qn) Unordered window A match occurs the qi’s appear in any order within a window of

N words
#any: field Any operator A match occurs if any field called field is found
term.field Field restriction A match occurs if term is found in a field named field
#combine (q1, ..., qn) Combine operator Combines inference from the qi’s; similar to #and from [6]
#weight (w1q1, ..., wnqn) Weight operator Combines inference from the qi’s, using the wi’s as weights; sim-

ilar to #wand from [6].
#greater (fieldn) Greater operator Evaluates to true if the document contains a field field with a

numeric value greater than n
#less (field n) Less operator Evaluates to true if the document contains a field field with a

numeric value less than n
#equal (field n) Equal operator Evaluates to true if the document contains a field field with a

numeric value equal to n
#operator [field](qi, ..., qn) Context restriction Evaluates operator operator using field as the evaluation context;

essentially similar to passage retrieval with sentence passages
#filrej(c s) Filter reject Score the subquery s only if the condition c is not met
#filreq(c s) Filter require Score the subquery s only if the condition c is met

Figure 1: Complex query operators from Indri

in Figure 1. These operators can be used together to form
complex queries, such as:

#combine[sentence](#uw10(#uw10(george w bush)
#any:number
president))

which scores all sentences in the corpus that contain the
phrase “George W. Bush” followed by a number, followed
by “president”. This query could be used to find sentences
of the form “George W. Bush is the 43rd president of the
United States.” Quickly finding passages of text that meet a
particular form is a critical part of many question answering
systems.

The field structure of the query language can also be used
for structured data, as in this query:

#combine(#uw1(howard turtle).author
#uw1(james flood).author
#1(query evaluation).title)

which searches for the paper on which much of this work
is based.

It is clear that the Indri query language relies heavily
on the location of terms within documents, and therefore a
document-at-a-time evaluation strategy is appropriate. How-
ever, we would still like to be able to evaluate simpler queries
quickly, such as these from the 2004 TREC Terabyte task:

pearl farming

prostate cancer treatments

Our goal with this work is to achieve good performance
on these simpler queries without resorting to an entirely dif-
ferent evaluation strategy than we use for complex queries.

3. RELATED WORK
All modern retrieval systems use inverted lists to evalu-

ate queries efficiently [9]. The differences between the opti-
mizations discussed here lie in how these inverted lists are
processed. In term-at-a-time systems, the inverted list for
each term is considered separately. These systems use table

of score accumulators to keep track of partial scores for doc-
uments that have been seen. At the end of evaluation, the
accumulators are sorted, and the top k documents (where k
is a parameter given by the user) are returned to the user.
In document-at-a-time systems, the inverted lists are con-
sidered simultaneously, much like the classical merge sort
algorithm [5]. In this case, there are no partial scores; this
allows the system to maintain a list of the top k scores it
has seen so far.

One of the earliest papers on modern query optimization
comes from Buckley [3]. In this approach, terms are evalu-
ated one at a time, from the least frequent term to the most
frequent term. At some point during query evaluation, it
may be possible to show that it is not necessary to con-
sider any more terms, as the document at rank k +1 cannot
surpass the score of the document at rank k.

This approach, and approaches based on it, have the ad-
vantage that some inverted lists will not need to be read
from disk. As the gap between disk access speed and pro-
cessing speed continues to increase, this is an attractive fea-
ture. However, this approach has trouble with duplicate (or
nearly duplicate) documents in the collection. If two docu-
ments at ranks k and k + 1 will evaluate to the same score,
the Buckley algorithm will read the inverted lists for all the
terms in the query.

For large collections, the likelihood that two documents
will evaluate to the same score is greatly increased, even
among documents that are not exactly the same. For exam-
ple, many legal documents follow specific templates, with
only minor changes to the template text. It is likely that
many documents generated with the same template will be
the same length, and will therefore have the same score for
many queries. In order to guard against this effect, the ex-
actness conditions for ranking order must be relaxed. Buck-
ley suggests a method for doing this.

Moffat and Zobel [7] evaluate two heuristics, Quit and
Continue, which reduce the time necessary to evaluate term-
at-a-time queries. The Quit heuristic dynamically adds ac-
cumulators while query processing continues, until the num-

ber of accumulators meets some fixed threshold. At this
point, documents are ranked by the partial scores in the ac-
cumulators and returned to the user. The Continue strategy
is similar, in that it uses only a fixed number of accumula-
tors. However, when the accumulator threshold is reached,
it continues query evaluation, but only considers those doc-
uments that already have accumulators allocated. The Con-
tinue method was found to be particularly effective; at times
it was more effective than the baseline system.

Brown [2] presents a method for efficiently finding a small
list of candidate documents for scoring. These candidate
documents are considered to be the most likely set of docu-
ments to appear in the top k results. This short list of can-
didates can be scored quickly by skipping through inverted
lists. To create the candidates list for a query, the search
engine takes the union of term-specific candidates lists cre-
ated at index time. For a given term t, its candidate list
contains the top documents in the ranked list for the query
t. Brown finds excellent speedups for this approach.

The method presented in this paper uses candidate lists
as well, but it uses these lists as a hint for finding top scoring
documents. In a query where the terms have extremely low
co-occurrence, following only term candidates lists is likely
to lead to poor effectiveness. For instance, the best results
for the query “howard turtle” are unlikely to come from the
candidates for “howard” or “turtle”.

Broder, et al. [1], consider query evaluation in a two stage
process. First, the query is run as a Boolean and query,
where a document is only scored if all terms appear. If
this process finds at least k documents, the process stops.
However, if the number of documents found is less than k,
a second query is issued that considers all documents that
contain any query term.

Turtle and Flood [8], consider a series of query optimiza-
tion techniques, including some exact methods and some ap-
proximate methods. In the document-at-a-time
max score method, the top candidate document for each
term is stored in the index, like the approach taken by
Brown, except only one document is stored.

Document-at-a-time max score works much like a tradi-
tional document-at-a-time system, until k documents have
been scored. At this point, the smallest score becomes a
lower bound for document scores returned for this query.
As the query continues, the algorithm maintains this kth

smallest score, which will become more accurate as query
processing continues. In this paper, we refer to this score as
the threshold score.

The max score algorithm also sorts terms in order by fre-
quency of occurrence. The terms that appear most fre-
quently will contribute the least to document scores. Let
the most frequent term be t0. We hope that at some point
during query processing, the threshold score will be large
enough to prove that any document appearing in the top k
results must contain some query term other than t0. This
allows only documents containing at least one of t1, ...tn to
be scored. When conditions are favorable, max score scores
only documents that contain a few discriminating terms.
This is somewhat like the Continue approach of Moffat and
Zobel, except the process is dynamic and guarantees correct
results.

The term-at-a-time max score method is similar to the
method presented by Buckley. However, Turtle and Flood
explore a rank-safe optimization, where terms are evaluated

until the top k documents are guaranteed to be in the correct
order.

4. APPROACH

4.1 Finding Top Documents
In the query likelihood formulation of language modeling,

we rank documents by P (Q|D): the probability that the
query was generated by the same language model as a given
document. We estimate this probability by considering the
probability of generation of each term independently, as fol-
lows:

P (Q|D) =
∏

qi∈Q

P (qi|D)

Since the document is likely to be short, and therefore
may not contain enough data to reliably estimate P (qi|D),
we estimate P (qi|D) by smoothing against the term distri-
bution in the collection, C. For this research, we use linear
interpolation as follows:

P (qi|D) = (1 − λ)
c(qi; D)

|D| + λ
c(qi; C)

|C|
In this case, c(qi; D)/|D| represents the number of times

the word qi appears in the document D divided by the length

of D. The second term, c(qi;C)
|C| is similar, but represents the

count of qi in the entire corpus divided by the corpus length.

Note that in the formulation above, only the c(qi;D)
|D| com-

ponent varies with respect to the current document; there-
fore, the documents for which P (qi|D) is largest will be those

for which c(qi;D)
|D| is largest.

In the term bounded max score method, we rank all docu-

ments in the collection by c(t;D)
|D| for each term t. If we stored

the entire ranking, we would have inverted lists sorted by
term frequency. However, our goal is for these lists to be
quite small, so that they do not substantially increase the
size of our index. We call these lists topdocs lists, as they
were called in the INQUERY system. In Section 6.1, we
test different methods for determining how long these lists
should be.

5. ALGORITHM
Our method, term bounded max score, is related to the

max score work of Turtle and Flood [8]. However, like Brown [2],
we use topdocs lists of for each term.

The key to this optimization, like many other methods, is
that we are not concerned with ranking every document in
the collection; we are only concerned with the top k docu-
ments in the ranked list. Our goal is to score as few docu-
ments as possible while still finding the top k documents for
our query.

At the beginning of query evaluation, we take the union
of the topdocs lists for each term. This gives us a candidates
list of documents that we must score. We suppose that the
lengths of these topdocs lists are short enough that scoring
these documents will take a small fraction of the query time.

Based just on the information in these topdocs lists, we
compute an approximate score for each candidate document.
This score is guaranteed to be less than or equal to the true
score for each document. We then take the approximate

Pruning Method Description
Fixed The top documents list contains the same fixed number of documents for each term.
Fraction The top documents list for a term contains some constant fraction of all the documents that

contain that term. In this case, very frequent words, like “the”, will have more top documents
than less frequent words, like “abstruse”.

Frequency The top documents list contains all documents where the term constitutes more than some fixed
fraction of the document. For instance, the lists might contain all documents where the term
accounted more than 1% of word occurrences.

Figure 2: Pruning strategies attempted in simulation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1e-04 0.001 0.01 0.1

Fraction of scored documents vs baseline (fraction)

max_score
topdocs + max_score

Figure 3: Mean documents scored with max score
and term bounded max score using the fraction
pruning method.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 10 100 1000 10000 100000

M
ea

n
do

cu
m

en
ts

 s
co

re
d

(f
ra

ct
io

n
of

 b
as

el
in

e)

Size of topdocs lists (MB)

Size of top documents lists vs fraction of scored documents

Fraction
Fixed

Figure 4: Mean documents scored with the fixed and
fraction pruning methods across varying topdocs list
sizes.

score of the kth document to be the threshold score; we
know that the kth document will have a score at least as
high as this one.

We also take the lowest scoring document from each of
the top documents lists, and use these documents to bound
the score of the remaining documents in the collection. For
some document d that contains term t, document d either
appears in the top documents list for term t, or it has a lower
term score for t than any document in the top documents
list for t. This gives us a bound on the term score of any
document that is not in the top documents list for t.

We then execute the max score algorithm, but we use the
tighter term score bounds and the threshold computed from
the candidates list. We make sure to score every document
in the candidates list, plus every document we are directed
to score by the max score algorithm. Like the max score
algorithm, this technique is guaranteed to give exactly the
same results as a system that scored every document.

As we show in the experimental section, this optimization
gives an excellent increase in performance in practice. One
intuition about this effect is that the “good” documents are
in the top documents list, and this method pinpoints them
more effectively. However, early experimentation does not
necessarily support this hypothesis; it is surprising how often
a high scoring document is not in any of the topdocs lists.

We prefer to think of the top documents lists as contain-
ing the outliers for each term. These high scoring documents
keep us from forming a strong bound on the remaining doc-
uments in each list. Once we have segregated them from the
rest of the data, we get bounds that better reflect the ac-
tual data in the collection, and it is these bounds that allow
max score to work more effectively.

We find that these outliers are more prominent in web
data than in collections that have been considered in the
past. It is not uncommon to find extremely short documents
in web collections; sometimes we find documents containing
a single word. These single word documents have extremely

high term scores, since c(w;d)
|d| = 1. A single one-word docu-

ment containing the word “the” can cause max score to score
hundreds of thousands of documents unnecessarily. The top
documents lists remove these outliers from general consid-
eration.

6. EXPERIMENTAL APPROACH
We tested our algorithm on the TREC GOV2 collection,

which consists of approximately 25 million web pages crawled
from the .gov domain in January 2004. The collection is
426GB uncompressed, and contains 22.7 billion words. We
considered using a news corpus as well for comparison, but
we did not have access to a news corpus large enough to
reliably estimate query timings. We expect that our system

is particularly well suited for the irregular data found on the
web, and may not perform as well on news corpus data.

We tested our approach using the 50 title queries (701-
750) from the 2004 TREC Terabyte track. These queries
average 3.02 terms per query, and are content queries, not
named-page finding queries. These queries do not contain
known stopwords, and every query contains at least two
terms.

We indexed the GOV2 collection using Indri, a new scal-
able language modeling search engine developed at the Uni-
versity of Massachusetts. For our initial experimentation,
we exported the inverted lists from this index to an simu-
lation system that recorded the actions of each query algo-
rithm in detail. We used this simulation system to explore
different heuristics for finding an optimal length for the top
documents lists. We then implemented the term bounded
max score algorithm in Indri, where we verified that this
method could achieve real performance gains in a real re-
trieval system.

6.1 Topdocs List Pruning Methods
We tried three methods for pruning topdocs lists: fixed,

frequency and fraction (see Figure 2). In the fixed method,
we store a fixed number of documents in each topdocs list.

In the frequency method, we store all documents where c(t,d)
|d|

is greater than some constant. In the fraction method, we
store some constant fraction of the number of documents
that contain a given term.

In all cases, we decided not to use topdocs lists for terms
occurring in fewer than 1000 documents, as this provided
significant space savings.

6.2 Simulation Results: Title
We evaluated the three topdocs trimming methods in sim-

ulation Each method was compared against the baseline,
where every document in the collection that contains any
query term is scored, and the max score approach, where
only some of these documents are scored.

Each of these pruning strategies has a single parameter.
We ran each of the 50 queries using approximately 10 pa-
rameter values for each trimming method. We then found
the mean number of documents scored for each trimming
method parameter setting.

At the best parameter setting, the frequency method scored
11.3% of the documents in the collection, while the fraction
method scored 11.4%, and the fixed policy scored 18.1%.

For the fraction method, we show its performance across
its parameter space (Figure 3) when compared to the base-
line and the max score method. Note that results are nor-
malized to the baseline, so the baseline is the top bar of the
graph. The max score method scores an average of 22% of
the collection. The term bounded max score method with
fraction pruning scores fewer documents than max score
over its useful parameter space. As the graph shows, the
number of documents scored changes only slightly as the
fraction of documents in the topdocs lists changes from 0.5%
to 5%.

Although the frequency approach appears promising, it
has the disadvantage that its disk space usage is difficult
to predict. The fraction method has the advantage that its
disk usage is highly predictable–choosing to store 5% of each
inverted list in a topdocs list will result in roughly 5% addi-
tional disk space used. The fixed method is somewhat less

 0

 0.2

 0.4

 0.6

 0.8

 1

 1e-04 0.001 0.01 0.1

Fraction of scored documents vs baseline (fraction)

max_score
topdocs + max_score

Figure 5: Mean documents scored for expanded
queries with the max score method, and with
term bounded max score with the fraction pruning
method.

predictable, since its disk usage is proportional to vocabu-
lary size and not corpus length. However, vocabulary growth
has been well studied, and tends to be strongly correlated
to corpus length; this makes the fixed method predictable
as well. Because using only a small amount of disk space
was an important goal for us, we decided to only consider
the fixed and fraction methods further.

We compared the performance of the fraction and fixed
methods based on efficiency at different topdocs list lengths.
The results are shown in Figure 4. Note that the fraction
scores fewer documents than the fixed method for all topdocs
list sizes.

6.3 Simulation Results: Expanded
In order to test our method on longer queries, we took our

set of 50 title queries and used query expansion to create a
set of 50 10-word queries.

To do this, we ran each title query against the GOV2 col-
lection, and recorded the top 15 documents returned. We
sorted the terms in these top 15 documents by order of oc-
currence, and removed any known stopwords, keeping only
the top 10 words. This process generated 50 queries, each
with exactly 10 words.

We found that, counter to general wisdom regarding the
max score optimization, max score and our technique did
not work as effectively on our expanded query set as on title
queries. In Figure 5, we show results for the fraction pruning
method and the max score optimization on the expanded
query set. Compared to Figure 3, the graphs have a similar
shape, but both max score and term bounded max score do
not perform as well against the baseline.

To explain why this is so, we looked at the performance
individual expanded queries. The following query is one of
the poorest performing queries in our query set:

loan census transportation application work

area year report state data

We have ordered the query terms from least frequent to
most frequent in the GOV2 collection; this is the way they
would be evaluated by a term-at-a-time scoring system. The
following table shows the upper and lower bounds on scor-

Method Seconds/query User (s) User (σ2) Elapsed (s) Elapsed (σ2) Documents scored
Baseline 4.339 177.93 0.998 216.92 1.025 112425031

Max score 2.226 74.15 0.065 111.32 0.025 41697980
Term bounded max score 1.728 47.77 0.212 86.39 0.157 24300922

Figure 6: Time to evaluate TREC topics 701-750 against the TREC GOV2 collection

Method Seconds/query User (s) User (σ2) Elapsed (s) Elapsed (σ2) Documents scored
Baseline 34.70 1473.3 2.12 1735.1 1.72 508223689

Max score 20.64 779.4 1.03 1031.9 1.14 255740580
Term bounded max score 15.04 489.1 5.37 752.0 5.55 150479904

Figure 7: Time to evaluate 50 10-word queries against the TREC GOV2 collection

ing contributions of these terms, as found by a traditional
max score run:

term lower bound upper bound
loan -10.2585 -0.2876
census -10.2190 -0.2876
transportation -9.5817 -0.2876
application -8.7923 -0.2875
work -8.6065 -0.2874
area -8.1856 -0.2873
report -8.1148 -0.2873
year -7.8581 -0.2872
state -7.1777 -0.2867
data -6.9300 -0.2864

This query contains many terms that are very close in
terms of contribution bounds. In particular, application,
work, area and report are very similar in terms of their
contribution to the final score. This makes it very difficult
for us to skip any one of them. In practice, this is exactly
what happens; a max score query without topdocs is only
able to skip through three terms (year, state, and data)
and must examine every posting of the remaining terms.
As report and area are each in approximately 6 million
documents, this leads to a very expensive query.

We expect that, in general, smaller queries are more likely
to have a few infrequent terms, paired with perhaps one fre-
quent term. In this case, it is very easy to skip through
the frequent term, providing excellent improvement. In ex-
panded queries, it is likely that many of the terms are fre-
quent, which makes it less likely that any one frequent term
will be able to be skipped.

It should be noted that many large queries come out of
query expansion, where each term in the query is assigned
a weight during the expansion process. While these queries
can be very long, many of the queries will have weights that
are quite small, which will serve to bound the effect that
term has on the query score. We suspect that our tech-
nique will perform much better on these kinds of queries,
and anecdotal evidence seems to support this conclusion.

6.4 Indri Results
In order to verify that our optimization works well in prac-

tice, we implemented the term bounded max score optimiza-
tion in Indri. For the following tests, we chose the fraction
topdocs pruning method, taking the top 1% of documents
from each inverted list. We chose only inverted lists contain-
ing more than 1000 documents. As before, we tested against
the GOV2 collection. The inverted lists in our index totaled
44GB, while the topdocs lists took an additional 270MB.

While Indri is capable of running on a cluster of machines,
our tests used a single Pentium IV machine, with a CPU
clock speed of 2.6GHz. The machine had 2GB of RAM
and 1.4TB of storage in a RAID 5 configuration, and was
running Red Hat Linux version 9.

For each query method, we ran a warm up run that was
not timed, followed by 5 consecutive runs. The times shown
are the mean of those 5 runs, in seconds. Each query re-
turned 10 documents, and the time reported includes the
time necessary to look up the names of the documents re-
turned from a B-Tree. The variance is shown for each time
figure reported.

The results for the GOV2 title queries are reported in
Figure 6. We see a 23% improvement over max score and
61% over the baseline in time per query on this task. In
Figure 7, the improvement is 28% over max score, 57% over
the baseline. In the title query case, the baseline scores 4.62
times as many documents as our method, while in the long
query case, this factor drops to 3.39. We believe that certain
constant factors, like the time to look up document names
and the time to decompress blocks of inverted list postings,
account for the reason that user CPU time does not track
documents scored closely.

Our time of 1.7 seconds per title query is competitive with
the fastest standard term-at-a-time systems at this year’s
TREC Terabyte task. The fastest single machine entry,
from SABIR Research, averaged 1 second per title query.
The second fastest system, from RMIT, using the Zettair
retrieval system, took 2 seconds per title query. All query
times at TREC were rounded to the nearest second, so it is
difficult to make precise comparisons here. Given the data
that we have, our system appears to be competitive.

7. CONCLUSION
In this work, we have shown that significant query op-

timization is possible in document-at-a-time systems, even
beyond the max score method. We achieve a 23% speedup
versus max score and 61% versus scoring all documents that
contain any of the query terms. We find that this method
makes it possible to get good query performance with document-
at-a-time systems. Our method, term bounded max score,
allows our Indri system to quickly evaluate simple queries
while still handling more complex query operators.

8. ACKNOWLEDGEMENTS
We are grateful for comments from the anonymous review-

ers, as well as Donald Metzler, Kevyn Collins-Thompson

and Jamie Callan, whose comments were invaluable for strength-
ening this paper.

This work was supported in part by the Center for Intel-
ligent Information Retrieval and in part by Advanced Re-
search and Development Activity and NSF grant #CCF-
0205575 . Any opinions, findings and conclusions or recom-
mendations expressed in this material are the author(s) and
do not necessarily reflect those of the sponsor.

9. REFERENCES
[1] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and

J. Zien. Efficient query evaluation using a two-level
retrieval process. In Proceedings of the twelfth
international conference on Information and knowledge
management, pages 426–434. ACM Press, 2003.

[2] E. W. Brown. Fast evaluation of structured queries for
information retrieval. In Proceedings of the 18th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 30–38.
ACM Press, 1995.

[3] C. Buckley and A. F. Lewit. Optimization of inverted
vector searches. In Proceedings of the 8th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 97–110.
ACM Press, 1985.

[4] J. P. Callan, W. B. Croft, and S. M. Harding. The
INQUERY retrieval system. In Proceedings of
DEXA-92, 3rd International Conference on Database
and Expert Systems Applications, pages 78–83, 1992.

[5] D. E. Knuth. Sorting and Searching, volume 3 of The
Art of Computer Programming. Addison-Wesley,
Reading, Massachusetts, 2nd edition, 1998.

[6] D. Metzler and W. B. Croft. Combining the language
model and inference network approaches to retrieval.
Information Processing and Management,
40(5):735–750, September 2004.

[7] A. Moffat and J. Zobel. Self-indexing inverted files for
fast text retrieval. ACM Trans. Inf. Syst.,
14(4):349–379, 1996.

[8] H. Turtle and J. Flood. Query evaluation: strategies
and optimizations. Information Processing and
Management, 31(6):831–850, 1995.

[9] I. H. Witten, T. C. Bell, and A. Moffat. Managing
Gigabytes: Compressing and Indexing Documents and
Images. John Wiley & Sons, Inc., 1994.

