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ABSTRACT
Information retrieval researchers have studied passage re-
trieval extensively, yet there is no consensus within the com-
munity about how to evaluate the results of passage retrieval
experiments. This paper describes five character-level pas-
sage evaluation measures and tasks for which they may be
appropriate. In the second half of the paper we compare
several passage retrieval models, including a new generative
mixture model that outperforms strong baselines on many
of the evaluation measures discussed in part one.

1. INTRODUCTION
Passage retrieval, as described here, is the task of retriev-

ing only the portions of a document that are relevant to a
particular information need. It could be useful for limiting
the amount of non-relevant material presented to a searcher,
or for helping the searcher locate the relevant portions of
documents more quickly. Passage retrieval is also often an
intermediate step in other information retrieval tasks, like
question answering and summarization.

Passage retrieval has been of interest to researchers since
the 1970’s [25]. However, it was not until the field of infor-
mation retrieval shifted from abstract retrieval to full-text
retrieval in the late 1980’s and early 1990’s that researchers
began to study this problem more extensively [2, 12, 27, 7,
22, 23, 31].

Typically evaluation has been based on the ability of pas-
sage retrieval systems to retrieve documents [7, 22, 31, 23,
16, 8, 20]. In some cases, researchers are actually interested
in improving document retrieval by using passage retrieval,
in which case this type of evaluation is appropriate. How-
ever, one of the reasons researchers have used this approach
to evaluation in the past is that document-level relevance
judgments are much easier to obtain than passage-level judg-
ments. Passage-level judgments require annotators either to
read each top-ranked passage and judge it relevant or non-
relevant, or to read each top-ranked document and mark
only the portions of the text that are relevant to their in-
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formation needs, a very time-consuming process. Passage
retrieval evaluation has been studied more extensively as an
intermediate step in question answering (QA) systems [29].
However, passage retrieval evaluation in QA has focused on
whether or not retrieved passages contain correct answers,
making it inapplicable to general passage retrieval.

The TREC High Accuracy Retrieval from Documents (HARD)
track [3, 4], begun in 2003 and continued in 2004, included
a passage retrieval component. Instead of indicating just
a topic ID and document ID to identify the relevant mate-
rial, the passage-level relevance judgments provided in the
HARD track also indicated a byte offset from the begin-
ning of the document and length in bytes of each relevant
passage. However, initial attempts to adopt document eval-
uation metrics for passage retrieval resulted in a metric with
unanticipated undesirable properties. In section 2, we de-
scribe some of the problems with this measure and present
five character-level passage retrieval evaluation metrics, suit-
able to different types of passage retrieval applications.

In section 3 we describe seven different passage retrieval
models, and in section 4 we compare the retrieval perfor-
mance of these models using some of the evaluation metrics
described in section 2. Among the models described is a
new generative mixture model that significantly outperforms
TFIDF, query-likelihood, and other retrieval baselines.

2. PASSAGE RETRIEVAL EVALUATION
In all of our experiments we use the data and data format

used in the TREC HARD track, where a passage can be any
continuous nonempty substring of text from one document.
This means that in theory passages can be anywhere from
one character to the entire document. The results specify
a ranked list of passages for each topic, identified by their
document ID, the byte offset of the passage start relative to
the beginning of the document, and the length of the passage
in bytes. Annotators received a pooled list of top-ranked
documents for each of their topics and were asked to read
through each of the documents and indicate which portions
of each document were relevant, akin to going through with a
highlighter and highlighting only the relevant material. The
final relevance judgments are indicated in a format similar
to that of the ranked results lists.

2.1 Passage R-Precision
Passage R-precision was used as an evaluation metric for

the 2003 and 2004 HARD tracks. It is defined as the percent
of relevant characters in the first R passages returned that
were marked relevant by an annotator, where R is the total



number of passages marked relevant for the topic. In the
HARD track, any character position from a document that is
retrieved multiple times is counted as relevant once and non-
relevant all of the other times. Another way of putting this
is that passage R-precision is equal to the count of relevant
characters returned at least once in the top k, divided by k,
where k is the number of characters retrieved in the first R
passages:

psg R-prec =
|relevant chars. ret. ≥ once in top k|

k
. (1)

One troubling aspect of this evaluation metric is that the
value of R is somewhat arbitrary. In the 2004 HARD rel-
evance judgments there are several cases where an anno-
tator marked all of the text in adjacent passages relevant,
but omitted the open and close paragraph tags in the text
markup. Because of the way the relevance judgments are
specified, this counts as two different passages even though
the text is contiguous in the original article.

Let k be the number of characters retrieved in the top R
passages returned for a particular topic and j be the total
number of characters in the R relevant passages (from the
relevance judgments) for that topic. One consequence of this
measure is that if k > j, it is impossible to achieve a perfect
R-precision score of 1.0. On the other hand, if k < j, it is
possible to achieve a perfect R-precision score of 1.0 without
retrieving all of the relevant characters. This indicates that
there could be a bias toward systems that return shorter
passages, particularly since we are dealing with a ranked
list that (we hope) tends to have more relevant characters
near the top.

To demonstrate some of the problems with passage R-
precision, we took one of our submitted runs from the 2003
HARD track and split each of the top-ranked passages into
two parts so that the first half of the first ranked passage is
rank one and the second half is rank two, and so on. We
repeated this process four more times so that the original
passages were one thirty-second of their original size.
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Figure 1: Sensitivity of Passage R-Precision to Pas-
sage Size

Figure 1 shows that as the passages get shorter—but the
text stays equivalently ranked—mean passage R-precision
improves steadily. We are able to improve our results by
128%, simply by cutting passages into smaller pieces. This
is clearly an undesirable property of an evaluation metric.
One way to fix this would be to require all HARD track
participants to retrieve passages of the same size–a particu-
lar number of characters or words. However, this would be
in opposition to the goal of designing systems that retrieve
only the relevant text of a document. Another way to deal
with this problem is to use character or word-level metrics.
This was the solution adopted in part by the HARD 2004
track.

We used several character-level metrics in our evaluations,
described in the following sections. The first two are focused
on rewarding high precision at the top of a ranked list, and
the other three balance precision and recall.

2.2 Precision-Focused Metrics
Precision at min(N, R) characters is the percent of char-

acters in the first min(N, R) presented in the ranked list
that are relevant. Here R is the total number of characters
marked relevant in the relevance judgments for the topic
being evaluated, and N is a non-negative integer, generally
intended to be less than R. Note that when we talk about
ranking characters, we act as though the first character of
the first-ranked passage is at rank one, the second character
is at rank two, and so on. In the HARD track evaluation in
2004, precision at min(N, R) characters was one of the mea-
sures used, with N set to 6,000, 12,000, and 24,000 (roughly
the number of characters found in 5, 10, or 20 100-word
stopped passages for the HARD corpus).

Bpref at min(N, R) characters is the high-precision character-
level version of a new evaluation measure, binary preference
(bpref), that tracks average precision but is less sensitive
to incomplete relevance judgments [6]. To calculate binary
preference at k = min(N, R), each of the first k relevant
characters in the ranked list is assigned a score equal to the
percent of the first k non-relevant characters it comes ahead
of. The overall score for the list is equal to the arithmetic
mean of the scores for each of the k relevant characters. The
equation for bpref at k = min(N, R) characters is

bpref at k =
1

k

kX
r=1

„
1− |n ranked higher than r|

k

«
(2)

where r is a relevant character and n is one of the first
min(N, R) non-relevant characters returned. Like with pre-
cision at min(N, R), R is the total number of characters
marked relevant for the topic being evaluated and N is a
non-negative integer.

Bpref at min(N, R) and precision at min(N, R) tend to
track each other. One major difference between the two is
that bpref rewards systems that rank passages well within
the top min(N, R) characters. Because precision is a set-
based measure, rank order within the top results is ignored.

2.3 Recall/Precision Balance Metrics
Precision at R characters (also called character R-precision)

and Bpref at R characters are equal to their high-precision
counterparts presented above when N = R. Non-interpolated
character average precision is the arithmetic mean of the
character precision at each point in the ranked list where



recall changes (i.e. where a relevant character appears). It
is the same as document average precision, except that re-
call and precision are computed at the character level rather
than the document level. If we let G = the set of ranks at
which each relevant character is retrieved, then character
average precision is

char avg prec =
1

|G|
X
r∈G

# relevant chars w/ rank ≥ r

r
. (3)

In our experiments, we assume that all non-retrieved rel-
evant characters are retrieved at rank infinity.

2.4 Discussion of Metrics
We feel that there are several properties that are desirable

in a passage retrieval evaluation metric. First, in measures
that involve recall, the value of R should somehow reflect
the true amount of relevant material. This was not the
case with passage R-precision, but this problem is corrected
with the introduction of character R-precision and bpref at
R characters. Second, we prefer metrics that reward sys-
tems for getting more relevant material closer to the top
of the ranked list. For this reason, we prefer rank-based
measures like bpref at min(N, R), bpref at R, and character
average precision to set-based measures such as precision at
min(N, R) and character R-precision. However, we include
these measures in our evaluation because they are easy to
understand, and have counterparts in document evaluation.
Finally, we feel that the appropriate metrics to evaluate pas-
sage retrieval depend very much on the specific application
of the retrieval system. For example, there are applications
where the goal is just to find as much relevant text as pos-
sible, but there are others for which we might want to find
the most relevant passages of a particular length from each
document.

The high-precision measures are most useful in applica-
tions where a relatively small amount of text will be pre-
sented to the user. For example, one can imagine a web
search engine where a user types in a query, and gets back
a page of relevant text, excerpted from one or more doc-
uments. Precision at min(N, R) and bpref at min(N, R),
with N equal to roughly the number of characters that can
be displayed on this page, would provide a measurement of
how relevant this page of text is. In cases where the user was
expected to read the entire page of text, the precision mea-
sure would suffice. In cases where the user was expected to
start reading from the beginning of the page and stop read-
ing once he found enough information, bpref would be more
appropriate.

Another high-precision application for passage retrieval is
a system where users issue a query and get back a ranked list
of document titles, with an excerpt of relevant pieces of text
under each title, like in most web search engines. Here we
would like to find the most relevant parts of each document,
but there is a cap on the maximum number of characters
that we can retrieve from any one document. Precision at
min(N, R) and bpref at min(N, R) would again be appropri-
ate evaluation metrics, after modifying the retrieval criteria
to put a limit on how many characters can be returned from
a single document.

The measures that balance precision and recall are more
appropriate for applications where the goal is to find all
of the relevant text for a topic. One example of this is a

document retrieval system where documents are presented
with all of the relevant text highlighted so that users can
find it faster but still see the context. Which of the three
precision/recall measures is best for evaluating this type of
system would depend on how important it is to find relevant
text early on in higher ranked documents and the expected
ratio of relevant to non-relevant text.

All of the measures presented here leave unaddressed the
issue of human readability. Because these are all character-
level measures, a system that retrieved a lot of relevant ma-
terial at the top of a ranked list, but presented the charac-
ters in jumbled order could still score very high. This is one
reason it is important to do sanity checks for any of these
measures. In some cases, it might make sense to restrict the
retrieval unit boundaries to sentences or phrases.

3. PASSAGE RETRIEVAL MODELS
We compare seven different models for retrieving passages:

tfidf, query-likelihood language modeling, a relevance mod-
eling approach for scoring passages or documents, a model
based on support vector machines, a new method based on
a simple mixture of language models, and a method for re-
trieving and scoring variable-length passages.

3.1 TFIDF
In the term frequency/inverse document frequency (TFIDF)

retrieval model, each passage and query is modeled as a vec-
tor in the space of all text in the collection vocabulary. The
score of a passage, given a particular query, is equal to the
inner product of the vector representing the passage and the
vector representing the query. The weight of each dimension
in both the passage and query vectors is equal to the term
frequency (TF) score of the term that corresponds to that di-
mension, times the inverse document frequency (IDF) score
of that term. The TF score of a term t for a passage p is
defined as

TF(t|p) =
count of t in p“

psg. len. in words
2× avg. psg. len.

”
+ 0.5 + count of t in p

. (4)

The TF score of a term t for a query q is defined as

TF(t|q) =
count of t in q

count of t in q + 1
. (5)

The IDF score of a term, used for passages and queries, is

IDF(t) = log

„
# docs. in corpus + 1

0.5 + # docs. t appears in

«
. (6)

This rather ad hoc scoring formula is implemented in the
Lemur toolkit [5], and arose out of years of experimentation
and adjustment of TFIDF models.

3.2 Query Likelihood Language Model (QL)
The use of statistical language modeling in information

retrieval was first proposed by Ponte and Croft in 1998 [26]
and has been very influential on subsequent information re-
trieval research. In this model, each document is represented
as a probability distribution over the vocabulary, or a lan-
guage model. They then rank documents by the probability
that the query Q was generated from each document model
ΘD.

Ponte and Croft used a multiple-Bernoulli model to es-
timate P (Q|ΘD) which has been largely supplanted by the



multinomial model described in several papers that followed
shortly after [13, 21, 28]. In this model, words are treated
as independent and identically distributed (i.i.d.) samples
from the document model. This means they can be ranked
according to equation 7.

P (Q = q1, . . . , qk) =

nY
i=1

P (qi|ΘD) (7)

Because maximum-likelihood estimates of the document model
will lead to zero probability estimates for most terms, some
form of smoothing [32] is generally used to estimate the
document model ΘD. In this case we use Jelinek-Mercer
smoothing [14] which is simply the linear interpolation of
the maximum likelihood model of the document ΘDML and
the maximum likelihood model of the entire document cor-
pus ΘCML ,

P (w|ΘD) = λP (w|ΘCML) + (1− λ)P (w|ΘDML) (8)

where 0 ≤ λ ≤ 1. In order to score passages rather than
documents using this model, we simply treat each passage
as though it is a short document.

3.3 Relevance Modeling Approaches (RMP and
RMD)

Lavrenko and Croft’s relevance models [19] provide a language-
modeling based approach for estimating a probability for
each word in the relevant class of documents, P (w|ΘR).
They assume that both the query and the associated rele-
vant documents R are samples from the distribution P (w|ΘR),
though it is not necessarily the case that a particular word
w has the same probability in both the query and a relevant
document.

Taking advantage of the assumption that the query Q =
q1, . . . , qk is a sample from the model of relevance, they es-
timate the relevance model according to equation 9.

P (w|ΘR) ≈ P (w|q1, . . . , qk) =
P (w, q1, . . . , qk)

P (q1, . . . , qk)
(9)

Lavrenko and Croft [19] describe two methods for estimating
P (w, q1, . . . , qk). We describe only the first because this is
the one used in all of our models.

In method 1, the assumption is that w and q1, . . . , qk are
i.i.d. samples from a single unigram model ΘD in some finite
space of possible unigram models R. This means they can
write the joint distribution as

P (w, q1, . . . , qk) =
X

ΘD∈R

 
P (ΘD)P (w|ΘD)

kY
i=1

P (qi|ΘD)

!
(10)

They restrictR to contain only the language models of the
top-ranked documents retrieved using the query likelihood
model described in section 3.2 to do the initial retrieval. In
other words, the assumption is that w and q1, . . . , qk are i.i.d.
samples from a model of one of the top-ranked documents.

For computational efficiency, we truncate the relevance
model ΘR to include only the t most probable terms in
the model where P (t) ≥ p. In our experiments, t = 100,
p = 0.001, and |R| = 20. To ensure a valid probability
distribution, we normalize the truncated relevance model
to sum to 1. To avoid zero probability terms in the rel-
evance model, we smooth it against the document corpus
using Jelinek-Mercer smoothing.

Finally, because the relevance model may not place high
enough weights on the original query terms, and indeed some
query terms may not even appear in the model before the
last smoothing step, we take a mixture of the relevance
model and the maximum likelihood model of the original
query ΘQ using linear interpolation, to arrive at the final
model

P (w|ΘR∗) = λP (w|ΘQ) + (1− λ)P (w|ΘR), (0 ≤ λ ≤ 1). (11)

We rank passages by the negative KL-divergence between
this model P (w|ΘR∗) and the smoothed passage model ΘP

which is equivalent to ranking by query-likelihood, treating
ΘR∗ as our a representation of our query [18].

−D(ΘR∗ ||ΘP ) = −
X

w∈ΘR∗

P (w|ΘR∗) log
P (w|ΘR∗)

P (w|ΘP )
(12)

We also include relevance model document ranking, re-
ferred to as RMD, as a point of comparison. The model is
the same, except that we use a smoothed document model
in place of the passage model.

3.4 Bootstrap Support Vector Machine (SVM)
A support vector machine (SVM) is a discriminative su-

pervised learning algorithm described by Vapnik [30]. SVMs
have been very popular in machine learning for a variety of
classification tasks. In the SVM model, labeled training ex-
amples are represented by feature vectors and the goal is to
find a boundary between the positively and negatively la-
beled training examples that maximizes the distance to the
closest training examples, also known as the margin. The
SVM algorithm does this by mapping the training examples,
which are represented as points in the original feature space,
into a higher dimensional space known as the kernel space
where we hope the data are linearly separable. Mapping
the data points into a sufficiently high dimensional space
guarantees separability as long as the data set is consistent.

The discriminant function that distinguishes positive from
negative examples, or relevant documents from non-relevant
documents in our case, is

g(R|D, Q) = 〈w, φ(D, Q)〉+ b. (13)

Here φ is the function that maps a feature vector in the input
space to a point in the kernel space, w is a weight vector
learned from the training examples, and b is a constant. The
SVM is trained so that g(R|D, Q) ≥ 1 if D is relevant and
g(R|D, Q) ≤ −1 if D is not relevant.

Unfortunately the actual mapping from the feature space
to the kernel space can be computationally expensive. Al-
though we won’t get into the details here, this can be con-
verted into a dual optimization form that allows us to use a
kernel function in place of actually computing a dot product
in the feature space. This means that feature functions do
not have to be represented explicitly in the higher dimen-
sional space.

One of the issues in applying SVMs to information re-
trieval problems is that the class of non-relevant training
examples tends to overwhelm the class of relevant exam-
ples. As a result, we train only on a small set of negative
examples. Sometimes these examples are randomly selected
as in [24], but AbdulJaleel [1] uses a “bootstrap” method
for selecting negative training examples. This method in-
volves a two-step process where the initial classification uses



a random sample of negative training instances. In the sec-
ond classification, the negative examples are those that were
false positives in the initial classification. She uses the same
features described in [24] to represent the data.

The bootstrap SVM method uses a relevance model to
re-weight the query terms and is trained on relevant and
non-relevant documents from TREC 1 and 2 [1]. It uses
a linear kernel to rank passages by decreasing value of the
discriminant function (13). The results described here for
the bootstrap SVM are identical to those described in [1].

3.5 Mixture of Language Models (MM)
It has long been recognized that some combination of in-

formation from the text of the passage being modeled and
the text of the document it came from may help to improve
passage retrieval results [7]. Statistical language modeling
has been used for both standard passage retrieval [20, 15]
and in passage retrieval systems for question answering [9,
33]. However, we are unaware of any models like ours, which
uses a mixture of document and passage language models to
do passage retrieval.

In this model, we assume that each word in a passage
is generated from a mixture of three multinomial language
models: the corpus model ΘC , the model of the document
it came from ΘD, and the model of the passage ΘP . All
three language models of these are calculated using maxi-
mum likelihood estimation.

P (w|ΘMM ) = λ1P (w|ΘC) + λ2P (w|ΘD) + λ3P (w|ΘP ) (14)

(λ1 + λ2 + λ3 = 1)

In all of our experiments we let λ1 = 0.8, λ2 = 0.1, and
λ3 = 0.1. A passage’s final score is equal to the negative
Kullback-Leibler divergence between the relevance model for
the query ΘR∗ , given in equation 11, and the mixture model
of the passage ΘMM .

−D(ΘR∗ ‖ ΘMM ) = −
X

w∈ΘR∗

P (w|ΘR∗) log
P (w|ΘR∗)

P (w|ΘMM )
. (15)

Note that when λ2 = 0.0, this model is the same as passage
relevance modeling (RMP) and when λ3 = 0.0 it is the same
as document relevance modeling (RMD).

3.6 Query Word Density Model (QWD)
Of the retrieval models presented here, this is the only

one that does variable-length passage retrieval. Previous
approaches to variable-length passage retrieval include sev-
eral HMM-based models [22, 17, 11, 15] and models based
on query term density [8]. Our term-density QWD model is
motivated by the approach used in [10] for scoring each word
in a document. In this model, we start with the relevance
model in equation 11, which we treat as an expanded query
model. We linearly scale the weights of the query terms up
to integer values. This leaves each query word ti with a
scaled weight wi. For each document, we mark every query
term ti and wi words to either side of it. Once we have done
this for every query term, we extract every group of marked
words that is longer than a particular threshold as a pas-
sage. In our experiments, we extracted only passages that
were greater than or equal to 400 characters. Once we’ve
extracted these passages, we rank them using our passage
retrieval mixture model in equation 15.

4. EXPERIMENTAL RESULTS
We used a subset of the topics, relevance judgments, and

corpus from the 2003 HARD track as our training data, and
the topics, relevance judgments, and full corpus from the
2004 HARD track as our test data. The HARD 2003 doc-
ument corpus consists of 320,380 news stories from the As-
sociated Press, New York Times, and Xinhua News Agency
from 1999. It also contains many Congressional Record and
Federal Register documents from 1999, which were omit-
ted from the training set because they were less similar to
the test corpus. The HARD 2004 document corpus includes
652,309 news and lifestyle articles published in 2003 in eight
different sources.

In the training set, we have 23 topics, for which a total of
1,042 documents were judged to have at least one passage
relevant to one of these topics. The number of documents
containing at least one relevant passage varies a lot by topic.
One topic has only 2 documents judged to have a relevant
passage, while another has 135. The mean number of doc-
uments with a relevant passage for each topic is 45 and the
median is 32. In the test set, we have 25 topics, with a total
of 1,682 documents judged to have at least one relevant pas-
sage. The minimum number of documents with a relevant
passage for a topic is 1 and the maximum is 289. The mean
and median are 67 and 34, respectively.

We present results for the seven models described above
(referred to as TFIDF, QL, RMP, RMD, SVM, MM, and
QWD, respectively) for bpref at min(12,000, R) characters,
precision at min(12,000, R) characters, character R-precision,
bpref at R characters, and non-interpolated character aver-
age precision. With the exception of the QWD variable-
length passage retrieval model and the RMD whole docu-
ment model, all retrieval algorithms were applied to an in-
dex of stopped 100 word, half-overlapping passages from the
HARD 2004 corpus. The results presented are from the 25
test queries for which we have passage-level relevance judg-
ments.

Table 1 shows that the mixture model described in sec-
tion 3.5 (MM) performs significantly better than TFIDF,
QL, SVM, and RMP when evaluated using binary prefer-
ence at 12,000 characters. Although there was not room for
all of the significance tests in this table, MM does not signif-
icantly outperform the QWD or RMD models. On average,
the mixture model does 38.8% better than TFIDF, 35.2%
better than query likelihood, 30.2% better than the boot-
strap SVM, and 26.4% better than the passage relevance
model.

Table 1: Mean bpref at min(12,000, R) characters
Model bpref 2-tail t-test

@12K % improvement
TFIDF QL SVM RMP

TFIDF 0.1733
QL 0.1778 0.57
SVM 0.1846 0.17 0.53
RMP 0.1902 0.07 0.32 0.61
QWD 0.2108 0.02 0.03 0.15 0.13

17.8% 18.5%
RMD 0.2355 0.09 0.08 0.18 0.18
MM 0.2404 0.03 0.05 0.05 0.05

38.8% 35.2% 30.2% 26.4%



The results in table 2 for precision at min(12,000, R) char-
acters are similar to the results for bpref at 12,000 char-
acters. The mixture model performs 34.8% better than
TFIDF, 30.3% better than query likelihood and 27.4% bet-
ter than the SVM. The results are not significantly better
than the other three models.

Table 2: Mean precision at min(12,000, R) charac-
ters

Model prec 2-tail t-test
@12K % improvement

TFIDF QL SVM RMP

TFIDF 0.1972
QL 0.2040 0.42
SVM 0.2088 0.38 0.72
RMP 0.2181 0.12 0.34 0.46
QWD 0.2427 0.01 0.02 0.09 0.09

23.1% 19.0%
RMD 0.2654 0.06 0.08 0.15 0.19
MM 0.2659 0.02 0.04 0.05 0.07

34.8% 30.3% 27.4%

Table 3: R-precision for fixed-length passage re-
trieval

Model char 2-tail t-test
R-prec % improvement

QL TFIDF QWD SVM

QL 0.1705
TFIDF 0.1718 0.78
QWD 0.1720 0.90 0.99
SVM 0.1807 0.11 0.17 0.48
RMP 0.1846 0.17 0.15 0.36 0.69
RMD 0.2018 0.22 0.24 0.30 0.36
MM 0.2168 0.04 0.04 0.10 0.08

27.2% 26.1%

Table 3 presents the results for character-level R-precision.
Although we should note that all of these models were trained
to optimize the high-precision metrics, and were not re-
trained to optimize for the measures that balance precision
and recall, the relative performance of the seven models is
still similar. Here, the mixture model still performs well,
but is only significantly better than query likelihood and
TFIDF, by 27.2% and 26.1%, respectively.

Tables 4 and 5 show the results for bpref at R characters
and non-interpolated character average precision (CAP), which
exhibit trends similar to the other tables. One notable ex-
ception is that the query word density (QWD) model seems
to do quite a bit worse on the measures that balance preci-
sion and recall, than on the high-precision measures.

The mixture model performs well compared to the other
models, and is robust across the various measures, but all
of the scores are still quite low overall. This indicates that
finding only the relevant portions of a document is a difficult
problem, at least for TREC-style topics.

One interesting observation about these results is that the
relevance model document retrieval algorithm performs al-

Table 4: Binary precision at R characters
Model bpref 2-tail t-test

@R % improvement
QL TFIDF QWD SVM

QL 0.1284
TFIDF 0.1309 0.60
QWD 0.1357 0.40 0.60
SVM 0.1413 0.04 0.03 0.54

10.1% 8.0%
RMP 0.1447 0.04 0.03 0.33 0.57

12.7% 10.6%
RMD 0.1723 0.06 0.09 0.16 0.14
MM 0.1798 0.03 0.05 0.11 0.08

40.1% 37.4%

most as well as our best passage retrieval model, for all of
these measures.1 In fact, several 2004 HARD track partici-
pants working on passage retrieval made the same observa-
tions about their results [1, 15].

Table 5: Non-interpolated character average preci-
sion (CAP)

Model CAP 2-tail t-test
% improvement

QWD TFIDF QL SVM

QWD 0.1077
TFIDF 0.1139 0.56
QL 0.1165 0.39 0.76
SVM 0.1310 0.05 0.05 0.01

21.6% 15.0% 12.4%
RMP 0.1332 0.03 0.04 0.00 0.53

23.7% 16.9% 14.3%
RMD 0.1710 0.02 0.04 0.01 0.04

58.8% 50.1% 46.8% 30.6%
MM 0.1718 0.02 0.05 0.02 0.06

59.5% 50.8% 47.5%

We investigated several hypotheses about why document
retrieval algorithms perform as well as the best passage re-
trieval algorithms. One observation is that the documents
in the HARD 2004 corpus are quite short in general; they
average 2,507 characters, which is generally equal to a pas-
sage containing about 200 non-stop words. Past research
has found that passage retrieval performance (evaluated us-
ing document retrieval) is fairly consistent for passages of

1One property of all of the passage runs presented here is
that they can never retrieve the characters in the beginning
of all documents in tags like KEYWORD and DATE TIME,
which are guaranteed to be non-relevant. This gives all of
the passage runs an advantage over the document runs from
the start because document runs must return entire doc-
uments, which include all of this non-relevant text. Even
worse, this text tends to occur more at the beginning of
documents, further disadvantaging document runs on the
measures, like bpref and average precision, where character
ranking matters. It seems likely that removing these parts
of the text from the documents returned could remove any
advantage that the mixture model (MM) has over the doc-
ument retrieval relevance model (RMD).



150-300 words [7]. In addition, in the documents with at
least one passage marked relevant by HARD annotators,
an average of 51% percent of the characters were marked
relevant. Considering that every document includes some
markup that is automatically non-relevant, this means that
on average, annotators marked substantially more than half
of the document text relevant.

In light of these properties of the corpus, we performed
some analysis, designed to give an indication of the relative
performance of passage and document retrieval algorithms
on a corpus with more multi-topic documents. Table 6 shows
how each of the seven retrieval methods performs on each
of the five evaluation measures, averaged over the 14 topics
where the average percentage of characters marked relevant
in documents with relevant passages was ≤ 35%. The cells
shaded gray indicate the two best-performing models for
each measure. Although we want to be careful not to draw
too many conclusions from an experiment on only 14 topics,
it is worth noting that the RMD document retrieval model
is one of the worst-performing models for measures except
character average precision (CAP). For the CAP measure,
however, RMD is the second best model.

Table 6: Evaluation using topics where an average
of ≤ 35% of characters were marked relevant in doc-
uments with a relevant passage. Gray-shaded boxes
indicate the best performing measures.

Bpref12K Prec12K RPrec BprefR CAP
RMD 0.0811 0.1115 0.0980 0.0732 0.0862
QL 0.0949 0.1284 0.1192 0.0794 0.0790
TFIDF 0.0970 0.1327 0.1170 0.0782 0.0809
RMP 0.0979 0.0950 0.1138 0.0800 0.0850
SVM 0.1094 0.1428 0.1206 0.0819 0.0860
MM 0.1142 0.1482 0.1238 0.0888 0.0959
QWD 0.1175 0.1540 0.1225 0.0872 0.0748

For our next analysis, we removed every document that
had more than 50% of its total number of characters marked
relevant from each ranked result list and from the relevance
judgments. The results are shown in table 7.2 Here we have
to be even more careful about drawing conclusions because
we have removed a great deal of relevant material from the
judgments. This means relevant material is very sparse,
scores are even lower, and small differences or anomalies
could have a big effect. However, we note once again that
the document retrieval model RMD is the worst performer
on four of the five measures. For the CAP measure, RMD
is somewhere in the middle.

5. CONCLUSION
We have demonstrated some of the problems that can ar-

rive in passage retrieval evaluation and presented five re-
trieval methods that correct some of these problems. Us-
ing these metrics, we compared the retrieval performance
of seven different passage retrieval algorithms. We found

2For the models using some kind of pseudo-relevance feed-
back (RMD, MM, RMP, and QWD), we did not remove
documents ≥ 50% relevant from the modified query, as we
should have to make this a more fair experiment.

Table 7: Results after removing all documents with
more than 50% of characters marked relevant from
the results and from the relevance judgments. Gray-
shaded cells indicate the two best-performing mod-
els for each evaluation measure.

Bpref12K Prec12K RPrec BprefR CAP
RMD 0.0576 0.0803 0.0879 0.0593 0.0640
QL 0.0703 0.1061 0.0905 0.0651 0.0612
SVM 0.0723 0.0994 0.0954 0.0658 0.0642
TFIDF 0.0769 0.1076 0.0913 0.0655 0.0623
MM 0.0710 0.0977 0.0970 0.0684 0.0744
RMP 0.0805 0.1010 0.0920 0.0701 0.0692
QWD 0.0808 0.1177 0.0969 0.0687 0.0571

that the algorithms that tended to do well on these evalu-
ation metrics did well on all of them. Of particular note is
our new relevance modeling-based mixture model that com-
bines document and passage information to score passages.
This model performed the best on all five evaluation met-
rics. We saw that the one document retrieval algorithm we
used performed very well. However, our last two experi-
ments suggest that this may be due to the short documents
in the corpus and the presence of many documents with a
lot of relevant text. The relatively low scores for all of the
retrieval methods suggest that we have a long way to go in
improving passage retrieval. We feel that future passage re-
trieval researchers should choose evaluation measures with
a specific task in mind, and that passage retrieval corpora
should contain longer, multi-topic documents.
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