
Indri at TREC 2004: Terabyte Track

Donald Metzler, Trevor Strohman, Howard Turtle, W. Bruce Croft

Center for Intelligent Information Retrieval
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

Abstract

This paper provides an overview of experiments carried out at
the TREC 2004 Terabyte Track using the Indri search engine.
Indri is an efficient, effective distributed search engine. Like
INQUERY, it is based on the inference network framework and
supports structured queries, but unlike INQUERY, it uses lan-
guage modeling probabilities within the network which allows
for added flexibility. We describe our approaches to the Ter-
abyte Track, all of which involved automatically constructing
structured queries from the title portions of the TREC topics.
Our methods use term proximity information and HTML doc-
ument structure. In addition, a number of optimization proce-
dures for efficient query processing are explained.

1 Introduction

The Indri search engine1, developed as part of the Lemur
Project, is designed to be both efficient and effective over
a wide range of collections, especially large, semi-structured
text collections, such as the web. This year’s TREC Terabyte
Track provided a useful platform to test our new system. In-
dri makes use of INQUERY’s underlying inference network re-
trieval framework, which allows complex structured queries to
be constructed and evaluated [1]. However, Indri makes use of
language modeling probabilities instead of INQUERY’s tf.idf -
based probabilities, which provides increased robustness, as re-
flected in the Indri query language.

For this year’s track we have two objectives. First, we wish
to evaluate the effectiveness of our retrieval model. We devise
several methods of automatically constructing complex struc-
tured queries from natural language descriptions of information
needs. We explore several such methods, including the use of
phrases and query expansion. Second, we are interested in eval-
uating the efficiency of the engine. We use document-at-a-time
scoring, and explore several query optimization techniques.

1Available for download at http://www.lemurproject.org

Therefore, the goal of this paper is to provide a broad
overview of Indri and our approaches to the Terabyte Track.
In the remainder of this paper we describe Indri’s underlying
retrieval model, its indexing and query processing infrastruc-
tures, details of the runs we submitted, and an evaluation of the
results.

2 Task

The focus of this year’s track is content-based search over a
large web collection. The collection, named GOV2, consists
of a crawl of the entire .gov web domain. Despite it being the
Terabyte Track, the collection only weighs in at 426GB un-
compressed, which is still significantly larger than most past
TREC collections. The collection is made up of 25,205,179
documents, which are mostly HTML documents (91.7%), but
also includes plain text versions of crawled PDF, PS, and MS
Word documents.

3 Model

The retrieval model implemented in the Indri search engine is
an enhanced version of the model described in [9], which com-
bines the language modeling [12, 3] and inference network [13]
approaches to information retrieval. The resulting model al-
lows structured queries similar to those used in INQUERY to
be evaluated using language modeling estimates within the net-
work, rather than tf.idf estimates. Figure 3 shows a graphical
model representation of the network. As in the original infer-
ence network framework, documents are ranked according to
P (I|D,α, β), the belief the information need I is met given
document D and hyperparameters α and β as evidence.

Due to space limitations, a general understanding of the in-
ference network framework is assumed. See [9] and [13] to fill
in any missing details.

1

3.1 Document Representation

Typically, in the language modeling framework, a document is
represented as a sequence of tokens (terms). Based on this se-
quence, a multinomial language model over the vocabulary is
estimated. However, it is often the case that we wish to model
more interesting text phenomenon, such as phrases, the absence
of a term, etc. Here, we represent documents as multisets of bi-
nary feature vectors. The features can be nearly any interesting
binary observation of the underlying text. The features used to
represent documents in our model are discussed later.

We assume that there is a single feature vector for each po-
sition within a document, although in general this need not be
the case. Such a model moves away from modeling text towards
modeling features of text. Throughout the remainder of this pa-
per we refer to such models as language models, although they
really are better described as language feature models.

3.2 Language Models

Since our event space is now binary we can no longer estimate a
single multinomial language model for each document. Instead,
we estimate a multiple-Bernoulli model for each document, as
in Model B of [10]. This overcomes the theoretical issues en-
countered in [9]. Note that the multiple-Bernoulli model im-
poses the assumption that the features (ri’s) are independent,
which of course may be a poor assumption depending on the
feature set.

We take a Bayesian approach and impose a multiple-Beta
prior over the model (θ). The Beta is chosen for simplic-
ity, as it is the conjugate prior to the Bernoulli distribu-
tion. Thus, P (D|θ) ∼ MultiBernoulli(θ) and P (θ|α, β) ∼
MultiBeta(α, β). Our belief at node θ is then:

P (θi|D,α, β) =
P (D|θi)P (θi|αi, βi)∫
θi

P (D|θi)P (θi|αi, βi)

= Beta(#(ri, D) + αi, |D| − #(ri, D) + βi)

Figure 1: Indri’s inference network retrieval model.

for each i where #(ri, D) is the number of times feature ri is
set to 1 in document D’s multiset of feature vectors.

We estimate such a model for the entire text of a docu-
ment. Additionally, we estimate specific models for a number
of HTML fields. To do so, we treat all of the text in a document
that appears within a given field as a pseudo-document. For ex-
ample, a model can be estimated for all of the text that appears
within the h1 tags of a document. More details of the specific
fields we explored are given in Section 6.

3.3 Representation Nodes

The ri nodes correspond to document features that can be repre-
sented in an Indri structured query. Indri implements all of the
term and proximity operators available in INQUERY, including
single terms, #N (ordered window N), and #uwN (unordered
window N). See [9] for more details. The belief at a given
representation node is computed as:

P (ri|D,α, β) =

∫
θi

P (ri|θi)P (θi|D,αi, βi)

= E[θi]

=
#(ri, D) + αi

|D| + αi + βi

Furthermore, selecting αi = µP (ri|C) and βi = µ(1 −
P (ri|C)) we get the multiple-Bernoulli model equivalent of the
multinomial model’s Dirichlet smoothing [15] estimate:

P (ri|D,α, β) =
#(ri, D) + µP (ri|C)

|D| + µ

where µ acts as a tunable smoothing parameter.

3.4 Query Nodes

The query node operators are soft probabilistic operators. All
of the query operators available in INQUERY are also available
in Indri, with the addition of a weighted version of the #and
operator named #wand. The operators are #combine (same as
#and), #weight (same as #wand), #or, #not, #sum, #wsum, and
#max. See [9] for the details of how beliefs are computed at the
query nodes.

Since we are using language modeling probabilities within
the network, the #wsum operator no longer makes sense and the
the #combine (#and) and #weight (#wand) operators are more
appropriate [9]. In fact, it can be shown that the Indri query
#combine(q1 . . . qN) using the estimates just described returns
exactly the same ranked list as the query q1 . . . qN using the
traditional (multinomial with Dirichlet smoothing) query like-
lihood model.

2

CPU Intel Pentium 4 2.6GHz × 1
Bus speed 800MHz
OS Linux 2.4.20 (Red Hat 9)
Memory 2GB
Boot volume Western Digital 40G

(WD400EB-75CPF0)
Work volume Western Digital 250GB × 3

(WD2500JB-00EVA0)
RAID 0
Average write seek: 10.9ms
Average read seek: 8.9ms
Rotational speed: 7200rpm

Network 1Gb/s Ethernet (Intel 82540EM)

Figure 2: Machine configuration for Terabyte Track (6 of these
machines were used) at a total cost of $9000 USD.

4 Test Platform

We ran our index builds and our queries in parallel on a cluster
of 6 identically configured machines (the machine configura-
tion is shown in Figure 2).

For the run involving anchor text, we ran an application on
a single machine that extracted all anchor text from the col-
lection. We discarded all in-site links, that is, all machines
that pointed to pages on the same machine as they originated
from. The remaining link text was associated with the desti-
nation page of each link. This process took more time than
indexing did, and it generated approximately 7GB of anchor
text.

5 Indri Retrieval Engine

The Indri engine was written to handle question answering and
web retrieval tasks against large corpora. The engine is written
in C++ and runs on Linux, Windows, Solaris and Mac OS X.
We used the Terabyte Track as a proving ground for this engine.

The indexing algorithm is quite similar to the one described
in [6], although it was developed before we had seen this paper.
In the early phases of development we had attempted to store
the vocabulary of the collection in a B-Tree data structure. With
caching, this method seemed to do well on collections of up to
10GB, but after that point performance degraded dramatically.
We eventually changed the system to flush the vocabulary dur-
ing posting flushes, as in [6]. This technique dramatically im-
proved our indexing times.

The Indri indexing process creates a variety of data struc-
tures:

• A compressed inverted file for the corpus, including term
position information

• Compressed inverted extent lists for each field indexed in
the corpus

• A vector representation of each document, including term
position information and field position information

• A compressed version of the corpus text, including byte
offsets of indexed terms

We found that flushing the vocabulary during posting flushes
complicated the creation of document vectors. These vectors
are compressed arrays of numbers, where each number corre-
sponds to some term in the collection. In initial development,
each term was assigned a fixed number when it was first seen in
the corpus. With vocabulary flushing, we were no longer able
to keep fixed term numbers throughout the indexing process.
We therefore write the document vectors out using temporary
term numbers. Once each term is assigned a final term number
during the final inverted list merge, we rewrite the document
vectors, exchanging the temporary term numbers for the final
numbers.

5.1 Anchor Text

For the anchor text run, we followed the model presented by
Ogilvie and Callan in [11]. In this model, different portions of
the document are considered to be different representations of
the same document. We used the heading fields (h1, h2, h3
and h4), the title, the whole text, and the anchor text of each
web page as these different representations. The Indri query
language enabled us to weight these different representations
during retrieval.

Let the set of pages in the corpus be C. For each document
d ∈ C, there is a (possibly empty) set of documents in C that
have links to d. Let this set of documents be L. We can par-
tition L into two sets, LI and LE , where LI consists of those
documents on the same server as d (where server identity is de-
fined by DNS name), and LE consists of those documents on
other servers. Let A(d) represent the anchor text in links from
LE to d. We use A(d) as the anchor text model for d.

In order to be able to use the anchor text model of a document
during retrieval, we created an anchor text harvesting program.
This anchor text harvester wrote out all the links in the collec-
tion into a separate anchor text only corpus. The program then
associated the anchor text for each link to the destination doc-
ument. Approximately 70% of the time for this process was
taken in parsing the corpus to find the text; the remaining 30%
was taken in associating the link text with the destination doc-
uments.

5.2 Retrieval

Indri uses a document-distributed retrieval model when oper-
ating on a cluster. Each machine in the cluster runs a process

3

called a query server, which can perform queries against its lo-
cal collection. A process called the query director sends queries
out to the query servers for processing, and then merges the re-
sults.

In order to generate scores on a cluster that are identical to
those in a single collection, it is necessary for each cluster node
to use the same corpus statistics for term frequency and corpus
size. To do this, Indri starts every query by collecting statis-
tics from the query servers. The query director combines these
statistics to create a collection model for the query. These statis-
tics are then sent back to the query servers with the query itself
for final processing. This two-phase process allows Indri to
handle statistics collection for phrases in the same way that it
handles collection statistics for terms.

In the results we reported for the conference, our system used
1MB buffers on all term inverted lists in order to keep disk seek
overhead to an acceptable minimum. We processed all queries
into directed acyclic graphs before evaluation, which dramati-
cally cut down on the time necessary to evaluate the more com-
plicated adaptive window runs. We also incorporated a fast path
for frequency-only terms; that is, terms that can be scored based
on their frequency within the document, and without position
information. For these frequency terms, we read postings from
the inverted list in batches, and did not decompress the position
information.

Since the deadline, we have added two more optimizations.
The first is max score, described in [14]. This optimization
was in place before the deadline, but because of bugs in the
implementation was not actually working. The max score opti-
mization allows Indri to skip inverted list postings that we know
cannot be associated with a document in the top n positions of
the ranked list. Note that this optimization is rank and score
safe.

We have also implemented #weight operator folding. This
optimization removes unnecessary #weight and #combine
operators. For instance, a query such as

#weight(0.5 #combine(Bruce Croft)
0.5 #combine(James Allan))

is equivalent to:

#weight(0.25 Bruce 0.25 Croft 0.25 James 0.25 Allan)

However, our implementation of max score operates only on
the top level #weight operator. As such, #weight folding,
in concert with max score, gave us a large speedup in the query
expansion runs.

6 Runs

Five official runs were submitted for evaluation. We created
runs that vary from very simple (indri04QL) to very complex

(indri04FAW) with the aim of evaluating the efficiency and ef-
fectiveness of our system across a wide range of query types. In
order to emulate reality as close as possible, all queries were au-
tomatically constructed using only the title field from the topic.
The runs submitted were:

indri04QL – Query likelihood. For each topic we create an
Indri query of the form #combine(q1 . . . qN), where Q =
q1, . . . , qN is the title portion of the topic.

indri04QLRM – Query likelihood + pseudo relevance feed-
back. For each topic, we construct a relevance model [8] from
the top 10 documents retrieved using the indri04QL query. The
original query is then augmented with the 15 terms with the
highest likelihood from the relevance model. The final form of
the Indri query is:

#weight(0.5 #combine(q1 . . . qN)
0.5 #combine(e1 . . . e15))

where e1 . . . e15 are the expansion terms.

indri04AW – Phrase expansion. This run explores how we
can exploit Indri’s proximity operators to improve effective-
ness. We base our technique on the following assumption de-
scribed in [2]: query terms are likely to appear in close prox-
imity to each other within relevant documents.

For example, given the query “Green party political views”
(topic 704), relevant documents will likely contain the phrases
Green party and political views within relatively close prox-
imity to one another. Most retrieval models ignore proximity
constraints and allow query terms to appear anywhere within a
document, even if the words are clearly unrelated. Let us treat a
query as a set of terms Q and define SQ = P(Q) \ {∅} (i.e. the
set of all non-empty subsets of Q). Then, our queries attempt
to capture certain innate dependencies between query terms via
the following assumptions on SQ:

1. Every s ∈ SQ that consists of contiguous query terms is
likely to appear as an exact phrase in a relevant document
(i.e. #1)

2. Every s ∈ SQ such that |s| > 1 is likely to appear (ordered
or unordered) within a reasonably sized window of text in
a relevant document (i.e. #uw4|s|).

These assumptions state that (1) exact phrases that appear
in a query are likely to appear as exact phrases within rele-
vant documents and that (2) all query terms are likely to appear
within close (ordered or unordered) proximity to each other in
a relevant document. As a concrete example, given the query
“Prostate cancer treatments” (topic 710) our system generates
the following query:

4

#weight(1.5 #combine(prostate cancer treatments)
0.1 #combine(#1(cancer treatments)

#1(prostate cancer)
#1(prostate cancer treatments))

0.3 #combine(#uw8(cancer treatments)
#uw8(prostate treatments)
#uw8(prostate cancer)
#uw12(prostate cancer treatments)))

Queries constructed in this way boost the score of documents
that adhere to our assumptions. Experiments on the WT10g
collection with queries of this form performed significantly bet-
ter than traditional query likelihood queries.

indri04AWRM – Phrase expansion + pseudo relevance feed-
back. This run uses the query constructed from the indri04AW
run for pseudo relevance feedback. Here, 5 documents were
used to construct the relevance model and 10 expansion terms
were added to the query. For this run, we weighted the original
query 0.7 and the expansion terms 0.3 to yield a query of the
form:

#weight(0.7 Qorig 0.3 #combine(e1 . . . e10))

where Qorig is the original query and e1 . . . e10 are the expan-
sion terms.

indri04FAW – Phrase expansion + document structure. Our
final run is a largely untested and purely experimental attempt
to make use of anchor text and document structure. As dis-
cussed earlier, the Indri search engine can index fields and can
evaluated complex queries containing certain field constructs.
Several past studies have found that anchor text and document
structure yields inconsistent improvements in effectiveness for
ad hoc web retrieval [4, 5, 7]. The results were obtained us-
ing the WT10g collection, which is roughly 2.5% the size of
the GOV2 corpus. Therefore, we wish to explore whether these
results hold for this larger collection.

The queries constructed for this run make use of main body
text, anchor text, the title field, and header fields (h1, h2, h3,
h4). The queries constructed are of the form:

#weight(0.15 Qinlink

0.25 Qtitle

0.10 Qheading

0.50 Qmainbody)

where each Qfield is a phrase expansion query evaluated using
the respective field language model. For example, Qinlink is
the phrase expansion query evaluated using a language model
built from all of the anchor text associated with a page.

All smoothing parameters, weights, and window sizes were
tuned using the WT10g collection and TREC topics 451-550

Run ID AvgP P10
indri04QL 0.2515 0.4959

indri04QLRM 0.2531 0.4714
indri04AW 0.2686 0.5735

indri04AWRM 0.2838 0.5510
indri04FAW 0.2787 0.5837

Table 2: Official submission results.

which were used for ad hoc web retrieval at TREC-9 and 10 [4,
5].

Table 1 gives a detailed summary of the runs. Each run used
an index built from the entire collection of 25,205,179 docu-
ments. Documents are stemmed with the Porter stemmer and
stopped using a standard list of 421 common terms. In the ta-
ble, indexing time is the number of minutes required to build
the index in parallel across the cluster. Therefore, this number
is the maximum time required by any single machine to index
its subcollection. Index size is the total size of the index on disk
including both the inverted file and compressed collection. Av-
erage query time is the average number of seconds required to
run a query (distributed across the cluster) and retrieve 20 doc-
uments. The last column denotes whether or not the run made
any use of any document structure, such as titles, headers, etc.

7 Results

The results from our official runs are given in Table 2. In the
table, AvgP denotes mean average precision and P10 is the pre-
cision at 10 retrieved documents. The results seem to indicate
that both phrase expansion and query expansion improve per-
formance, where our best run, indri04AWRM, uses both. In
fact, the indri04AWRM run was the best automatic, title-only
run at the track.

After our official runs were submitted we discovered a num-
ber of serious bugs in Indri. Since the code was relatively young
at the time and largely untested, this was not unexpected. Af-
ter the bugs were fixed, we decided to carry out our runs again
and see what impact the fixes had on effectiveness. Note that
we did not change anything else in the system such as parsing,
weights, smoothing parameters, query formulation methodolo-
gies, etc. Only core bug fixes were applied to the system. Also,
since many other groups used other fields from the TREC top-
ics, such as the description and narrative fields, we decided to
run experiments using these fields.

Table 3 summarizes the results using the corrected system
and various combinations of fields from the TREC topics. For
the QL and QLRM runs, all of the text from all the fields under
consideration is concatenated and included in the query with
equal weighting. For example, for the title+desc run, the query
formulation is:

5

run id
index time

(mins)
index size

(GB)
avg. query

time (s)
struct?

indri04QL 355 224 1.36 no
indri04QLRM 355 224 26.0 no

indri04AW 355 224 6.5 no
indri04AWRM 355 224 39.4 no

indri04FAW 1300 226 52.2 yes

Table 1: Summary of runs.

Title Title+Desc Title+Desc+Narr
AvgP P10 AvgP P10 AvgP P10

QL 0.2565 0.4980 0.2730 0.5510 0.3088 0.5918
QLRM 0.2529 0.4878 0.2675 0.5673 0.2928 0.5796

AW 0.2839 0.5857 0.2988 0.6184 0.3293 0.6306
AWRM 0.2874 0.5653 0.2974 0.6102 0.3237 0.6367

Table 3: Summary of corrected results using different combinations of TREC topic fields to construct queries.

#weight(1.0 QQL,title 1.0 QQL,desc)

where QQL,title is the QL (bag of words) formulation of the
text in the title field and QQL,desc is the QL formulation of the
text in the description field.

For the AW and AWRM runs, a phrase expansion query is
constructed using only the title portion of the topic. The text
from any additional fields is included in the query and given
equal weight. Here is an example of the title+desc+narr query
formulation:

#weight(1.0 QAW,title 1.0 QQL,desc 1.0 QQL,narr)

where QAW,title is the AW (phrase expansion) formulation of
the text in the title field and QQL,desc and QQL,narr are the QL
formulations of the text in the description and narrative fields,
respectively.

Based on the corrected results, we see that the phrase ex-
pansion technique still yields improvements, but the query ex-
pansion runs lead to degraded performance. One explanation
for the poor performance of the query expansion runs is the
fact that our query expansion parameters were trained using the
“broken” code. Another possible explanation is that the noise
inherent in a collection the size of GOV2 produces poor ex-
pansion terms. We plan to further investigate this matter in the
future.

Furthermore, the results show that naively using the descrip-
tion and narrative portions of the TREC topics can lead to fur-
ther improvements. In fact, the corrected AW run using the
title, description, and narrative fields outperforms the overall
best official Terabyte Track run by approximately 7% (the run,
uogTBQEL, submitted by the University of Glasgow, had an
average precision of 0.3075 and made use of the same topic
fields). Although web users have been trained by commercial

search engines to formulate short keyword queries, they do so
at the expense of precision. Considering more complex queries
can lead to significant improvements in both average precision
and precision at 10 documents. We wish to explore the issue of
complex queries, including how to best express and represent
them, in the future.

8 Conclusions

This year’s Terabyte Track provided a forum to evaluate how
well existing retrieval architectures and models scale to (al-
most) terabyte sized collections. Based on the outcome of the
track, we are confidant the Indri search engine is both efficient
and effective on such large scale collections. Distributed across
six machines, Indri indexed the 25 million document, 426GB
GOV2 collection in 6 hours (approximately 12 GB/hr/machine)
and processed approximately one query every second. In terms
of effectiveness, phrase expansion via Indri’s structured query
operators proved to be a powerful asset. In the official runs, In-
dri had the best title only run using this technique. Despite all
of this, we hope to improve our system for next year. There are
a number of things we aim to explore, including faster index-
ing, improved query processing times, more use of HTML doc-
ument structure, looking into further use of complex queries,
more effective query expansion techniques for noisy data, doc-
ument priors, and link analysis.

9 Acknowledgments

This work was supported in part by the Center for Intelligent In-
formation Retrieval and in part by Advanced Research and De-

6

velopment Activity and NSF grant #CCF-0205575. Any opin-
ions, findings and conclusions or recommendations expressed
in this material are the author(s) and do not necessarily reflect
those of the sponsor.

References
[1] J. P. Callan, W. B. Croft, and S. M. Harding. The INQUERY

retrieval system. In DEXA-92, pp. 78–83.

[2] C. Clarke, G. Cormack, and F. Burkowski. Shortest substring
ranking (multitext experiments for trec-4). In TREC 4, 1995.

[3] W. B. Croft and J. Lafferty. Language Modeling for Information
Retrieval. Kluwer, 2003.

[4] D. Hawking. Overview of the trec-9 web track. In TREC 9, 2000.

[5] D. Hawking and N. Craswell. Overview of the trec-2001 web
track. In TREC 10, 2001.

[6] S. Heinz and J. Zobel. Efficient single-pass index construction
for text databases. JASIST, 54(8):713–729, 2003.

[7] I.-H. Kang and G. C. Kim. Integration of multiple evidences
based on a query type for web search. Info. Proc. and Mgt.,
40(3):459–478, 2004.

[8] V. Lavrenko. A Generative Theory of Relevance. PhD thesis,
UMass, 2004.

[9] D. Metzler and W. B. Croft. Combining the language model and
inference network approaches to retrieval. Info. Proc. and Mgt.,
40(5):735–750, 2004.

[10] D. Metzler, V. Lavrenko, and W. B. Croft. Formal multiple
bernoulli models for language modeling. In SIGIR 2004, pp.
540–541.

[11] P. Ogilvie and J. Callan. Combining document representations
for known item search. In SIGIR 2003.

[12] J. M. Ponte and W. B. Croft. A language modeling approach to
information retrieval. In SIGIR 1998, pp. 275–281.

[13] H. Turtle and W. B. Croft. Evaluation of an inference network-
based retrieval model. TOIS, 9(3):187–222, 1991.

[14] H. Turtle and J. Flood. Query evaluation: strategies and opti-
mizations. Info. Proc. and Mgt., 31(6):831–850, 1995.

[15] C. Zhai and J. Lafferty. A study of smoothing methods for lan-
guage models applied to information retrieval. ACM Trans. Inf.
Syst., 22(2):179–214, 2004.

7

