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Abstract

The ability to rank instances is important for a number of applications,
such as information retrieval and collaborative filtering. It is often the case
that the underlying task attempts to maximize some evaluation metric,
such as mean average precision, over rankings. Most past work on learn-
ing how to rank has focused on likelihood- or margin-based approaches.
In this work we explore directly maximizing rank-based metrics, which
are a family of metrics that only depend on the order of ranked items.
This allows us to maximize different metrics for the same training data.
We show how the parameter space of linear (and monotonically linear)
scoring functions can be reduced to a multinomial manifold. Parameter
estimation is accomplished by solving an optimization procedure that di-
rectly maximizes the evaluation metric over the manifold. Results from
ad hoc information retrieval are given that show significant improvements
in effectiveness using the proposed model.

1 Introduction

For many information retrieval tasks, such as ad hoc retrieval, named-
page finding, and question answering systems are evaluated based on some
metric of how well they rank results. Examples of such metrics include
mean average precision, mean reciprocal rank, and precision at 10, among
many others [2]. A retrieval system designer must choose a metric ap-
propriate to the underlying task. The end goal of the system is then to
maximize the given metric. This is often accomplished by hand tuning
system parameters until a given performance level is achieved. However,
such an approach is only feasible for a small number of parameters and
relatively simplistic models. The goal of this work is to develop meth-
ods for automatically setting parameters for a large family of retrieval
models and evaluation metrics in a supervised fashion. That is, given
a set of training data and a suitable retrieval model we explore how to
find the parameters that maximize any rank-based metric. A rank-based
metric is any metric that depends only on the ranking of the items under
consideration. Therefore, for a fixed training set and model our training
process will yield different parameter estimates for different metrics. This
is intuitively appealing, as we expect one set of parameters will maximize
average precision and another (different) set will maximize mean recipro-

1



cal rank. Ultimately, this allows for a single retrieval model to be used
for a variety of different tasks. Although this work focuses mostly on in-
formation retrieval it is applicable to any task that involves maximizing a
rank-based metric, such as collaborative filtering and certain classification
tasks.

In this work we consider ranking categories (documents) for a set of
input instances (queries). For each input instance, a complete ranking of
the categories is generated. We focus on linear and monotonically linear
models and show that their parameter spaces can be reduced to a multino-
mial manifold. As we show throughout the remainder of the paper, such
a reduction has several advantages. Parameter estimation then attempts
to maximize the evaluation metric of interest over the manifold. Since we
are no longer dealing with a Euclidean search space, some care is neces-
sary when carrying out such optimizations. Three straightforward, easy to
implement, derivative-free optimization procedures over the multinomial
manifold are described.

The remainder of this work is laid out as follows. Section 2 gives a
broad overview past work done on the topic of learning rankings. Section 3
develops a theory of linear and monotonically linear ranking functions and
shows the reduction of the parameter space to the multinomial manifold.
Next, Section 4 describes three approaches to directly optimizing rank-
based metrics over the multinomial manifold. Sections 5 and 6 describes
the role of ranking in ad hoc information retrieval and empirically evalu-
ates the model developed here. Finally, we conclude and detail possible
future work in Section 7.

2 Related Work

Most past work on learning how to rank objects has been a variant of
ordinal regression. Ordinal regression is similar to standard statistical re-
gression, but allows ordinal, rather than nominal or real-valued, responses.
Ordinal variables are coarse grained quantitative measures [1]. For exam-
ple, in information retrieval, documents can be thought as being “highly
relevant”, “somewhat relevant”, or “non-relevant”. Such categories are
ordinal because a “highly relevant” document is (quantitatively) better

than a “somewhat relevant” document, but it is impossible to specify how

much better it is. We note that this is different than assigning relevance
scores on an integer scale of 1 to 10. In this case it is possible to de-
termine the exact quantitative difference between the relevance of two
documents. It is this type of response that standard regression models
implicitly assume.

There are two popular approaches to ordinal regression. The most
simple, yet naive, approach is to treat the ordinal responses as either
class labels or real-valued targets and then apply standard classification
or regression techniques. Such an approach completely ignores the ordinal
nature of the responses and throws away a great deal of information.
The other approach, which makes use of the ordinal structure, maintains
weights and category boundary parameters. The boundary parameters
are used to denote the boundary between two adjacent ordinal responses.
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New instances are assigned to a category based the proximity of their
response to the category boundaries.

There have been many variations of this scheme, all based on different
ways to estimate the weights and boundary parameters. One of the ear-
liest approaches used a perceptron-based learning technique [5], whereas
more recent techniques have made use of large margin ideas, such as those
used in SVMs [7, 8, 18].

Although many of the large margin methods have theoretically strong
error rate bounds, they are often infeasible to train on large training data
sets. The reason for this is that most add one (or more) constraints for
every pair of instances in adjacent classes. For small training sets this
generates a feasible number of constraints. However, for more realistic
training sets, such as those that arise in information retrieval, this can
lead to on the order of one million or more constraints. Clearly, such an
optimization problem is both computationally and resource intensive.

3 Maximizing Rank-based Metrics

This section develops a novel approach to learning how to rank. The
motivation for this task is information retrieval, where ranking large sets
of documents is inherently important. As discussed in the previous sec-
tion, most state of the art ordinal regression approaches can not efficiently
handle such tasks. Therefore, we do not attempt to impose an ordinal re-
sponse, such as “relevant” and “non-relevant” on documents, since the
end goal of most ranking systems is to maximize some evaluation metric
based on the rankings produced. Thus, we focus on directly maximizing
this evaluation metric. As we will show, this approach can easily handle
large training sets, such as those that typically arise in information re-
trieval, as long as rankings can be efficiently evaluated using the metric.
Our approach can be applied to any task that induces a ranking attempts
to maximize some metric over the rankings. It is readily applicable to in-
formation retrieval, collaborative filtering, and even general classification
tasks.

3.1 Problem Description

Suppose we are given a set of categories (documents) C = {Ci}
K
i=1, in-

puts (queries) X = {Xi}
N
i=1, and training data T . In addition, we are

given a real-valued scoring function SΛ(C; X) parameterized by Λ. Given
an input Xi, the score function SΛ(C; Xi) is computed for each C ∈ C.
The categories are then ranked in descending order according to their
score. Therefore, the scoring function induces a partial ordering (ranking)
R(C, Xi, SΛ) on C for each input Xi. For simplicity we rewrite R(C, Xi, SΛ)
as Ri(Λ) and let RΛ = {Ri(Λ)}N

i=1 be the set of rankings induced over
the inputs. Finally, we need a rank-based metric (evaluation function)
E(RΛ; T ) that produces real valued output given a set of ranked lists
and the training data. It should be noted that we require that E only
considers the category orderings (rankings) and not the category scores.
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The scores are only used to order (rank) the categories and not used to
evaluate the ranking whatsoever.

Therefore, our goal is to find the Λ that maximizes E over the param-
eter space. Formally, this can be stated as:

Λ̂ = arg max
Λ

E(RΛ; T )

s.t. RΛ ∼ SΛ(C; X)

Λ ∈ MΛ

where RΛ ∼ SΛ(C; X) denotes that the orderings in R are induced using
scoring function S, and MΛ is the parameter space over Λ.

3.2 Monotonically Linear Scoring Functions

Rather than tackle the general optimization problem proposed above, we
aim to solve a more constrained version. We restrict our focus to strictly
monotonically increasing linear scoring functions. That is, we consider
scoring functions from the following family:

S = {SΛ(C; X) : ∃l(·) s.t. l is strictly monotonically increasing and

l(SΛ(C; X)) = ΛT
f(C, X) + Z}

where f(·, ·) is a feature function that maps category/input pairs to real-
valued vectors in R

d, Z is a constant that does not depend on C (but may
depend on Λ or X). That is, we require there to exist some strictly mono-
tonically increasing function l that, when applied to S, yields a function
that is linear in Λ. This family of models is strongly related to Generalized
Linear Models from statistics, with l acting as the link function.

Trivial examples of functions within this family include linear discrimi-
nants, such as those used with perceptrons or support vector machines [3].
Another example includes the so-called maximum entropy (MaxEnt) dis-
tribution given by [15]:

SΛ(C; X) =
1

ZΛ

exp
[

ΛT
f(C, X)

]

log SΛ(C; X) = ΛT
f(C, X) − ZΛ

Therefore, distributions of this form are also in S, with l(·) = log(·).
By definition, every S ∈ S can can be reduced to a linear form via a

strictly monotonically increasing function. Since such functions are rank
preserving and subsequently evaluation metric preserving, we can always
write the optimization problem for any scoring function in S as:

Λ̂ = arg max
Λ

E(RΛ; T )

s.t. RΛ ∼ ΛT
f(C, X) + Z

Λ ∈ MΛ

where the parameter space over Λ is unconstrained but not degenerate
(i.e. MΛ = R

d \ {0I}). Applying numerical optimization algorithms to
unconstrained parameter domains can be problematic, especially in the
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presence of many repeated local and global extrema as is the case here.
Also, many techniques require an intelligently chosen starting point or
that an extrema can be bracketed, both of which may be difficult in gen-
eral. For these reasons, we wish to further reduce the problem to a con-
strained optimization problem where the number of repeated extrema is
significantly reduced and it is always possible to bracket a global extrema.

To facilitate the theory, we must introduce a slight modification to
the feature vectors f(C, X). We augment f(C, X) with an additional
component f(C, X)d+1, such that f(C, X)d+1 = K −

∑d

j=1
f(C, X)j for

some arbitrary K and denote the modified feature vector as f̃(C, X).
By augmenting each feature vector with this additional component we
require that the sum of the feature vectors is constant (= K). We note
that this additional component introduces redundant information but has
no impact on the final result, as will be shown. Finally, let Λ̃ be the
d + 1 dimension version of Λ. Using the augmented feature vectors, the
unconstrained optimization problem can be written as:

Λ̂ = arg max
Λ̃

E(RΛ̃; T )

s.t. RΛ̃ ∼ Λ̃T
f̃(X, C) + Z

Λ̃ ∈ MΛ̃

λ̃d+1 = 0

It is easy to see why this optimization problem is equivalent to non-
augmented input case. The condition λ̃d+1 = 0 requires the weight asso-
ciated with the augmented feature to be 0, thus eliminating any influence
the augmented feature may have on the outcome.

3.3 Reduction to Multinomial Manifold

We will now show that this optimization problem, for the family of scor-
ing functions S, is equivalent to the following constrained optimization
problem:

Λ̂ = arg max
Λ̃

E(RΛ̃; T )

s.t. RΛ̃ ∼ Λ̃T
f̃(C, X) + Z

Λ̃ ∈ P
d

where P
d is a multinomial manifold (also known as a d-simplex) described

by:

P
d =

{

Λ ∈ R
d+1 : ∀j λj ≥ 0,

n+1
∑

i=1

λi = 1

}

Theorem. Any solution to the non-augmented optimization problem
over R

d \ {0I} has en equivalent solution to the augmented optimization
over P

d.
Proof. Suppose that Λ̂ is the solution to the augmented optimization

problem. This is equivalent to saying that the first d components of Λ̂
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are a solution to the original unconstrained optimization problem. Now,
consider the following transformation to Λ̂:

λ̂
′
i =

λ̂i − k

W

where k = min{0, min{λ̂i}} and W =
∑

i
(λ̂i − k). Thus, there are two

cases: min{λ̂i} ≥ 0 and min{λ̂i} < 0.

If min{λ̂i} ≥ 0, then k = 0 by definition and therefore λ̂′
i = λ̂i

∑

j λ̂j
.

Since all of the parameter values are scaled by the same positive constant
(W ), the parameter Λ̂′ ranks categories exactly the same as using param-
eter Λ̂. In addition, it is easy to verify that Λ̂′ ∈ P

d. Therefore, for any
solution Λ̂ such that min{λ̂i} ≥ 0, there exists an equivalent solution to
the constrained problem in P

d.
Next, if min{λ̂i} < 0, then k = min{λ̂i}. Under Λ̂, the scoring function

becomes:

SΛ(C; X̃) =
∑

i

λ̂
′
if̃(C, X)i + Z

=
∑

i

(

λ̂i − k

W

)

f̃(C, X)i + Z

=
1

W

∑

i

λ̂if̃(C, X)i −
k

W

∑

i

f̃(C, X)i + Z

rank
=

∑

i

λ̂if̃(C, X)i

Where the last step follows from the fact that
∑

i
f̃(C, X)i is constant

(= K) by definition. Again, it is straightforward to see that Λ̂′ ∈ P
d.

Therefore, we see that for any solution Λ̂ such that min{λ̂i} < 0, there
exists an equivalent solution to the constrained problem in P

d. We have
therefore shown that for any solution to the unconstrained problem there
also exists as a solution to the constrained problem, thus completing the
proof �

Therefore, for a given training set and any scoring function in S, we
have reduced the unconstrained problem of maximizing E(RΛ; T ) to a
constrained optimization over the multinomial manifold, where categories
are ranked according to a simple linear function. This allows us to always
bracket a global extremum, because we know that any solution to the
original unconstrained problem has an equivalent solution on the manifold,
including the global extrema.

Searching over the manifold provides an augmented solution Λ̃, which
requires augmented feature vectors. Fortunately, it is always possible to
transform the augmented parameter vector to one that is rank equivalent
to a scoring function over the non-augmented parameter space. This can
be done by transforming each weight by λ̂′

i = λ̂i − λ̂d+1 for all i. The
proof that this is valid (i.e. does not impact how things are rankings) is
similar to the proof given above. This results in the weight associated
with the augmented feature being set to 0, thus removing any influence
the augmented feature may have on our scoring function. The solution is
again implicitly over the original input space.
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3.4 Summary

The following summarizes the proposed procedure:

1. Construct f̃(C, X) from f(C, X) for all of the feature vectors.

2. Solve the constrained optimization problem over the multinomial
manifold to find Λ̂.

3. Construct Λ by translating Λ̂ such that the augmented component
has weight 0.

4. Order (rank) new inputs according to scoring function ΛT f(C, X).

Steps 1, 3 and 4 are straightforward. Step 2 is the most important part
of the method. In the next section we explore numerical techniques for
solving the optimization procedure required in this step.

4 Parameter Estimation

In this section we describe three simple numerical optimization techniques
for solving the optimization problem described in the last section. Unlike
most optimization techniques that treat the parameter space as R

d, we
must solve an optimization problem over the multinomial manifold P

d.
Since the manifold is coordinate-free, we must take care when devising
an optimization strategy. Furthermore, we make no explicit assumptions
about the continuity or differentiability of E, the function we are attempt-
ing to maximize. In those cases that E is continuous and differentiable
over R

d the optimization is straightforward. However, for most applica-
tions of interest, E will not have such a nice form and certain provisions
will have to be made.

4.1 Grid Search

The most naive approach to solving the optimization problem is to per-
form an exhaustive grid search over the manifold. That is, we place a
grid over the manifold and evaluate E(RΛ; T ) at every grid intersection.
More formally, given a parameter ε = 1

K
for K ∈ Z

+ that controls how
fine grained our grid is, we define:

G =

{

Λ = (k1ε . . . kdε) :
∑

i

kiε = 1, ki ∈ N

}

=

{

Λ = (k1ε . . . kdε) :
∑

i

ki = K, ki ∈ N

}

As we see |G|, the number of parameter values we must evaluate E at,
depends both on d (the number of parameters) and K (how fine grained
our grid is). A grid search is feasible only if both d and K are relatively
small. For larger values we must turn to more sophisticated training
methods. However, we should note that the grid search method has the
nice property that it is guaranteed to find a global maximum as K gets
large. This allows exact global convergence to be traded off for faster
training time.
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4.2 Coordinate Ascent

Coordinate ascent is a commonly used optimization technique for un-
constrained optimization problems. The algorithm iteratively optimizes
a multivariate objective function by solving a series of one dimensional
searches. It repeatedly cycles through each parameter, holding all other
parameters fixed, and maximizes over the free parameter. The technique
is known to converge slowly on objective functions with long ridges. Vari-
ations of the method, including Powell’s method, have been proposed to
overcome this issue [17].

Coordinate ascent can be applied to the optimization problem under
consideration with minor modifications necessary to handle the fact we are
optimizing over the multinomial manifold rather than a Euclidean space.
All one dimensional searches done by the algorithm will be performed as if
they were being done in R

d. However, this does not ensure that the update
parameter estimate will be a point on the manifold. Therefore, after a
step is taken in R

d, we project the point back onto the manifold, which we
showed is always possible. Note that this projection preserves the function
value since the unnormalized and projected parameter estimates lead to
rank-equivalent rankings. Therefore, the optimization is implicitly being
done in a space that we know how to optimize over (Rd), but is continually
being projected back onto to the manifold.

More concretely, suppose that λi is the current free parameter and all
other parameters are held fixed. Then, the update rule is given by:

λ
′
i = arg maxλi

E(RΛ; T )

After λ′
i is updated the entire parameter vector is then projected back

onto the manifold. This process is iteratively done over all parameters
until some convergence criteria is met. Finally, we note that if E is par-
tially differentiable with respect to each parameter then the update rule
is straightforward. For those functions where E is not partially differen-
tiable, such as the ones considered in the remainder of this paper, a line
search must be done to find the arg max.

4.3 Steepest Ascent

Another common optimization technique, similar in nature to coordinate
ascent, is steepest ascent. This technique aims at finding a maxima by
iteratively taking steps in the direction of steepest ascent. The update
rule is given by:

λ
′
i = λi + α

∂E(RΛ; T )

∂λi

where α is the step size that maximizes the objective function in the direc-
tion of the gradient. Just like with the coordinate ascent algorithm, after
each update the parameter vector must be projected onto the manifold.

The basic technique requires the function being optimized to be differ-
entiable. Since we do not assume our objective function is differentiable
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we must use approximate partial derivatives. This is accomplished via fi-
nite difference approximations. The parameter update rule is then stated
by:

λ
′
i ≈ λi + α

E(RΛt+hei
; T ) − E(RΛt ; T )

h

where h is width of the finite difference, α is the step size that maximizes
the objective function in the direction of the approximate gradient, and
ei is a d-vector with entry i equal to 1 and all other entries equal to 0.
In this case α can be found by a simple line search in the direction of the
approximate gradient. As we see, the finite difference approximation of
the partial derivative attempts to measure what change in E is achieved
when the current parameter setting is perturbed slightly. Other finite
difference approximations exist and may lead to better approximations.

For cases when E is differentiable and the gradient can be computed
exactly, steepest ascent may converge faster than coordinate ascent. How-
ever, when E is not differentiable, steepest ascent may perform poorly
due to the roughly approximated gradients. In our experiments using
non-differentiable objective functions we have found coordinate ascent to
be far superior to the steepest ascent algorithm.

4.4 Discussion

In this section the details of three optimization techniques were given.
Finding the maximum of an arbitrary evaluation function E can be very
difficult, especially in high-dimensional space. Only the grid search method,
with a suitably chosen K, is a guaranteed to find a global maxima. Both
coordinate and gradient ascent are local search techniques that are only
guaranteed to find a global maxima if the evaluation function E is con-
cave. Previous work in information retrieval has shown that for a certain
set of term and phrase features both average precision and precision at
10 are approximately concave over a wide range of collections [9]. This
may be the case for many related applications and feature sets, but is
not true in general. For functions with many local maxima, a multiple
random restart strategy can be used to increase the chances of finding a
global solution. Throughout the remainder of this work, all optimization
is carried out using coordinate ascent with 10 random restarts.

5 Ranking in Ad Hoc IR

Ad hoc retrieval is the standard information retrieval task of generating a
ranked list of documents that are topically relevant to some information
need, where the information need is typically expressed as a textual query.
This is the main task that we explore here. There are many ways of
evaluating information retrieval systems, nearly all of which are rank-
based metrics over ranked lists. Therefore, the approach developed in this
paper is easily applicable to training models for most information retrieval
tasks. One of the most widely used evaluation metrics, and the one used
here, is mean average precision. Training data for this task consists of
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Feature Feature

1
∑

w∈Q∩D log(tfw,D) 4
∑

w∈Q∩D log( |C|
cfw

)

2
∑

w∈Q∩D log(1 +
tfw,D

|D| ) 5
∑

w∈Q∩D log(1 +
tfw,D

|D|
N

dfw
)

3
∑

w∈Q∩D log( N
dfw

) 6
∑

w∈Q∩D log(1 +
tfw,D

|D|
|C|
cfw

)

Table 1: Features used in the small collections ad hoc retrieval experiments.
tfw,D is the number of times term w occurs in document D, cfw is the number
of times term w occurs in the entire collection, dfw is the number of documents
term w occurs in, |D| is the length (in terms) of document D, |C| is the length
(in terms) of the collection, and N is the number of documents in the collection.

a set of queries and relevance judgments. The relevance judgments are
binary. That is, a document is either relevant to a given query or it is
not.

Information retrieval has long been concerned with ranking documents.
In fact, most retrieval models are based on the Probability Ranking Prin-
ciple (PRP), which states that an optimal retrieval model will rank docu-
ments in order of decreasing usefulness to a given information need. Since
relevance is most often treated as binary, this is most often interpreted
probabilistically as ranking documents in decreasing order of their likeli-
hood of being relevant, as in the Binary Independence Model (BIM), where
relevance is treated as a binary random variable. Therefore, most proba-
bilistic retrieval models either implicitly or explicitly model relevance and
attempt to rank documents this way.

One proposed machine learning-based retrieval model ranks docu-
ments according to P (R = 1|D, Q), where R is a binary random variable,
D is the document random variable, and Q is the query random vari-
able [6, 14]. For a fixed query q, documents in the collection are ranked
according to their likelihood of being relevant (R = 1). In [14], Nallapati
assumes the following:

P (R = 1|D = d, Q = q) ∝ ΛT
f(d, q)

Table 1 shows the six features considered by Nallapati. The parameter
vector is estimated using a linear SVM, with relevant documents consid-
ered the “positive class” and non-relevant documents the “negative class”.
Therefore, the ranking task is being treated as a classification problem.

Is it very often the case that there are many more relevant documents
compared to non-relevant documents for a given query. For this reason,
the training data is very unbalanced. Nallapati found that the data needed
to be balanced in order to achieve good generalization performance. Bal-
ancing was done by undersampling the majority (non-relevant) class. Al-
though this led to improved performance over the unbalanced case, it had
the negative effect of throwing away valuable training data. We note that
other solutions to the unbalanced data problem for SVMs exist that do
not require training data to be compromised, such as allowing separate
costs for training errors in the positive and negative classes [13].
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We feel that estimating P (R = 1|D, Q) and/or P (R = 0|D, Q) may
actually be inappropriate. Such models are solving an inherently more
difficult problem than necessary. The PRP is based entirely on ranking

documents. The popular BIM model has guided the way for much of the
history of information retrieval, but it may have also led researchers into
the pitfall of studying a problem that is more difficult than necessary. Es-
timating joint or conditional models over large spaces of random variables
is a daunting task. However, as we showed in this paper, the space of
ranking functions is well defined and lends itself to a direct maximization.

Another issue is that past models have lent themselves to estimation
via maximization of likelihood or maximization of margin. These ap-
proaches are inherently maximizing the incorrect metric. Information
retrieval is not concerned with likelihood, nor classification accuracy. In-
stead it is entirely concerned with how well a model ranks documents.
It can be argued that estimating parameters by maximizing the likeli-
hood of some training data or minimizing classification error (as in the
Nallapati SVM model) can be thought of as optimizing a function that
is correlated with the underlying retrieval metric, such as mean average
precision. However, this has been shown experimentally to be invalid [12]
and it can also be shown theoretically to be invalid, as well.

Therefore, we argue for estimation techniques that are entirely rank-
based. We note that Joachims studied this problem when applied to
information retrieval using clickthrough data as a form of relevance judg-
ment [8]. In his approach parameter estimation was achieved using rank-
ing SVMs, which is an SVM formulation aimed entirely at learning rank-
ings, rather than classification, and therefore is optimizing the correct
metric. Another advantage of ranking SVMs is the fact that they are
based on the strong computational learning theory of SVMs and yield a
relatively straightforward quadratic programming optimization problem.
However, given a large number of queries and a large number of relevance
judgments the ranking SVM approach is infeasible in an offline setting
due to the number of “preference constraints” generated. Planned exper-
iments carried out using this approach were cancelled due to their long
running times. Whereas ranking SVMs scale both with the number of
training instances and number of features, the approach presented in this
paper only scales with the number of features and the time it takes to
evaluate and generate a ranking. Therefore, arbitrarily complex, large,
and dense preferences/rankings can be handled without a computational
explosion.

6 Experimental Results

This section describes experiments carried out using the approach de-
scribed in this work on a number of ad hoc retrieval experiments. Results
are compared against Nallapati’s SVM model [14] and language model-
ing [16]. The results show that the proposed approach is not only feasible
for large collections and large training sets, but also that the parameters
estimated in the model lead to superior retrieval effectiveness.
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Disks 1,2 Disk 3 Disks 4,5
Num. Docs 741,856 336,310 556,077

Training topics 101-150 51-100 301-350
Test topics 151-200 101-150 401-450

Table 2: Summary of TREC collections used in small collection experiments.

6.1 Small Collection Experiments

In this section we compare the models on three standard TREC collec-
tions. For each collection, 50 topics (queries) are used for training and 50
for testing. Only the title portion of the TREC topics are used. All docu-
ments are stemmed using Krovetz Stemmer and stopped using a standard
list of common terms. A summary of the collections used and the training
and test topics are given in Table 2.

Each model is trained using only the data in the relevance judgments.
That is, when the model is being trained it only ’knows’ about the doc-
uments contained in the relevance judgments and not about any of the
unjudged documents in the collection. In the case of the balanced SVM
model, the non-relevant judgments from the relevance file were under-
sampled. Our model, denoted by RankMax, is trained using the same
exact features as the SVM, and therefore has no additional “power”. The
feature-based models are compared against a language modeling baseline.
The language modeling run ranks documents via query likelihood, with
document models estimated using Bayesian (Dirichlet) smoothing. The
language model is trained by finding the smoothing parameter that max-
imizes the mean average on the training data.

The results of the experiments are given in Table 3. For the numbers
in the table, the trained model is used to rank queries against the entire

collection, not just the documents found in the relevance judgments. The
mean average precision is computed at a depth of 1000 retrieved docu-
ments. As we see from the results our parameter estimation technique
consistently leads to statistically significant improvements over the SVM
estimates. Furthermore, it significantly outperforms language modeling
on 4 out of 6 runs. Language modeling, on the other hand, significantly
outperforms the SVM model on 4 out of the 6 runs.

The results indicate that language modeling, despite its simplicity,
stands up very well compared to sophisticated feature-based machine
learning techniques. The results also provide empirical proof that SVM
parameter estimation is simply not the correct paradigm here, mainly
because it is optimizing the wrong objective function. Our estimation
technique, however, is directly maximizing the evaluation metric under
consideration and results in stable, effective parameter estimates across
the collections.

When it comes to implementation, our method is much easier to im-
plement than SVMs, but more complex than language modeling. For this
reason, a number of issues should be considered before choosing a retrieval
model. We feel that for this simple case, using simple term statistic fea-

12



Disks 1,2 Disk 3 Disks 4,5

Train Test Train Test Train Test

SVM (unbalanced) 0.0955 0.1091 0.1501 0.1336 0.1421 0.1434

SVM (balanced) 0.1577 0.1849 0.1615 0.1361 0.1671 0.1897

RankMax 0.1955‡ 0.2327†‡ 0.2080†‡ 0.1773‡ 0.2238†‡ 0.2328†‡

Language modeling 0.1883‡ 0.2155‡ 0.1875‡ 0.1642‡ 0.1819 0.1995

Table 3: Training and test set mean average precision values for various ad hoc
retrieval data sets and training methods. A † represents a statistically significant
improvement over language modeling and ‡ denotes significant improvement
over the balanced SVM model. Tests done using a one tailed paired t-test at
the 95% confidence level.

WT10G GOV2
Num. Docs 1,692,096 25,205,179

Size 11 GB 427GB
Topics 451-550 701-750

Table 4: Summary of TREC collections used in small collection experiments.

tures, language modeling is very likely the best practical choice. The real
power of feature-based methods comes when more complex features, such
as those that the language modeling framework fails to handle directly, are
used. A good example of the power of feature-based models over language
modeling is given in the next section, where we explore ad hoc retrieval
on large web collections.

6.2 Large Collection Experiments

In this section we consider ad hoc retrieval experiments on two large
TREC web collections. Table 4 summarizes the data sets considered.
There has been recent evidence that using term proximity informa-
tion for ad hoc retrieval on web collections can provide significant
improvements in effectiveness over models that only consider terms
to be a simple bag of words [9, 11].

Therefore, we consider an extremely simple set of features that
account for different kinds of proximity between terms within the
query. Table 5 explains the three features used. As we see, there are
three features — a single term feature, an exact phrase feature, and
an unordered phrase feature. These features are meant to capture
the fact that the order that query terms appear provides important
information. For example, the queries “white house rose garden”
and “white rose house garden” seek completely different pieces of
information, yet are viewed as the same query in the bag of words
representation.. The features also attempt to capture the fact that
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Name Feature

Term
∑

qi∈Q log
[

(1 − αD)
tfqi,D

|D|
+ αD

cfqi

|C|

]

Ordered Phrase
∑

qi,qi+1... ,qi+k∈Q log

[

(1 − αD)
tf#1(qi...qi+k),D

|D|
+ αD

cf#1(qi...qi+k)

|C|

]

Unordered Phrase
∑

qi,...,qj∈Q log

[

(1 − αD)
tf#uw8(qi...qj),D

|D|
+ αD

cf#uwN(qi...qj)

|C|

]

Table 5: Features used in the large collections ad hoc retrieval experiments. The
ordered phrase sum is over every contiguous subset of query terms of length two
or more within the query, and the unordered phrase sum is over every subset
of two or more query terms. tf#1 is the count of the number of times the
expression occurs as an exact phrase within D, and tf#uw8 is the count of the
number of times the terms within the expression appear ordered or unordered
within a window of length 8 within D.

Train \ Test WT10G GOV2
WT10G 0.2231† 0.2783†
GOV2 0.2201† 0.2844†

Language modeling 0.2030 0.2502

Table 6: Mean average precision results for the large collections experiments.
The † denotes statistically significant improvements over the language modeling
baseline at the 95% confidence level.

most web queries are made up of one or more implicit phrases, such
as “white house” and “rose garden” in the example above. Since we
consider all subphrases, we are likely to pick up on such phrases and
retrieve more relevant documents.

Here, we train and test our model on both collections and com-
pare against a simple bag of words model (language modeling) base-
line. The αD used in the features is set to µ

|D|+µ
(Dirichlet smooth-

ing), with µ fixed at a value approximately equal to double the
average document length.

The results of the experiments are given in Table 6. As the
results show, the models learned generalize well and achieve statisti-
cally significant improvements over the baseline language modeling
system. These results provide evidence that both proximity and
the training method developed in this work can be leveraged to sig-
nificantly improve effectiveness. As further evidence of the power
of both term proximity for web retrieval and the proposed training
method, a model similarly trained achieved the best title-only run
at the TREC 2004 Terabyte Track [10, 4].

Finally, Figure 1 illustrates the nearly concave surface that arises
by imposing the mean average precision metric over the multinomial
simplex of ranking function parameters. Although there is no guar-

14



 0 0.2 0.4 0.6 0.8 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2
 0.22
 0.24
 0.26
 0.28

 0.3

Average Precision

Term Weight

Ordered Weight

Average Precision

Figure 1: Mean average precision surface over multinomial simplex for GOV2
using full dependence model.

antee that such a nicely concave surface will exist for all features and
all evaluation metrics, it provides some evidence that the functions
we are maximizing over the simplex are not too difficult to optimize
using easy to implement machinery, such as coordinate or steepest
ascent algorithms.

7 Conclusions and Future Work

In this paper we have investigated the properties of linear and mono-
tonically linear scoring functions when used in conjunction with the
class of rank-based evaluation metrics. It was shown that the param-
eter space of these scoring functions lies on a multinomial manifold.
Not only does this provide a theoretically elegant representation of
the parameter space, but it also provides a parameter space with
a significantly reduced number of local extrema and a guaranteed
bracket of a global maxima. Three simple optimization techniques
that make no assumptions about the underlying objective function
were presented. Finally, we applied the methods developed to the
task of ad hoc information retrieval. Both small and large collections
were examined and the mean average precision metric was explored.
It was shown that our parameter estimation paradigm significantly
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outperforms other models in terms of retrieval effectiveness.
Potential areas of future work include applying the model us-

ing other evaluation metrics and to other application domains. In
particular, collaborative filtering is an area that other ranking algo-
rithms have been applied to in the past. It would be beneficial to
compare the performance of our model with models tested in that
domain. Another area that needs explored is how well the simple
optimization algorithms scale to large numbers of parameters and
how easy or difficult different classes of features/evaluation metrics
are to successfully optimize.
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