DYNAMIC COLLECTIONS IN INDRI

TREVOR STROHMAN

ABSTRACT. Text search engines have historically been designed for unchanging
collections of documents. While this is fine for many applications, a growing
number of important applications in news, finance, law and desktop search
require indexes that can be efficiently updated.

Previous research into supporting dynamic collections revolves around in-
cremental methods. Incremental systems are optimized for adding large batches
of documents to an existing index. These systems do not generally allow for
queries to run while an incremental update is taking place.

This work presents recent changes to the Indri search engine to support dy-
namic collections. Unlike previous incremental systems, Indri does not require
large batch sizes to achieve efficient indexing performance. Indri is also de-
signed to be as concurrent as possible, allowing queries to run while documents
are added to the system.

1. INTRODUCTION

While full-text information retrieval systems have been available for decades,
they were not commonly used by the public until the advent of the world wide web.
Today, almost everyone is a regular retrieval system user, and full-text search is
being used for a wide variety of applications, including the web, news, and now
desktop search.

Searching desktop files and e-mails presents a difficult challenge for most infor-
mation retrieval systems. Users expect that e-mails will be indexed the moment
they arrive, and that files will be indexed the moment they are saved to disk. In
addition, these desktop users will not tolerate occasional outages in retrieval capa-
bility just because an index is being updated. Ubiquity is both a blessing and a
curse—users now see the utility of full-text search, but now they will not do without
it for even a moment.

However, updating a full-text index is a time-consuming process. Modern infor-
mation retrieval systems create indexes from documents using inverted lists. An
inverted list contains a list of documents that contain a particular word, and perhaps
additional information (such as the locations of a particular word in documents).
Even a short document could contain 100 unique words; indexing it requires updat-
ing 100 inverted lists. If these inverted lists are stored on a disk, that translates into
a 100 disk seeks, which take more than 1 second to complete on modern desktop
hardware. Longer documents could take much longer than that. During an update,
it is not clear how a system might handle new queries other than to make them
wait.

We bypass these restrictions in our recent modifications to the Indri retrieval
system. Indri is a new retrieval system developed as a part of the Lemur project
[SMTCO05]. The Indri system supports structured queries using the language mod-
eling framework, as proposed by Metzler, Lavrenko and Croft [MLCO04]. It also

1

2 TREVOR STROHMAN

supports structured document retrieval, as required for question answering ap-
plications. Although the first version of Indri did support incremental indexing,
modifications in the latest version allow for true real-time indexing of individual
documents.

We identified three key requirements for an information retrieval system that
handles dynamic document collections. First, such a retrieval system should allow
documents to be added and deleted from the collection quickly, and at any time.
Here, quickly is defined as how long a desktop user might be willing to wait for
indexing to complete, which means nearly instantaneous response time for a single
document. Second, the system should allow queries to execute at any time, even if
documents are being added to the collection concurrently. Third, in order for the
system to be useful in practice, the system should be competitive in indexing and
retrieval performance to systems that are not dynamic.

The latest version of Indri has met these objectives, by using the following design
principles:

e Memory structures — hold data in memory as long as possible in order to
avoid disk seeks

e Lock isolation — the system holds exclusive locks to data for as little time
as possible

e Read only structures — the system uses read-only data structures when
possible to reduce the need for exclusive locks

e Background I/O — the system interacts with the high latency disk subsys-
tem in background threads so that indexing operations can be low latency

e Multiversion structures — when long running operations must access data
that changes, allow multiple versions of data to exist in the system simul-
taneously in order to reduce the need for exclusive locks

In the rest of the paper, we discuss how Indri used these principles to achieve
our objectives.

2. RELATED WORK

The database community has spent decades researching techniques for allowing
concurrent access to changing data. Ramakrishnan and Gehrke [RGO00] provide a
overview of database principles in general, while Gray and Reuter [GR93] offer an
in-depth look at transaction processing systems.

While the problems in maintaining concurrent access to database data and doc-
ument data are similar, there are some important differences. In database systems,
users are particularly concerned with atomicity of operations. In the classic ex-
ample, a bank patron initiates a transfer of d dollars from a savings account to a
checking account. If d dollars are first removed from savings, there will be an in-
stant where the patron’s total balance appears to be d dollars too small. Instead, if
the d dollars are first added to the checking balance, there will be an instant where
the patron appears to have d more dollars than she actually has. In both cases,
the accounts are in an inconsistent state after the first account is modified, and
consistency is restored after the second account is modified. A major component
of concurrency research in databases is ensuring that the database always appears
to be in a consistent state, even after a system failure.

In this work, we ensure that document insertions and deletions are atomic; no
user of the system should see a document that is partially inserted or partially

DYNAMIC COLLECTIONS IN INDRI 3

deleted. However, we do not allow multiple documents to be added or deleted in
one atomic transaction. This is not a major restriction, since documents rarely
depend on each other the way database records do.

However, we still borrow some ideas from the database community. Asynchro-
nous I/0 and fine grained locking are employed in most modern database systems.
We also use the idea of multiversion concurrency BG83].

The information retrieval community has not neglected dynamic collections.
However, research has focused on ‘incremental’ systems, which add large batches
of documents to an existing index, instead of systems which can efficiently add a
single document. Also, this research does not consider the ability to continue query
processing while documents are added to an index.

Brown, Callan and Croft [Bro95] investigate a method for efficiently adding
documents to an existing index. They make a distinction between small inverted
lists (less than 8K) and large inverted lists (greater than 8K). When a small inverted
list needs to grow, it is copied into a larger, contiguous region of the inverted file.
However, long inverted lists are not moved; instead, a forwarding pointer is added
from the old inverted segment to a new segment. This opens the possibility for
inverted lists to be linked lists of data throughout the inverted file. When building
an index in 7 batches, they find that query performance decreases by about 6%.
The cost of using small batch sizes is high; it takes approximately 8 times as long
to index a 64MB batch of text versus a 1IMB batch of text in their model.

In a more recent work, Lester, Zobel and Williams [LZWO04] compare three up-
date strategies for indexes: in-place, re-merge or rebuild. The in-place strategy is
similar to that used by Brown, except the linked-list optimization is not employed;
all inverted lists are contiguous, and existing data must be copied if not enough
free space remains to write additional new data. In the re-merge strategy, the new
batch of documents is built into a separate index, then merged with the existing
index. The rebuild strategy involves throwing away any existing index structures
and building a new index from scratch. The authors find that unless the batch size
is small (under 100 documents), re-merging is the most efficient update method.
However, the authors have not investigated pre-allocation strategies or strategies
for handling large lists differently, as in Brown, Callan and Croft’s work.

In the smallest batch size reported (10 documents), Lester, Zobel and Williams
report an update time of approximately 7 seconds in the best case (in-place) against
a 1GB index. While this is quite fast compared to the other strategies presented,
this is not ideal for single document updates.

The work presented here is most similar to the Lucene search engine [Cut].
In a normal configuration, Lucene writes data to disk in segments, much like a
traditional batch indexer. However, data can be queried from these segments as
soon as they are written—a segment merge step is not necessary. This is somewhat
similar to the linked list method of Brown, Callan and Croft. However, there still is
the overhead of writing data in batches; to get good performance, many documents
must be written to disk together in one batch.

If faster response time is required, Lucene offers a RAMDirectory class that allows
indexes to be created in memory. Adding documents to a RAMDirectory is very
fast, since no disk I/O occurs in the process. As soon as a document has been added
to a RAMDirectory, it can be queried by an IndexWriter object. This solves the
problem of document batches for small collections. However, for collections that are

4 TREVOR STROHMAN

Disklndex

[]
I:I Memorylndex (full)
[]

Memorylndex (empty)

Increasing time

SEEEELH
888
a4

(]

----- » Same index carried forward

—® Old index replaced by new index

L]

FiGure 1. This figure shows a natural progression of
index_states as documents are added to a Repository.

larger than the memory of the machine, in-memory indexing will not be suitable.
Data must then be written to disk, and it is up to the user to keep track of where
the indexed data is located—some will be on disk, some will be in memory.

In this work, we show how Indri also uses in-memory indexes in order to remove
the need for batch indexing while still allowing for immediate access to documents.
We also show how Indri automatically decides when data should be written to disk,
and when merges should occur, while still allowing query processing to continue.

3. APPROACH

3.1. Memory Structures. Indri uses two types of indexes; the MemoryIndex and
the DiskIndex. As is probably clear, a MemoryIndex resides in RAM, while a
DiskIndex resides on disk. Both indexes are capable of handling queries, but only
a MemoryIndex can accept new documents. A consequence of this is that all Indri
index structures on disk are immutable; they may be deleted, but they cannot be
modified.

Most information retrieval systems build a single index on disk that contains
all indexed documents. While Indri can do this, sometimes it may have many
different indexes on disk at once. Therefore, we use the term repository to refer to
a collection of indexes and related structures on disk.

When creating a repository from a set of text documents, Indri adds incoming
documents to the active MemoryIndex. Whenever a repository is open in write
mode, there is an active MemoryIndex ready to receive documents. For small col-
lections, indexed data is not written to disk until the repository is closed. However,
for larger collections, the MemoryIndex will grow larger than the user-configurable
memory limit. At this point, the MemoryIndex will be written to disk. At this time,
a new MemoryIndex will be created, and will serve as the active index.

DYNAMIC COLLECTIONS IN INDRI 5

Building an index this way is similar to how many information retrieval systems
operate. Documents are generally added to in-memory structures one at a time,
and at some point a memory (or document) limit is reached, at which time the
memory structures are flushed to disk. In batch systems, these disk and memory
structures are not self-contained, and need some kind of post-processing before they
can be used in the query system.

It is convenient to have many separate indexes on disk, because it is more efficient
to construct many small indexes than it is to construct a single large index. This is
true because construction of a large index typically happens by merging the data
from many small indexes (or disk structures). In order to add documents as quickly
as possible to the system, it is advantageous to simply make many small indexes.
[LZW04]

However, it is much faster to query a single large index than many small indexes.
The primary reason for this is disk seek overhead; the number of disk seeks needed
to evaluate a query is linear in the number of indexes. Therefore, for a query-heavy
workload, Indri will try to reduce the number of DiskIndexes by merging some of
them together.

3.2. Lock isolation. In order to meet users’ expectations of a responsive system,
Indri must run queries and add documents quickly. While the previous version of
Indri was already an efficient batch system, it would be easy to add locks to data
structures such that queries or document insertions could block for long periods of
time. In order to keep fast response time, it is necessary to make sure exclusive
locks are held for only very short periods of time.

We reduce exclusive lock ownership times by only allowing the active MemoryIndex
to change. Therefore, this is the only structure in the system (apart from some
caches) that requires an exclusive lock. Since its size is limited by available mem-
ory, and since all of its contents are in memory, even complex queries against the
active index should complete quickly. Of course, lock ownership times can be de-
creased by reducing the memory limit.

An exclusive lock is also required to add documents to a MemoryIndex. In order
to keep ownership times down, we make sure that each document is completely
parsed before the lock is acquired. The lock is only held while a single document
is added to the index, then it is released so that queries can be processed. Most
web and news documents can be indexed in less than 1/100 sec., so queries are not
likely to have to wait long for execution.

In both the query and the document insertion case, no disk I/O is done while
the exclusive lock is held. This significantly reduces the likelihood that the owning
thread will be descheduled while holding the lock.

3.3. Read-only structures. In order to achieve only short periods of exclusive
locking in a system that must handle large volumes of data, we have made most of
the data in the system immutable. This is true primarily of data on disk. If data
on disk was not immutable, threads would have to acquire a lock and hold that
lock during disk I/O, which would lead to high variance in lock duration.

Since disk structures do not change once they are written, they can be read
without locks. As a consequence of this locking strategy, Indri is now able to take
advantage of multiprocessor systems. Most of the query code path requires only
read locks, meaning that query processing is highly parallel, although it is likely

6 TREVOR STROHMAN

to be limited in parallelism by the disk subsystem. Even the indexing process is
somewhat parallel, since parsing and indexing can take place simultaneously.

3.4. Background I/0O. If I/O cannot happen in the code path of queries or in-
dexing, it must happen asynchronously. Indri handles this by running two threads
at all times:

e RepositoryMaintenanceThread
e RepositoryLoadThread

These threads are associated with a particular Repository. If more than one
Repository is open, each repository will have a pair of these threads.

The RepositoryLoadThread has two jobs. First, it maintains load average sta-
tistics for both queries and document additions. These load averages are much
like a Unix process load average; they indicate the number of queries executed and
documents added over the last 1, 5, and 15 minutes. This helps the system make
decisions about when to write data to disk.

The second job of the RepositoryLoadThread is to check on the memory usage of
the system. If the system is using significantly more memory (25% more) than the
user-specified limit, the RepositoryLoadThread suspends all document indexing
until the memory usage falls. This keeps the system from crashing in the case
when documents are added to the system in batch. For most conceivable real time
applications, like news feeds, the system should never run out of memory.

The RepositoryMaintenanceThread writes index data to disk. Since this is
the only thread that can write index data to disk or delete data from disk, no
complicated locking is necessary in this thread. This thread wakes up approximately
5 times a minute and checks on the current memory usage of the system. If the
system is using too much memory (as measured by the user-specified memory limit),
the thread will begin writing data to disk.

As discussed before, it is not always advantageous to add another DiskIndex,
since many small DiskIndexes are slower than one large DiskIndex at query time.
Because of this, the maintenance thread checks the query and document load before
writing to disk. If the query load is high with respect to the document load, the
maintenance thread will favor merging indexes together instead of writing a new
one.

3.5. Multiversion structures. Since an Indri Repository may contain more
than one index, Indri maintains a structure called an index_state. This struc-
ture maintains pointers to all indexes currently in the Repository.

Data is written to disk in two scenarios:

e A MemoryIndex has filled past its memory limit
e There are too many DiskIndexes, and they need to be merged

In both cases, Indri is writing data to disk that is already available in the system
in some other index structure. Therefore, the index _state needs to change to
reflect that the data has moved.

One way to solve this problem would be to protect the index_state structure
with a readers/writers lock. However, this approach could lead to poor performance
in a heavily loaded system.

Consider the case where Indri is running on a parallel system, and an Indri user
is running very complicated queries that each require 10 minutes of processing to
execute. Suppose that the user submits these queries on two separate threads, so

DYNAMIC COLLECTIONS IN INDRI 7

that there are always two of these queries running. Suppose the execution of these
queries is staggered by 5 minutes; queries start on thread A at 0, 10, 20, 30, 40 and
50 minutes past the hour, while queries begin on thread B at 5, 15, 25, 35, 45, and
55 minutes past the hour.

Suppose we attempt to lock the index_state structure for writing just before a
new hour begins. We would keep thread A from starting its next query while we
wait for thread B to complete a query, and one processor would be left idle for 5
minutes. This is clearly undesirable.

To avoid this, Indri may maintain more than one index_state structure at a
time. All new work (queries, document additions) can use the new index_state
structure, while old jobs continue to use the old index_state structure. When
there are no users of the old index_state structure left, it is deleted.

In the example, this would mean that thread A would start a new query using the
new index_state while thread B would finish its query using the old index_state.
When thread B finishes its query, the old index_state would have no users, and
would therefore be deleted.

4. DOCUMENT DELETION

Indri includes marked deletion support. Marked deletion is a weak form of
deletion where deleted documents are simply hidden from the user. The data for
these documents is not removed from the inverted lists, direct lists, or compressed
collection. Also, the counts for the terms in this document remain in the corpus
statistics.

Suppose we have a document set A, and a subset B C A. We create an index [
by adding the documents from A to I, then deleteing those documents in B from
I. We create a similar index I’ by just adding the documents in A — B to I’. Index
I will take more disk space than I’, because it still contains all the document data
from B. Furthermore, the query results will be slightly different when querying
these two indexes, since I will have slightly different corpus statistics than I’. For
these reasons, the deletion feature should be used with caution when doing research
with Indri.

For practical use, though, deletion can be very useful feature. While delete by
itself is perhaps not especially useful, it can be used to update documents (delete
the old version, then insert the new copy). This can be useful in desktop search or
in newsfeed search where article corrections may arrive after the erroneous version
of an article has been indexed.

To mark documents as deleted, we use a simple bitmap where a bit is set when
a document is deleted. Any bits not in the bitmap are assumed to not be set;
therefore, if no documents have been deleted, the bitmap file will be an empty file.
The file is only extended until it contains the last non-zero bit.

At query time, each document is checked against the bitmap before being scored.
Only documents that have not been deleted can be scored.

5. CONCLUSION

Indri is now capable of making indexed documents available for query imme-
diately after they are indexed, which typically takes a small fraction of a second.
The penalty for fast, concurrent access to newly-indexed documents is low enough
that Indri has no special batch or incremental mode. With this system, we can

8 TREVOR STROHMAN

index web data at approximately 15GB/hour, including storing a compressed copy
of each document.

With this level of performance, we have achieved the goal of making a retrieval
system suitable for news filtering and desktop search applications. We believe this
is the first open-source system to have this capability.

6. ACKNOWLEDGEMENTS

This work was supported in part by the Center for Intelligent Information Re-
trieval and in part by Advanced Research and Development Activity and NSF grant
#CCF-0205575 . Any opinions, findings and conclusions or recommendations ex-
pressed in this material are the author(s) and do not necessarily reflect those of the
SpOonSor.

DYNAMIC COLLECTIONS IN INDRI 9

Documents 25,205,179
Total terms 22,811,162,783
Unique terms 51,208,878
Frequent terms 224,840

Index size 90G

CompressedCollection size 123G
Uncompressed text size 431G

FIGURE 2. Statistics about the GOV2 collection

7. APPENDIX

In the course of adding dynamic collections support to Indri, a large part of the
indexing infrastructure was changed. Some of the major changes to indexing had
little to do with dynamic collections support, and therefore did not fit well into this
paper. This appendix contains information about the Indri changes not directly
related to dynamic collections.

7.1. Disk Index Structures. This section gives a broad overview of the files in
a typical Indri repository, and what data these files contain. Since Indri was built
to handle large collections of text, we have included the file sizes for these file
structures in an index of the TREC GOV2 collection (see Figure 2).

The core index structures are stored in a DiskIndex, which contains inverted
lists, direct lists, document statistics, and field information (Figure 3). The largest
files are the direct file and the inverted file, since both grow roughly linearly with the
number of words in the collection. The rest of the files contain aggregate statistics
about terms and documents.

The CompressedCollection stores the full text of each document in the collec-
tion, as well as term boundary information from the parser (see Figure 4). This
information is most often used to show snippets of text at retrieval time, so the
term boundary information is useful for highlighting. Even though each document
is compressed individually, the compression ratio here is generally quite good; we
see 50% to 80% reduction in size when the text is compressed. The lookup file
allows convenient random access into the storage file in order to find document
data. The optional forward lookup files allow particular bits of a document (such
as the document title) to be found efficiently without needing to decompress the
entire document. The optional reverse lookup files allow documents to be found
by some identifying information (like a URL) instead of the Indri-assigned numeric
documentID.

The Repository directory contains both a CompressedCollection directory
and a directory of DiskIndexes (see Figure 5). It also includes a deleted documents
bitmap, described earlier in this paper.

10

TREVOR STROHMAN

Filename Size (GOV2)

Description

directFile 38G

documentLengths 9T™M

documentStatistics 481M

fieldn -
frequentID 7. 7™M
frequentString 7.3M
frequentTerms 6.6M
infrequentID 1.8G
infrequentString 1.8G
invertedFile 49G
manifest 428b

Numeric representation of each
document in the collection, use-
ful for query expansion

Length of each document in
words, 4 bytes per document
Offset of each document in the
directFile, document length in
the directFile, document term
length, number of unique terms
in each document

Inverted extent list for field num-
ber n

BulkTree storing the mapping
from termID to termString and
term statistics for frequent terms
BulkTree storing the mapping
from termString to termID and
term statistics for frequent terms
List of termlID,termString
pairs, not stored in a tree, used
at index merge time

BulkTree storing the mapping
from termID to termString and
term statistics for infrequent
terms

BulkTree storing the mapping
from termString to termID and
term statistics for infrequent
terms

Inverted lists for each term in the
collection

XML file storing important col-
lection statistics and configura-
tion information

FiGUurk 3. Files composing a DiskIndex

DYNAMIC COLLECTIONS IN INDRI

Filename

Size (GOV?2)

Description

498M

lookup

manifest 70b

123G

storage

forwardLookupn -

reverseLookupn -

Keyfile (B-Tree) that stores the
mapping between documentID
and offset into storage

XML file storing configu-
ration information for this
CompressedCollection

Stores compressed version of
each document in the collection,
along with byte offsets for each
word in each document, and var-
ious document metadata added
at index time.

Keyfile (B-Tree) that stores the
mapping between a documentID
and a metadata string

Keyfile (B-Tree) that stores the
mapping between a metadata
string and one or more documen-
tIDs

FIGURE 4. Files composing a CompressedCollection

Filename Size (GOV2) Description

index Directory Contiains zero or more
DiskIndex instances, in num-
bered subdirectories.

collection Directory Contains a
CompressedCollection in-
stance.

deleted Ob Bitmap containing a list of all
deleted documents.

manifest 102b XML file storing configuration

information about the collection,
including index counts, stemmer
and stopword information.

FI1GURE 5. Files composing a Repository

11

12 TREVOR STROHMAN

F{ﬁ%m\@|

FIGURE 6. Construction of a BulkTree. Notice that leaves are
written in order, while internal nodes of the tree are written only
when all of their children have been written.

7.2. Vocabulary Growth. It has been suggested that vocabulary growth in a
collection follows the function kn’, where k and b are constants, and b is close to
0.5, and n is the number of documents in the collection [BYN99]. This formula
suggests a very slow vocabulary growth rate once the collection becomes large. In
particular, we expect to find k(n® — (n — 1)®) unique words in the n*® document.
For b < 0, this quantity becomes arbitrarily small as collection size grows.

This model has shown to be a good fit for smaller collections, and for collections
(like news) that are considered to be clean.

However, this model neglects the common use of unique identifiers in documents.
As an example, many legal documents are stamped with a unique Bates number
which needs to be accessible from the retrieval system. Corpora that use such
identifiers will necessarily have Q(n) vocabulary growth.

For large collections, linear vocabulary growth can cause extremely large vo-
cabulary structures that become unmaintainable. In the first release of Indri, the
vocabulary was stored in a single B-Tree. As the vocabulary grows, this tree be-
comes so large that it is impossible to cache it in memory efficiently, causing disk
seeks that slow down the system.

In the latest version of Indri we recognize two classes of terms. The frequent
class of terms includes those words that are broadly used in text, and are likely to
be seen in topical queries. The infrequent class of terms includes misspellings and
machine generated unique identifiers; these terms are necessary to store, but are
unlikely to be used in queries except for very specific information needs.

Indri considers terms that appear in more than one thousand documents to be
frequent terms. While this may not be the perfect constant to use for small collec-
tions (where very few terms will then be marked frequent), this is not important
from a performance standpoint because we expect the total vocabulary size to be
easily manageable with current hardware.

As an example, for the GOV2 collection (see Figure 2), we find that there are
224,840 frequent terms, but 51 million infrequent terms. The B-Tree that holds
the frequent terms is 7.5MB in size and therefore is easily cacheable. By contrast,
the infrequent term B-Tree is 1.8GB, which is larger than the installed memory on
most systems at this time.

7.3. Merging. As Brown et al. [BCC94| showed, it is necessary for inverted lists
to be stored contiguously on disk for optimum retrieval performance. Because of
this, Indri includes the ability to merge many indexes into a single larger index to
increase performance.

During the index building process, Indri creates a series of indexes on disk. Each
index is self-describing; it has its own inverted lists, direct lists, field lists and
vocabulary. During query processing, the query code runs each query against each

DYNAMIC COLLECTIONS IN INDRI 13

index in turn, and then merges the results. This is not the most efficient way to
process queries—queries would run faster if all the document data was in a single
index. In order to process queries efficiently, Indri needs a way to combine many
small indexes into one large one. This is what the index merge process does.

Merging would be a straightforward process if all the data could fit in RAM;
unfortunately, for large collections, the memory cannot hold all of the data necessary
to merge. The complexity of the merge code is due to these memory constraints.

The inverted lists in each index are stored in alphabetical order to make merging
simpler. The lists are merged much like the last phase of a merge sort into one long
inverted file. In the process, term statistics for each term are collected and stored
in B-Tree structures known as BulkTrees. A BulkTree is simply a B-Tree that is
loaded in bulk. All items inserted into a bulk tree must be in sorted order first in
order for the bulk loading process to work. Since the keys are inserted in sorted
order, the tree can be built from the bottom up, with leaves written first, followed
by nodes at higher levels. This process is then approximately linear, instead of the
O(nlogn) required for n B-Tree insertions. More importantly, this build process
requires no disk seeks and no disk reads, which can dominate B-Tree build time for
large trees.

Every term in an index is assigned a number, known as a termID, which is an
efficient representation of that word. The termlID is used in the direct lists to com-
pactly represent terms. Since our compression scheme for direct lists favors small
numbers, it is important that the most frequent terms are assigned the smallest
numbers. So, frequent terms are assigned termIDs in descending order by term
frequency. The infrequent terms are then assigned termIDs in alphabetical order.
We assume that the infrequent terms appear infrequently enough that the size of
their termIDs does not matter much, and there is not enough memory available in
the merge process to assign them by frequency anyway.

The most difficult part of the merge process is reassigning these termIDs in the
direct lists. We want to be able to handle collections with over 100 million terms;
using a lookup table to remap the termIDs on a collection this large would require
400MB of contiguous memory, and we would need such a table for each index being
merged. We considered this an unreasonable amount of memory usage. Therefore,
we use a combination of structures to perform term mapping.

7.3.1. Array Mapping. For words that were frequent, we use an array to map their
old values to new termlID values. Since the frequent terms are assigned small
termID values, this is tractable in practice. The GOV2 collection (426GB of web
data) contains 224,840 frequent terms, meaning this frequent term array is never
larger than 1MB for collections we currently use.

7.3.2. Hash Table Mapping. For words that were infrequent, but are becoming fre-
quent, a hash table is used to map from the old termID to the new termID. An
array cannot be used here reliably, since the total vocabulary size of the previous
index may have been in the hundreds of millions of terms.

7.3.3. Bitmaps. If the old termID was not found in the frequent term array or
in the hash table, a bitmap is used instead. The bitmap is not particularly time
efficient, in that it requires O(logn) time to resolve a mapping. However, it is very
space efficient. It requires approximately 1.5 bits per vocabulary term. For a 100
million term vocabulary, this results in a bitmap of about 20MB. Here we exploit

14 TREVOR STROHMAN

abacus

abdicate

abelian

abhorrent

abnormal

abject
abnormal

abrasive abrasive

abrogate

abscond

absolute

absolutely

abstract

abstruse

[IECI-IEC - ECENEE]

FIGURE 7. An example of a bitmap that maps terms from an old
index (left) into a new index (right). The dark terms are frequent,
and are therefore not included in the bitmap.

the fact that these are infrequent terms, so a lookup in this data structure is not
the common case.

Suppose we are merging indexes A, B and C to create a new index D. Let
IV (A) be the infrequent vocabulary of index A, in alphabetical order; similarly let
V(D) be the vocabulary of D in alphabetical order. Clearly IV (A) C V(D), since
D contains every word in A. Since IV(A) and V(D) are ordered sets, it follows
that V x € IV(A), the position of z in V(D) is greater than or equal to the position
of z in IV (A).

We can store this kind of mapping in a bitmap, where each bit position in the
bitmap represents an element in V' (D), and each set bit in the bitmap represents a
term that is also in IV (A).

As an example, consider the following small bitmap:

0001010010

This bitmap maps a three term vocabulary from IV (A) to a ten term vocabulary
V(D). This bitmap contains three mappings: {(1,4),(2,6),(3,9)}. The mapping
(1,4) is represented by the first bit set, which happens to be at position 4.

Certainly this bitmap can represent the mapping between IV (A) and V(D)
using O(|V(D)]) bits, but the search time would also be O(|V(D)|), since it would
be necessary to scan all the bits to see which ones are set. To make searching
faster, we split the bitmap into pieces, where each piece is 32 bytes long. The first
8 bytes of each piece contain two 4-byte integers, f and ¢. The remaining 24 bytes
consitutes bitmap space, where this bitmap is considered to be relative to f and ¢.

DYNAMIC COLLECTIONS IN INDRI 15

As an example, using the bitmap shown above, the first bit would correspond to a
mapping of (1 + f,4+t).

While this header adds 50% more space to the bitmap, it can now be searched
in O(logn) time. The f values are searched first using a binary search, followed by
a constant time linear scan of the appropriate 24 byte space.

7.3.4. Term Translator. The array, hash table and bitmap compose a complete
mapping from the old termID space to the new termID space. These three data
structures are wrapped together in one object called a TermTranslator.

16

[BCC94]

[BG83]

[Bro95]

[BYN9Y]
[Cut]
[GRO3)]

[LZW04]

[MLC04]
[RGOO]

[SMTC05]

TREVOR STROHMAN

REFERENCES

Eric W. Brown, James P. Callan, and W. Bruce Croft, Fast incremental indexing
for full-text information retrieval, VLDB ’94: Proceedings of the 20th International
Conference on Very Large Data Bases (San Francisco, CA, USA), Morgan Kaufmann
Publishers Inc., 1994, pp. 192-202.

Philip A. Bernstein and Nathan Goodman, Multiversion concurrency controltheory
and algorithms, ACM Trans. Database Syst. 8 (1983), no. 4, 465-483.

Eric W. Brown, Fast evaluation of structured queries for information retrieval, SIGIR
’95: Proceedings of the 18th annual international ACM SIGIR conference on Research
and development in information retrieval (New York, NY, USA), ACM Press, 1995,
pp. 30-38.

R. Baeza-Yates and G. Navarro, Modern information retrieval, Addison-Wesley, 1999.
Doug Cutting, Lucene, http://jakarta.apache.org/lucene.

Jim Gray and Andreas Reuter, Transaction processing: Concepts and techniques, Mor-
gan Kaufmann, 1993.

Nicholas Lester, Justin Zobel, and Hugh E. Williams, In-place versus re-build versus
re-merge: index maintenance strategies for text retrieval systems, Proceedings of the
27th conference on Australasian computer science, Australian Computer Society, Inc.,
2004, pp. 15-23.

Donald Metzler, Victor Lavrenko, and W. Bruce Croft, Formal multiple-bernoulli mod-
els for language modeling, Proceedings of ACM SIGIR 2004, 2004, pp. 540-541.
Raghu Ramakrishnan and Johannes Gehrke, Database management systems, McGraw-
Hill Higher Education, 2000.

Trevor Strohman, Donald Metzler, Howard Turtle, and W. Bruce Croft, Indri: A
language model-based serach engine for complex queries, IA 2005: Proceedings of the
2nd International Conference on Intelligence Analysis (to appear), 2005.

