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Abstract

Treated as small samples of text, user queries re-
quire smoothing to better estimate the probabilities
of their true model. Traditional techniques to per-
form this smoothing include automatic query expan-
sion and local feedback. This paper applies the bioin-
formatics smoothing technique, Dirichlet mixtures, to
the task of query estimation. We discuss Dirichlet
mixtures’ relation to relevance models, probabilistic
latent semantic indexing, and other information re-
trieval techniques. We describe how Dirichlet mix-
tures give insight into the value of retaining the orig-
inal query in query expansion. On the task of ad-
hoc retrieval, query estimation by Dirichlet mixtures
generally does not perform well, but aspects of its
behavior show promise. Experiments where the orig-
inal query is mixed with the models estimated by rel-
evance models and Dirichlet mixtures confirms that
query estimation methods should not fully discount
the prior information held in a query.

1 Introduction

In the language modeling approach to information re-
trieval (IR), documents and queries are represented
as probabilistic models [16]. Documents and queries
are modeled as bags of words and their probabilistic
equivalent is the multinomial model. The multino-
mial is easily understood as a biased die with words
on its many faces. Typically documents are ranked
by their likelihood of generating the query, i.e. query
likelihood.

In bioinformatics, a set of genetic sequences with
similar function define a sequence family. A prob-
abilistic model of the family can be built and used
to find other sequences that may likely be mem-
bers of this family, or alternatively new sequences

can be tested against all family models to find likely
matches. When building a model to represent a fam-
ily, the sequences are aligned and this creates a multi-
ple alignment. Each sequence forms a row in the mul-
tiple alignment and each column is separately mod-
eled. Each column of the alignment can be modeled
with a multinomial model. The sequences in a family
are a sample of some population of sequences that
define the family. To enhance the generalizability of
the family model, each column’s multinomial model
is smoothed.

Most generative models need to be smoothed to
avoid zero probabilities. If a generative model has a
zero probability of producing an element in a sample,
it will be given a zero probability of producing the
sample.

In IR, the document models are smoothed before
measuring their likelihood of generating the query. A
document with a zero probability for a term in the
query means it would be impossible for the docu-
ment to have generated the query. Commonly, the
document’s maximum likelihood model is linearly
combined with the collection’s maximum likelihood
model so that a document has some probability of
producing every word in the collection vocabulary.

Smoothing’s goal goes beyond avoiding zero prob-
abilities. Smoothing aims to produce better proba-
bility estimates for all words.

The true probabilistic model that generated a piece
of text such as a document or query is unknown. In
most cases, the text is a small sample. The propor-
tions of the words present in the text are not the same
as the probabilities of those words in the model that
generated the text. In the extreme case, a word with
non-zero probability in the model is not present in
the sample – the zero probability problem.

While both documents and queries require accu-
rately estimated models, considerably more research
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has focused on improving queries as opposed to doc-
uments. With queries being short and documents be-
ing relatively long, larger performance gains are likely
to be had from improving the query model than from
improving the document model.

This paper focuses on automatic methods to esti-
mate query models without user interaction. Auto-
matic query expansion and feedback methods are the
more commonly studied techniques.

Automatic query expansion selects words to add
to the query automatically without user supervision.
Common methods involve adding words that are
found to frequently co-occur with the query words.

Feedback methods take their inspiration from a
user interaction technique called relevance feedback.
After issuing a query and receiving a set of results
from an IR system, a searcher can judge the relevance
of a sample of the results. The IR system can use the
relevant documents as large samples of text to bet-
ter estimate the query model. A successful automatic
variant of relevance feedback is local feedback, which
is also known as pseudo or blind feedback. Local
feedback assumes that the top k retrieved documents
are relevant and performs relevance feedback before
showing the results to the searcher. Feedback can
be considered a form of query expansion, for feed-
back produces query models with many more non-
zero probability words.

While never called smoothing methods, both auto-
matic query expansion and local feedback are effec-
tively smoothing techniques. These methods are at-
tempting to better estimate their model of the user’s
query.

Sjölander et al. developed a sophisticated method,
Dirichlet mixtures, for smoothing multinomial mod-
els in bioinformatics [17]. Given a sample, Dirich-
let mixtures estimate the sample’s true model using
prior knowledge. In the context of IR, prior knowl-
edge comes from the frequency of words and what
words are used with other words.

Lavrenko and Croft’s relevance models (RM)
framework successfully produces better estimated
query models through a local feedback-like process
[13]. In this paper, we will show that relevance mod-
els can be seen as a special case of Dirichlet mix-
tures. We also discuss Dirichlet mixtures’ relation-
ship to probabilistic latent semantic indexing (pLSI)
[5] and latent Dirichlet allocation [2].

To better understand how Dirichlet mixtures per-
form in the text domain, we apply them to the task
of query estimation in a manner similar to relevance
models.

The usual formulation of relevance models esti-
mates a new model for the query and throws away the

original model. Common to many query expansion
techniques is the combination of the original query
with the expanded model. Allan and Carterette have
found that mixing the original query model with the
RM estimated model produces better results than us-
ing only the RM model [1]. Zhai and Lafferty used
a similar mixing in their model based feedback work
[18]. Dirichlet mixtures provide insight into why this
technique works and experiments are presented inves-
tigating the degree to which the original query model
should be retained.

2 Methods and Materials

2.1 Text Modeling and Retrieval

A multinomial model of text specifies a probability
for each word in the vocabulary V . The probabili-
ties of the multinomial are its parameters and thus
there are |V | parameters, where |V | is the number
of words in the vocabulary. The probabilities of the
multinomial sum to 1. A common way to think about
the multinomial is as a biased die. A die has |V | faces
with each word having some probability of being gen-
erated by the die on a roll.

For a given piece of text, T , the parameters of the
multinomial, MT , representing T need to determined.
This process of computing the probability of a word w
given the model MT , P (w|MT ), is called estimation.
A standard approach to parameter estimation is max-
imum likelihood estimation (MLE). MLE maximizes
the likelihood of the observed data given the model.
Treating the words of T as independent samples, the
likelihood of T is defined to be:

L(T ) =
∏
w∈T

P (w|MT )T (w) (1)

where T (w) is the count of word w in T . The maxi-
mum likelihood estimate for the probability of a word
turns out to be the count of that word divided by the
total number of occurrences in T :

P (w|MT ) =
T (w)
|T | (2)

where |T | is also known as the length of T and is
defined as:

|T | =
∑
w∈V

T (w) (3)

The MLE model has zero probabilities for all words
not in the sample of text. This is a problem for doc-
ument retrieval.
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2.2 Document Retrieval

Documents are ranked by how similar they are to the
query. Given a document model MD and a query
model MQ, the cross entropy measures how how well
the document model encodes the query model:

H(MQ|MD) = −
∑
w∈V

P (w|MQ) log P (w|MD) (4)

In this sum, 0 log 0 = 0. If for some word w,
P (w|MD) = 0 and P (w|MQ) > 0, then the document
will be given a score of −∞. When the query model
is the MLE model, cross entropy ranks equivalently
to query likelihood:

P (Q|MD) =
∏

w∈Q

P (w|MD)Q(w) (5)

The zero probabilities must be eliminated from the
document models.

It is less clear that anything must be done to the
query model, but queries are very small text samples.
The MLE model of a query is inherently a poor rep-
resentation of the true model that generated it. Both
documents and queries should be smoothed to better
estimate their text models.

2.3 Dirichlet Prior Smoothing

A solution to the problem of zero probabilities and
poor probability estimates is to bring prior knowl-
edge to the estimation process. A natural fit as a
prior for the multinomial is the Dirichlet density [17].
A Dirichlet density can be thought of as a urn con-
taining multinomial dies. All the multinomials are of
the same size. In this paper, all multinomials have
|V | parameters. The Dirichlet density has the same
number of parameters as the multinomials for which
it is a prior. The vector �α represents the parameters
of the Dirichlet density. For each word w in the vo-
cabulary, there is a corresponding element αw of �α,
and all αw > 0.

The estimate of the probability of word given a
text, is now the weighted average of the word’s prob-
ability in all multinomials. Each multinomial is
weighted by its probability given the observed text
and the Dirichlet density. This estimate is the mean
posterior estimate:

P (w|MT ) =
∫

M

P (w|M)P (M |�α, T )dM (6)

which reduces to:

P (w|MT ) =
T (w) + αw

|T | + |�α| (7)

as shown in [17]. The larger a sample of text, the less
influence the prior has in determining the parameter
estimates for the multinomial MT . The mean of the
Dirichlet density is for each αw, αw/|�α|. The shorter
the text, the parameter estimates for MT regress to
the mean of the Dirichlet density. The bioinformatics
community’s common name for Equation 7 is pseudo-
counts.

The parameters of the Dirichlet density can be
determined using maximum likelihood estimation.
MLE finds the density parameters that produce the
highest likelihood for a collection of text samples
when the density is used as a prior. The MLE can
be computed numerically using a Newton-Raphson
method [15] or via an expectation maximization
(EM) like method [17].

The parameters of a Dirichlet density can be rep-
resented as a multinomial probability distribution M
and a weight m = |�α|. Thus, with P (w|M) = αw/|�α|,
Equation 7 becomes:

P (w|MT ) =
T (w) + mP (w|M)

|T | + m
(8)

The machine learning community terms this formula-
tion of Dirichlet prior smoothing the m-estimate [14].
The parameter m is the equivalent sample size. The
Dirichlet density when used as a prior for the multino-
mial can be understood as taking m samples accord-
ing to P (w|M) prior to observing the data in T .

Dirichlet prior smoothing is a form of linear inter-
polated smoothing. Linear interpolated smoothing
linearly combines two models to produce a smoothed
model. As mentioned in the introduction, documents
are typically smoothed with the collection. The doc-
ument D is smoothed with the collection C as follows:

P (w|MD) = (1 − λ)P (w|D) + λP (w|C) (9)

The λ parameter is varied between 0 and 1 to control
the amount of smoothing.

Equation 8 can be written in the form of equation 9
[7] by setting λ in Equation 9 as follows:

λ = 1 − |T |
|T |+ m

(10)

Thus Dirichlet prior smoothing can be seen as the
mixing of two multinomial models. The amount of
mixing depends on the length of text (sample size)
relative to Dirichlet prior’s equivalent sample size m.
Common practice in IR is to use the collection model
and empirically select m.

Dirichlet prior smoothing works well for smooth-
ing documents and eliminating zero probabilities,
but something more sophisticated should be used for
smoothing a query.
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2.4 Dirichlet Mixtures

Other than paying attention to the size of the text
sample being smoothed, Dirichlet prior smoothing
ignores the sample. Given a set of words, some words
are more likely than others. Different topics though
have different frequencies of word usage. Dirichlet
mixtures estimate a set of priors. Each prior de-
scribes a different aspect or facet of how words are
used with each other. The most likely priors given
a sample have the most influence on determining the
estimates of the smoothed model.

Rather than use only one Dirichlet density to pro-
vide prior information, a mixture of Dirichlet densi-
ties is used as the prior:

ρ = q1ρ1 + . . . + qnρn (11)

where ρi are the individual Dirichlet densities. All
qi are greater than zero and sum to 1. The qi are
known as the mixture coefficients. Each ρi has its
own parameters �αi.

As shown in [17], the mean posterior estimate for
a word w in a text T is now:

P (w|MT ) =
n∑

i=1

P (�αi|T, Θ)
T (w) + αi,w

|T |+ |�αi| (12)

where Θ represents all the parameters of the Dirich-
let mixture. Dirichlet mixtures weight the prior in-
formation of each density by the probability of the
density given the text and mixture. Dirichlet mix-
tures allows different densities to exert different prior
weight with varying equivalent sample sizes. Some
densities can be very general with low prior weight
while others are very specific and should have much
more influence over a matching query. Thus, Dirich-
let mixtures could contain prior knowledge ranging
from term frequencies in the entire collection to broad
topics, individual documents or even passages.

Dirichlet mixtures, like the single density Dirich-
let prior smoothing, determine the degree to which
the original sample is retained based on its size. The
larger the sample, the more influence the query re-
tains.

The parameters of a mixture of Dirichlet densities
are determined using an expectation maximization
(EM) like process to maximize the likelihood of a set
text samples when smoothed using the mixture [17].
The number of densities n is selected manually.

Similar to how the single density Dirichlet prior
smoothing can be written as linear interpolated

smoothing, Dirichlet mixtures can be rewritten as:

P (w|MT ) = P (w|T )
n∑

i=1

P (�αi|T, Θ)(1 − λi) +

n∑
i=1

λiP (�αi|T, Θ)miP (w|Mi) (13)

where

λi = 1 − |T |
|T | + |�αi|

P (w|T ) = T (w)/|T |
mi = |�αi|

P (w|Mi) = αi,w/|�αi|

With this formulation, one can see that the original
text sample T is weighted by some fixed amount that
reflects the average degree of smoothing each density
in the mixture performs. The sample is smoothed
with a set of multinomials whose influence is gov-
erned by their equivalent sample size mi and most
importantly by how likely the density is given the
sample, which includes the density’s prior likelihood
qi.

The spirit of Dirichlet mixtures is to smooth a text
sample by finding a set of models and mixing them
with the text sample in proportion to their similarity
with the sample:

P (w|MT ) = (1 − λ)P (w|T ) +

λ
∑
M

P (Mi|T )P (w|Mi) (14)

An entire family of smoothing methods could be de-
veloped and studied by determining:

1. λ: How much to discount the original sample.

2. M : The set of models.

3. P (Mi|T ): How to weight each model.

We next describe three techniques that can be seen
as fitting within this smoothing family. Each of rele-
vance models, probabilistic latent semantic indexing,
and latent Dirichlet allocation completely discount
the original text sample, i.e. λ = 1.

2.5 Relevance Models

In Lavrenko and Croft’s relevance models (RM)
framework, a model is considered to have generated
both the query and the document and this model
is called a relevance model [13]. Once the relevance
model is calculated, it replaces the query and cross
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entropy is used to rank the documents. As used for
ad-hoc retrieval, relevance models is a local feedback
technique.

The relevance model MR is calculated as the
weighted average of the all documents D in the col-
lection:

P (w|MR) =
∑
D

P (D|Q)P (w|D) (15)

where Q is the query entered by the user. Each doc-
ument model is weighted by its probability given the
query. Using Bayes’ rule, P (D|Q) can be calculated
as follows:

P (D|Q) =
P (D)P (Q|D)

P (Q)
(16)

=
P (D)

∏
w∈Q P (w|D)Q(w)

∑
D P (D)

∏
w∈Q P (w|D)Q(w)

(17)

Lavrenko and Croft demonstrate and explain that
the equation for P (D|Q) is dominated by the∏

w∈Q P (w|D)Q(w) term in the numerator, which is
also the query likelihood measure used for document
retrieval. The query likelihood values rapidly de-
crease with increased ranks (rank 1 is the best doc-
ument). Thus equation 15 can be approximated by
using only the top k documents returned from an ini-
tial document retrieval using the query Q. Often k
is set to 50. In addition, a uniform prior probabil-
ity is assumed for documents and thus P (D) can be
dropped from equation 16. Equation 15 becomes:

P (w|MR) =
k∑

i=1

P (Di|Q)P (w|Di) (18)

where P (Di|Q) is calculated by:

P (Di|Q) =
P (Q|Di)∑k

j=1 P (Q|Dj)
(19)

As mentioned in the introduction, the original
query model is often mixed with the relevance model
to help keep the query “focused”:

P (w|MQ) = (1 − λ)P (w|Q) + λP (w|MR) (20)

which is a linear interpolated smoothing of the query
with the relevance model. Equation 20 is a special
case of Dirichlet mixtures. This special case can be
written as:

P (w|MQ) =
k∑

i=1

P (Di|Q)
Q(w) + mP (w|Di)

|Q| + m
(21)

The text sample T of equation 12 is now the query Q.
The Dirichlet densities �αi are represented as multino-
mials Di and all have an equal equivalent sample size
m. In the same way that relevance models assume a
uniform probability for all documents, now all qi are
uniform and can be ignored. To get from equation
21 to 20 requires only a few algebraic manipulations.
First, using equation 10, the right hand side of equa-
tion 21 can be rewritten as:

k∑
i=1

P (Di|Q)((1 − λ)P (w|Q) + λP (w|Di)) (22)

where λ = 1 − |Q|/(|Q| + m). Further manipulation
produces:

(1 − λ)P (w|Q)
k∑

i=1

P (Di|Q) + λ

k∑
i=1

P (Di|Q)P (w|Di)

The sum
∑k

i=1 P (Di|Q) is equal to 1 given equation
19 and thus we finally get:

P (w|MQ) = (1 − λ)P (w|Q) + λ
k∑

i=1

P (Di|Q)P (w|Di)

which is the same as equation 20 if the k documents
chosen are the top k from an initial retrieval.

In terms of equation 14, RM completely discounts
the original query, uses the documents in a collec-
tion as the models, and weights these models by their
probability given the query.

2.6 pLSI

Hofmann’s probabilistic latent semantic indexing
(pLSI) is a technique for representing text in terms
of a set of learned topics Z [5]. For a given piece of
text T , the probability of a word w is given by:

P (w|MT ) =
∑
Z

P (Zi|T )P (w|Zi) (23)

Each topic Zi is a multinomial. The topics and their
weights are found with an expectation maximization
(EM) process. While Dirichlet mixtures directly cal-
culates the probability of a density given a sample,
P (�αi|T, Θ), pLSI empirically finds these weights for
each document as it also searches the space of topics.
The likelihood of the documents is maximized given
a preselected number of topics.

The aim is for the topics to capture connections be-
tween words that are not possible from co-occurrences
at the document or passage level. For example,
British documents about cars are likely to mention
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petrol while US-centric documents would mention
gas. The words petrol and gas do not co-occur with
high frequency, but the words surrounding them can
tell us that gas and petrol are similar words. These
are the sorts of connections between words that are
considered the latent semantic information present in
the collection. Sometimes the topics are referred to
as aspects or facets.

Given a new sample of text, the same EM process
is used to find the P (Zi|T ) weights but with the set
of topics fixed. Hofmann calls this “folding in” the
text sample. Aspect based models such as pLSI can
represent text samples in a compressed form by only
storing the computed P (Zi|T ) weights. Equation 23
“uncompresses” the text giving us the model MT .
This is a lossy form of compression, i.e. the original
cannot be recovered.

2.7 Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is another model
similar to Dirichlet mixtures [2]. LDA is a mixture
of multinomial models. These models are similar to
the topics in pLSI. The models represent the “latent”
aspects of a collection. A Dirichlet distribution deter-
mines the weight of each model in the mixture. For a
sample of text, its weighting Dirichlet distribution is
found using a process similar to the folding in process
used by pLSI [4]. Lavrenko explains in great detail
the connections between relevance models, pLSI, and
LDA [11].

2.8 Prior Value of Query

Each of RM, pLSI, and LDA can be seen as fitting in
the family of smoothing methods inspired by Dirich-
let mixtures described by equation 14. On the other
hand, only Dirichlet mixtures is explicitly a prior
on the multinomial model. These other models can
take a text sample and expand it with similar terms.
When the expanded model is linearly mixed with
the original text sample, each becomes a smoothing
method.

Retaining the influence of the query has been a part
of feedback techniques since at least that of Rocchio’s
relevance feedback work [6]. Rocchio chose to retain
the original query for relevance feedback because the
user feedback was known to only be a sample of the
documents.

When local feedback is seen as smoothing of the
query, Dirichlet mixtures offers an another explana-
tion for retaining the query. Dirichlet mixtures ex-
plicitly models the prior value of the sample. The
larger the sample is relative to a single Dirichlet den-

sity’s equivalent sample size m, the more prior weight
is given to the counts in the sample.

We investigate the extent to which the original
query should be retained when mixed with the model
computed by RM as per equation 20.

3 Experiments

Two experiments were conducted to better under-
stand the behavior of Dirichlet mixtures (DM) when
applied to smoothing of probabilistic models of text.
The first experiment was to use Dirichlet mixtures
in a manner similar to relevance models for query
estimation using local feedback. The second exper-
iment examined the effect of re-mixing the models
produced by both methods with the original query
model. The mixing is the linear interpolation of the
MLE query model with the model produced by the
method. Equation 20 shows the mixing for relevance
models.

Given the stochastic process for estimating the
Dirichlet mixtures parameters, several runs should be
conducted and averaged. Because of the computa-
tional expense, only one run per parameter settings
was conducted.

Query likelihood with Dirichlet prior smoothing
formed the baseline retrieval. We performed of sweep
of the Dirichlet prior parameter m to determine a rea-
sonable setting. The following values were tried for
m: {50, 100, 150, 200, 250, 300, 350, 400, 500, 600,
800, 1000, 1250, 1500, 1750, 2000, 2500, 3000, 5000}.
Setting m to 800 produced the highest mean average
precision (MAP) of 0.217 on title queries for topics
351-450. On description queries, m = 3000 produced
the highest MAP of 0.205. Dirichlet prior smooth-
ing is robust to settings of m so long as it is not set
too small [19]. A compromise setting of m = 1500
was used for all experiments. At this setting of m,
the title queries have a MAP of 0.214, and descrip-
tion queries have a MAP of 0.203. The larger setting
of m was also chosen because the expanded queries
produced by Dirichlet mixtures (DM) and relevance
models are likely to be more similar to the longer de-
scription queries and thus would benefit from a larger
m.

The baseline was used to determine the top k doc-
uments for blind feedback used by both RM and DM.
On title and description queries, k was tried at val-
ues of 20, 50, and 100 documents. The number of
densities (NOD) in the Dirichlet mixture was set for
k=20, NOD = {2,4}, for k=50, NOD = {5,10}, and
for k=100, NOD={5,10,20}. This produces an “av-
erage size” of components of 5, 10, and 20.
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Dirichlet mixtures were estimated using 500 itera-
tions of the process detailed in [17]. We initialized the
densities by setting a term’s Dirichlet parameter, αw,
to be the term’s frequency in the top k documents di-
vided by the number of documents. We then add a
small amount of noise to each density. The effect is
to start with the densities near each other and near
the “center” of the space.

The expanded models produced by both RM and
DM were truncated to the 50 highest probability
terms. We tested the performance of RM with the
model truncated at both 50 and 1000 words and
tested with k = {20, 100} on both title and descrip-
tion queries. Table 1 shows that the smaller models
have the same mean average precision, slightly lower
precision at 20 documents, but a significantly higher
number of relevant documents retrieved. To favor
higher recall, 50 word models were used for all RM
and DM experiments.

Relevance models (RM) were run with the the
Lemur feedback coefficient set to 0.6, which matches
the smoothing between documents and collection re-
ported in [12]. Relevance models version 1, RM1, was
used in all experiments.

To test our Dirichlet mixtures code, we obtained
Kevin Karplus’ code to generate (amino acid) se-
quences from a Dirichlet mixture [9]. After getting
the code running, we had it generate 1000 sequences
of the default mixture. We treated each sequence as
a document and each of the 20 amino acids as a term
and indexed this as a mini document collection. We
then had our code estimate a Dirichlet mixture for the
1000 sequences. We gave the code the correct number
of components. After 3000 iterations, the estimated
mixture was within 1-5% of the correct mixture for
nearly all of the parameters. A couple parameters
were off by up to 20%. Thus, our code tested as cor-
rect.

For the second experiments, a sweep of λ values
was performed to determine the best weight for the
original MLE query model and the truncated models
produced by Dirichlet mixtures and relevance mod-
els. The parameter λ controls the amount of lin-
ear mixing as per equation 20. Values of λ included
{0.01,0.02,. . . ,0.09,0.1,0.2,. . . , 0.9}. An initial sweep
between 0.1 and 0.9 found that some runs had a max-
imum mean average precision at 0.1 and so a detailed
sweep was performed between 0.01 and 0.1.

Statistical significance is measured using a two-
sided, paired, randomization test with 10000 samples
(see page 168 [3]). Unless otherwise stated, signifi-
cance is at the p < 0.05 level.

3.1 Topics and Collection

The topics used for the experiments consists of TREC
topics 351-450, which are the ad-hoc topics for TREC
7 and 8. TREC topics consist of a short title, a sen-
tence length description, and a paragraph sized nar-
rative. The titles best approximate a short keyword
query. The descriptions are more representative of a
verbose query, which is more likely to contain com-
mon non-informative words. The experiments use the
titles and descriptions separately.

The collection for the TREC 7 and 8 topics consists
of TREC volumes 4 and 5 minus the CR subcollec-
tion. This 1.85 GB, heterogeneous collection contains
528,155 documents from the Financial Times Limited
(FT), the Federal Register (FR), the Foreign Broad-
cast Information Service (FBIS), and the Los Angeles
Times (LAT).

We preprocessed the collections and queries in the
same manner. The Krovetz stemmer [10] stemmed
all words. Words from an in-house stop word list
of 418 noise words were removed. 649,929 unique
terms comprise the resulting vocabulary. The average
document length is 270 words. We used Lemur 3.1
[20] for all experiments.

4 Results

Table 2 shows the performance of Dirichlet mixtures
vs. relevance models for query estimation. The base-
line is the query likelihood run, which is the run that
produces the initial retrieval that both local feedback
methods use to re-estimate the query.

Table 3 shows the results of taking the re-estimated
models produced by Dirichlet mixtures and relevance
models and mixing their estimated models with the
MLE query model.

5 Discussion

Table 2 shows that only the Dirichlet mixtures run
on title queries with k = 20 and with 2 densities
performed near relevance models (RM). On the title
queries, with k = 20, RM achieved a mean average
precision (MAP) of 0.239. In comparison, the Dirich-
let mixtures (k = 20, #Dens=2) run achieved a MAP
of 0.231. The difference between the two runs is not
statistically significant, but across all measures RM
appears better than Dirichlet mixtures.

Lavrenko has reported results for RM on five other
collections and sets of title queries, and on these RM
has a percentage improvement in MAP of between
15.6% and 26.5% [11]. The best performance for RM
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Query k Docs Model Size MAP P20 Num. Rel. Ret.
Title 20 50 0.239 0.364 5808
Title 20 1000 0.242 0.387 5507
Title 100 50 0.243 0.361 5784
Title 100 1000 0.243 0.381 5426
Desc. 20 50 0.213 0.331 5152
Desc. 20 1000 0.214 0.357 4883
Desc. 100 50 0.216 0.337 5234
Desc. 100 1000 0.214 0.353 4915

Table 1: This table shows the effect of model truncation on the relevance model. Using the 50 highest
probability words produces an equivalent mean average precision (MAP) as using 1000 words. The smaller
50 word models show less precision at 20 documents (P20) but significantly higher number of relevant
documents retrieved. One thousand documents were retrieved for each topic.

Query Method k #Dens MAP Pct. P20 Pct. Recall Pct.
Title QL 0.214 0.368 0.526
Title RM 20 0.239 11.4 0.364 -1.1 0.618 17.4
Title RM 50 0.241 12.5 0.360 -2.0 0.619 17.6
Title RM 100 0.243 13.3 0.361 -1.9 0.615 16.9
Title DirMix 20 2 0.231 7.6 0.361 -1.9 0.603 14.6
Title DirMix 20 4 0.217 1.1 0.354 -3.7 0.567 7.8
Title DirMix 50 5 0.208 -3.0 0.318 -13.5 0.573 9.0
Title DirMix 50 10 0.204 -4.9 0.322 -12.5 0.553 5.2
Title DirMix 100 5 0.199 -7.3 0.298 -18.9 0.562 6.8
Title DirMix 100 10 0.204 -4.9 0.331 -10.1 0.583 10.9
Title DirMix 100 20 0.207 -3.2 0.327 -11.0 0.545 3.6

Query Method k #Dens MAP Pct. P20 Pct. Recall Pct.
Desc. QL 0.203 0.341 0.515
Desc. RM 20 0.213 5.1 0.331 -2.9 0.548 6.3
Desc. RM 50 0.215 5.9 0.333 -2.3 0.553 7.3
Desc. RM 100 0.216 6.6 0.337 -1.2 0.557 8.0
Desc. DirMix 20 2 0.191 -6.1 0.309 -9.4 0.542 5.2
Desc. DirMix 20 4 0.164 -18.9 0.279 -18.3 0.517 0.4
Desc. DirMix 50 5 0.144 -29.0 0.245 -28.3 0.474 -8.0
Desc. DirMix 50 10 0.136 -32.8 0.234 -31.4 0.426 -17.3
Desc. DirMix 100 5 0.144 -29.2 0.248 -27.3 0.486 -5.7
Desc. DirMix 100 10 0.137 -32.3 0.238 -30.4 0.474 -8.1
Desc. DirMix 100 20 0.117 -42.3 0.215 -37.0 0.416 -19.3

Table 2: This table shows the performance of Dirichlet mixtures and relevance models compared to the
baseline retrieval for TREC topics 351-450. The baseline, QL, is the query likelihood run that provides the
top k documents that each local feedback method uses to re-estimate the query. The measures shown are the
mean average precision (MAP), precision at 20 documents retrieved (P20), and recall at 1000 documents. For
each measure, the percent change relative to the baseline is also shown (Pct.). Blanks are “not applicable.”
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Query Method k #Dens Query Wgt Model Wgt Orig. MAP New MAP Pct.
Title QL 0.214 0.214
Title RM 20 0.03 0.97 0.239 0.256 19.5
Title RM 50 0.03 0.97 0.241 0.257 19.8
Title RM 100 0.02 0.98 0.243 0.257 19.8
Title DirMix 20 2 0.06 0.94 0.231 0.250 16.8
Title DirMix 20 4 0.07 0.93 0.217 0.247 15.4
Title DirMix 50 5 0.10 0.90 0.208 0.234 9.2
Title DirMix 50 10 0.10 0.90 0.204 0.234 9.1
Title DirMix 100 5 0.10 0.90 0.199 0.228 6.3
Title DirMix 100 10 0.10 0.90 0.204 0.232 8.5
Title DirMix 100 20 0.09 0.91 0.207 0.238 10.9

Query Method k #Dens Query Wgt Model Wgt Orig. MAP New MAP Pct.
Desc. QL 0.203 0.203
Desc. RM 20 0.09 0.91 0.213 0.240 18.4
Desc. RM 50 0.08 0.92 0.215 0.239 18.0
Desc. RM 100 0.08 0.92 0.216 0.239 17.9
Desc. DirMix 20 2 0.20 0.80 0.191 0.223 9.8
Desc. DirMix 20 4 0.20 0.80 0.164 0.218 7.3
Desc. DirMix 50 5 0.40 0.60 0.144 0.207 2.2
Desc. DirMix 50 10 0.40 0.60 0.136 0.209 3.2
Desc. DirMix 100 5 0.30 0.70 0.144 0.211 4.0
Desc. DirMix 100 10 0.40 0.60 0.137 0.208 2.8
Desc. DirMix 100 20 0.50 0.50 0.117 0.207 1.8

Table 3: This table shows the results of taking the re-estimated models produced by Dirichlet mixtures and
relevance models and mixing their estimated models with the MLE query model. Results are shown for
TREC topics 351-450. The baseline is the query likelihood (QL) run that provides the top k documents to
each local feedback method. The weight given to the original query model is in the “Query Wgt” column,
while the corresponding weight of the expanded models is in the “Model Wgt” column. Listed is the mean
average precision (MAP) for the methods without the re-mixing with the query and also the new MAP that
results from re-mixing with the query. The percent change (Pct.) of the new MAP compared to the baseline
is also shown. Blanks are “not applicable.”
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on topics 351-450 in table 2 was a 13.3% improvement
in MAP. Topics 351-450 and their associated collec-
tion can thus be considered to be relatively hard for
the task of query estimation. A possible reason for
the difficulty may come from the heterogeneous col-
lection. RM results have previously been reported on
collections with documents all from the same source.

Offering more documents for Dirichlet mixtures
and more densities in its mixture leads to perfor-
mance degradation. All methods have difficulty with
the description queries compared to the title queries.
Dirichlet mixtures though fail on the description
queries with decreases in MAP of -6.1% to -42.3%
compared to the baseline.

5.1 Observations

It’s an open issue on how best to initialize the para-
meters of a mixture. The initial conditions for the
hill climbing are not specified in [17]. Karplus de-
scribes his experience with learning a Dirichlet mix-
tures model [8]. As with EM, each search can result
in a different set of model parameters. The estima-
tion process contains a learning rate η. If η is set
too high, the model explodes or the parameter val-
ues oscillate wildly. If set too low, little progress is
made and the process won’t converge. The learning
rate needs to change based on the number of densities
and the number of documents. The more documents,
the slower the learning rate needs to be. The more
densities, the faster the rate needs to be.

Hofmann shows that if pLSI learns the wrong facets
of a dataset, then its ability to model the data de-
grades quickly [5]. Hofmann had problems with the
facets congealing too quickly and incorrectly. To
solve this problem, he used tempered EM, which
slows down the rate at which EM converges.

Unlike our test of learning the parameters for the
amino acid sequences, the documents quickly clus-
ter and don’t seem to straddle densities. This hard
clustering of documents typically occurs within 10 it-
erations of the estimation process. Clusters vary in
size. While a mixture may be allowed 10 or 20 den-
sities, typically a fewer number of clusters forms and
a number of the densities are garbage with no weight
given to them. This may point to the issue of hav-
ing a larger vocabulary than number of documents,
which may allow for overfitting. In the case of learn-
ing the parameters for genetic sequences, the number
of sequences is much greater than the size of the vo-
cabulary. Additionally, clusters appear to prefer to
form around the various subcollections. This may
be because similar sources use similar language, but
it could also be because similar sources have similar

junk in them. Junk markup makes little difference
for retrieval, since users don’t enter anything that
would match the junk. For clustering of documents
though, the junk could be a stronger attractor than
the documents’ content words.

As the estimation process determines the correct �α
values for each density, |�α| tends to at first grow and
then shrink. If the process is stopped too soon, the
densities’ equivalent size (m = |�α|), will be too large.

5.2 Query Analysis

Dirichlet mixtures chief problem appears to be that
the densities it learns are fit very closely to the doc-
uments that cluster under them. A density can effec-
tively have zero probabilities for terms in the query.
Densities with zero probabilities will have a zero
P (�αi|T, Θ) in equation 12.

For example, the Dirichlet mixtures run with k =
20 and four densities was almost successful on de-
scription topic 441. This topic is “prevent treat lyme
disease.” The mixture found the lyme disease docu-
ments among the top 20 documents. Almost all docu-
ments discussing lyme disease cluster under one den-
sity. This density had a tiny probability for “prevent”
– effectively a zero probability. Another density had
non-zero probabilities for all four words. This other
density was primarily about infectious diseases such
as AIDS and had a high probability for “prevent.”
The estimated query model thus focused on diseases
and their prevention with little weight given to the
issue of lyme disease.

On title query 418, “quilts, income,” the Dirichlet
mixtures run with k = 2 and 2 densities fails. A
small cluster is formed with four documents about
retirement, income and the AIDS quilt. A large set
of documents about quilts forms the other density.
The quilts oriented density lacks the term income.
The final query model is built from the wrong density
and average precision is 0. A sparse space can cluster
strangely leading to disaster.

As the number of densities increases, the chance
of zero probabilities increases. This doesn’t explain
though why with k = 50 and 5 densities, Dirichlet
mixtures performed worse than with k = 20 and 2
densities. Each of these runs should have had an av-
erage of 10 documents per density. Providing Dirich-
let mixtures with more documents should help it.
If the densities being formed are more often than
not garbage, then by restricting the number feedback
documents, the damage is limited. Higher ranked
documents are more likely to relevant.

On title query 372, the Dirichlet mixtures run with
k = 100 and 10 densities fails for a confusing reason.

10



The query is “Native American casino” and the mix-
ture forms a density around the documents discussing
casinos and gambling. For some unknown reason, the
term “casino” is effectively zero in this density. The
term appears frequently in the documents clustered
under the density. We tested our code to make sure
it could correctly estimate a mixture of Dirichlet den-
sities, but the estimation process is complex and sto-
chastic. This complexity makes it difficult to obtain
an efficient, and apparently perfect implementation.

Dirichlet mixtures do show promise. On some
queries the technique performs significantly better
than relevance models. On the title query 405, “cos-
mic events,” the searcher is looking for recent astro-
nomical phenomena and not necessarily information
about cosmic rays. On this topic, Dirichlet mixtures
with k = 20 and 2 densities has an average precision
of 0.285. Relevance models with k = 20 has an aver-
age precision of 0.087. Even when the original query
is mixed into the models produced by these meth-
ods, Dirichlet mixtures significantly outperforms rel-
evance models.

For topic 405, the top 20 documents contain science
and non-science articles. Dirichlet mixtures forms
two densities around these areas. The computed
probability of a density given the query is 0.8 for the
science density and 0.2 for the other. The documents
were nearly evenly split between the two densities
with 55% in the science density. The science density
has a higher probability for both terms.

Relevance models does not fail on this query be-
cause it fails to find the science articles. It fails be-
cause it focuses on the top ranked documents which
stress cosmic rays and solar radiation. Dirichlet mix-
tures produces a model that is more general and em-
phasizes the word “universe.” Many relevant docu-
ments are of the sort “scientists have discovered the
biggest thing in the universe.”

In this case, the more general collection of docu-
ments equally weighted in the science density out-
performed the focused top documents used by rele-
vance models. All of the documents in the density
contribute equally to its makeup regardless of their
individual distance to the original query. As always,
Dirichlet mixtures could have simply gotten lucky,
but this is an interesting case where it succeeded.

On title query 396, “sick building syndrome” the
correct densities are again found by Dirichlet mix-
tures with k = 20 and 2 densities. One density fo-
cuses on sick building syndrome and the other has a
collection of documents mentioning buildings or other
syndromes. The clustering behavior has the potential
of cleaning up the documents. The correct density
ends up having the most influence on the smoothing

the query. Again, this success could be random luck,
but it is the behavior one hopes of Dirichlet mixtures.

5.3 Re-mixing with Query

As has been previously discovered [1, 18], mixing the
original query with the expanded model can produce
significant gains. On title queries, RM goes from a
mean average precision (MAP) performance improve-
ment over the baseline of 11.4%-13.3% without re-
mixing to 19.5%-19.8% with re-mixing. On descrip-
tion queries, RM leaps from a MAP improvement of
5.1%-6.6% without re-mixing to 18.4%-17.9% with re-
mixing.

While the Dirichlet mixture models have already
incorporated the original query, the equivalent sam-
ple sizes for the densities often ranged in value from
at least 300 to 1000 or greater. Relative to the size
of the query, Dirichlet mixtures ignores the counts of
query. The high equivalent sample sizes may be an
artifact of the estimation process. If the estimation
process does not have enough time to relax, the equiv-
alent sample sizes will be artificially high. Another
possible cause is that documents are used as the sam-
ples, which have an average length of 270 words. In
the bioinformatics application of Dirichlet mixtures,
the sample to be smoothed is approximately the same
size as the samples used to estimate the model.

When looking at the Dirichlet mixture runs in table
3, the re-mixing improves the performance of Dirich-
let mixtures. The best Dirichlet mixtures run goes
from a MAP performance improvement of 7.6% to
16.8%. Re-mixing with the query resuscitates the
performance of the title run with k = 20 and 4 den-
sities from an improvement of 1.1% to 15.4%. The
poorly performing Dirichlet mixture runs require sig-
nificant weight added to the original query.

At first glance, table 3 validates Dirichlet mixtures
behavior of giving more prior weight to longer queries.
For RM runs with the short title queries, the best
retrieval performance is had by giving the original
MLE query model a weight around 0.03. For RM
runs with the longer description queries, the query
model does best with a weight around 0.08.

The average query length is 2.44 words for ti-
tle queries and 7.84 words for description queries.
In the MLE query models, the average probability
given to a term is 0.41 for title and 0.13 for descrip-
tion queries. When multiplied by the weights 0.03
and 0.08, the probabilities in these models become
0.0123 and 0.0104. These probabilities are nearly the
same. In addition, these probabilities are close to
the top probabilities of the computed relevance mod-
els. Thus, rather than giving more weight to longer
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queries because they are better samples, it appears
important in this collection to equally weight the con-
tribution from the query and expanded model on a
per term basis.

This matches the results reported by Zhai and Laf-
ferty [18]. They created an expanded model which
they then truncated and renormalized. While the
optimal amount of mixing varied across text collec-
tions, they report that a nearly equal mixing of query
and expanded model is the safe bet. The truncated
models used in our experiments are not renormalized.
If we had renormalized them, a λ near 0.5 is likely to
have been the result for both title and description
queries.

Nevertheless, treating the query as prior informa-
tion that has some weight is an valuable way to look
at the success found from mixing the query with ex-
panded models.

6 Future Work

Dirichlet mixtures, pLSI, and LDA are all aspect-
based techniques. Using computationally expensive
methods, these methods take a collection of docu-
ments and represent it in a reduced form. Both pLSI
and LDA use a set of multinomials while Dirichlet
mixtures uses Dirichlet densities. This difference al-
lows Dirichlet mixtures to have different amounts of
influence over text samples given the size of the sam-
ple.

Aspect-based models attempt to directly model the
connections found between words such as gas and
petrol. In the set of densities in Dirichlet mixtures
or the multinomials of pLSI and LDA, should be a
density or multinomial that has high probability for
both gas and petrol and their associated words. As-
suming gas and petrol never co-occur in a collection
of documents, relevance models cannot smooth the
word petrol and produce a model that also gives the
word gas high probability. This matters little for ad-
hoc retrieval. The relevance model will pick up all
the words co-occurring with petrol. When the rele-
vance model is then used for retrieval, it will pull up
all the documents mentioning gas.

Nevertheless, as the query analysis showed, there
appears to be some value in mixing with models more
general than individual documents. Dirichlet mix-
tures makes it clear that both coarse and fine grain
priors can be used. One prior could be the entire col-
lection while another is a passage. Because the text
sample self selects the priors most likely for it, there
should be little risk in expanding the set. The expen-
sive estimation process currently used by Dirichlet

mixtures could be replaced by a more affordable hi-
erarchical clustering of a collection. This clustering
would allow for the creation of models at different
levels of the hierarchy. Equivalent sample sizes could
be assigned to the models based on the number of
documents covered by a model in the hierarchy.

The priors used in Dirichlet mixtures do not have
to come only from the retrieval collection. A user’s
past search behavior or a user’s personal document
collection could be used as priors by which the query
model should be smoothed. Such changes to the
query would allow for personalized search.

7 Conclusion

We investigated the use of the Dirichlet mixtures
smoothing technique in the text domain by apply-
ing the technique to the problem of query estima-
tion. Dirichlet mixtures originated in bioinformatics
for better estimation of the model of a column in
a multiple alignment. Dirichlet mixtures have diffi-
culty with the large vocabulary size of information
retrieval. For this reason, Dirichlet mixtures perform
below that of relevance models or the baseline on the
task of query estimation. On some queries, Dirichlet
mixtures perform very well and this shows that there
may be value to utilizing aspect-based prior informa-
tion. Inherent in Dirichlet mixtures is the incorpora-
tion of a prior value of the text sample, which gives
insight into the success of re-mixing the query with
the expanded model produced by relevance models.
As utilized, Dirichlet mixtures failed to give enough
weight to the original query and performed better
with a re-mixing of the query. For relevance models,
a near equal per term weighting of the original query
model probabilities and the expanded model proba-
bilities appears to be more important than the small
average difference in sample size between title and
description queries.
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