
Indri at TREC 2005: Terabyte Track (Notebook Version)

Donald Metzler, Trevor Strohman, Yun Zhou, W. B. Croft

Center for Intelligent Information Retrieval

University of Massachusetts, Amherst

Abstract

This work details the experiments carried out using
the Indri search engine during the TREC 2005 Ter-
abyte Track. Results are presented for each of the
three tasks, including efficiency, ad hoc, and named
page finding. Our efficiency runs focused on query
optimization techniques, our ad hoc runs look at the
importance of term proximity and document quality,
and our named-page finding runs investigate the use
of document priors and document structure.

1 Introduction

This year, the Terabyte Track was expanded from
a single ad hoc task to include an efficiency and
named-page finding task. These new tasks provided
new and interesting environments in which to test
our search engine, Indri1 [13]. As evidenced by last
year’s Terabyte Track results, Indri is a highly effi-
cient, highly effective search engine. The underlying
retrieval model is based on a combination of the in-
ference network [15] and language modeling [3] ap-
proaches to retrieval [6]. Indri supports a robust
query language, based on the InQuery query lan-
guage [1]. Our primary goal this year was to fur-
ther tweak our system both in terms of efficiency and
effectiveness in large scale retrieval settings.

The remainder of this paper details the experi-
ments and results obtained for each of the three Ter-
abyte Track tasks.

1Available for download at: http://lemurproject.org/indri/

2 Efficiency Task

Indri was a brand new retrieval system at last year’s
TREC conference. In the past year, we have added
to its capabilities and have attempted to improve its
speed without sacrificing retrieval effectiveness. To
this end, Indri includes new query processing tech-
niques [14] and a new multithreaded architecture [12].

In contrast to last year’s system, Indri is now multi-
threaded, which allows many queries to be processed
at once. Unfortunately, the rules specifically prohib-
ited this optimization this year, so our official runs
do not include this optimization. We report threaded
results in this paper for comparison.

The indexing code for the system is conceptually
similar to last year’s system, although it has been
completely rewritten. The main feature of the new
code is that it is concurrent; queries can be processed
while documents are being added to the system, and
each document is available for query immediately af-
ter it is added, with no document batching neces-
sary. We also separated the vocabulary structures
into two B-Trees; one for frequent terms (those ap-
pearing more than 1000 times in the collection) and
one for infrequent terms. The frequent terms tree is
small enough that it is quickly cached into memory
by the operating system; future lookups to this struc-
ture incur no disk I/O. Since most query terms come
from the frequent terms list, disk I/O is reserved for
the inverted lists.

Our goal this year was to try to make our cur-
rent system fast while not sacrificing any of its capa-
bility. To this end, our index structures include in-

CPU Intel Pentium 4 2.6GHz × 1
Bus speed 800MHz
OS Linux 2.6.10 (Fedora Core 3)
Memory 2GB
Boot volume Western Digital 40G

(WD400EB-75CPF0)
Work volume Western Digital 250GB × 3

(WD2500JB-00EVA0)
RAID 0
Average write seek: 10.9ms
Average read seek: 8.9ms
Rotational speed: 7200rpm

Network 1Gb/s Ethernet (Intel 82540EM)

Table 1: Machine configuration. Six machines at a
total cost of $9000 USD, purchased in early 2004.

Run ID Total (s) Avg (s)
indri05Eql 71700 1.43

indri05EqlD 24720 0.49

Table 2: Summary of official efficiency task runs.

verted lists, direct lists, and a compressed version of
the document collection. The query code and index
structures are the same as those used for the effec-
tiveness tasks, although we used more complex query
formulations in the effectiveness task.

All of our machines meet the specifications in Table
1. For the first run, we used a single machine (2079
mins. to build index), while for the distributed run,
we used 6 of these machines in parallel (327 mins. to
build index) for both indexing and retrieval. The dis-
tribution of the text for indexing was done manually,
but the query processing distribution was automatic.

Tables 2 and 3 show our official (unthreaded) and
unofficial (threaded) runs, respectively. The tables
provide total query processing and the average time
across the 50,000 efficiency queries. Distributing
the index, as expected, improves our official average
query time from 1.43 to 0.49s per query. We also
see from our unofficial numbers that threading the
query director in a fully distributed environment fur-
ther improves throughput by a factor of 2-3.

Threads Setup Total (s) Avg (s)
2 Single 65640 1.31
2 Distributed 14520 0.29
4 Distributed 9780 0.20
8 Distributed 9000 0.18

128 Distributed 8820 0.18

Table 3: Summary of unofficial, threaded efficiency
task runs.

3 Ad Hoc Task

For the ad hoc retrieval task this year we extended
and improved the methods we investigated during
TREC 2004 [8]. We are interested in studying how
traditional ad hoc retrieval models and methods scale
to large, noisy web collections, and what new types of
features may exist that can be exploited in such an
environment. Therefore, this year we explored the
use of term proximity information, pseudo-relevance
feedback, and the use of a document quality prior.

All of our ad hoc runs are against the entire GOV2
collection, with no special document or link struc-
ture indexed. All documents are stemmed using the
Porter stemmer. Once again this year, we do not stop
documents at index time. Instead, we perform query-
side stopping using a list of 418 common terms. We
use Bayesian smoothing, and allow single term and
proximity features (i.e. #1, #uw8) to be smoothed
differently. All of our runs are automatic and all the
system parameters are tuned on the TREC 2004 Ter-
abyte Track topics (701-750).

3.1 Baseline

Our baseline run this year, indri05Aql, is a simple
title-only query likelihood run. For example, topic
758, “embryonic stem cells”, is converted into the
following Indri query:

#combine(embryonic stem cells)

which produces results rank-equivalent to a simple
query likelihood language modeling run. We consider
this to be a strong, reasonable baseline.

3.2 Dependence Model

At least year’s Terabyte Track, we developed a novel
mechanism for modeling term proximity features [8].
Since then, the model has been expanded and ex-
pressed in terms of a term dependence model [7]. The
use of term proximity information is not new [2], but
has never caught on. However, we feel it plays an
increasingly important role in retrieval as collections
get larger and noisier.

The model encodes the following two assumptions:
1) the order of query terms is important, and 2) query
terms will occur within closer proximity to each other
in relevant documents. The full details of the model
are not given here due to space constraints. See [7]
for a full treatment.

To give an idea of how the dependence model trans-
lates queries into Indri structured queries we give the
following example, again for topic 758:

#weight(0.8 #combine(embryonic stem cells)

0.1 #combine(#1(stem cells)

#1(embryonic stem)

#1(embryonic stem cells))

0.1 #combine(#uw8(stem cells)

#uw8(embryonic cells)

#uw8(embryonic stem)

#uw12(embryonic stem cells)))

Our indri05Adm run employs this model.

3.3 Pseudo-Relevance Feedback

For pseudo-relevance feedback, we use a modified ver-
sion of Lavrenko’s relevance model [5]. Given an ini-
tial query Qorig, we retrieve a set of N documents
and form a relevance model from them. We then
form QRM by wrapping a #combine around the k

most likely terms from the relevance model that are
not stopwords. Finally, an expanded query is formed
that has the following form:

#weight(λfb Qorig (1.0 - λfb) QRM)

Last year we were disappointed with our pseudo-
relevance feedback results. Our results showed little

improvement over the baseline. We found the param-
eters we had tuned on the WT10g collection were ill-
suited for the GOV2 collection. As we will show, the
parameters found by tuning on last year’s topic set
proved to yield better results this year.

Two of our runs made use of this technique. First,
run indri05AdmfS, a title-only run, uses a depen-
dence model query for Qorig, N = 10, k = 50, and
λfb = 0.5.

Next, run indri05AdmfL, a title + description +
narrative run, uses a dependence model query created
from only the title field combined with the description
and narrative portions of the topic for Qorig, N = 10,
k = 50, and λfb = 0.6.

Current and past results indicate that the effec-
tiveness boost from pseudo-relevance feedback tech-
niques are amplified when used in combination with
the precision-enhancing dependence model. There-
fore, such a combination provides a highly effective
retrieval mechanism.

3.4 Document Quality Prior

Lastly, we incorporate the notion of document qual-
ity into our retrieval models in the form of a prior
probability. To achieve this, we must identify doc-
ument features that are predictive of quality. We
focus on two features, information-to-noise ratio and
collection-document distance.

Information-to-noise ratio is simply defined as the
total number of terms in the documents after in-
dexing divided by the raw size of the document.
This metric has been used with some success pre-
viously [17]. The other feature, collection-document
distance, is the KL-divergence between the collection
and document model.

The intuition behind this feature comes from the
observation that documents, such as tables or lists,
are unlikely to be relevant for ad hoc queries because
relevant documents typically explain or describe some
topic using well-formed English sentences. Therefore,
if a document differs significantly from the collection
model, the quality of this document may be low. The
higher the CDD is, the more unusual the word dis-
tribution of the document is, and the more likely,

according to our hypothesis, that the document is of
low quality.

The quality of a document is determined using a
naive Bayes classifier over the two features mentioned
above, with the classes defined as high and low qual-
ity. The class priors are estimated from the training
data and the class conditional distributions are es-
timated using a non-parametric density estimation
technique with a Gaussian kernel. See [16] for more
details on the training data and estimation details.

The document quality prior was applied to the
indri05AdmfL run.

3.5 Results

The results from our official runs are given in Table 4.
The table includes mean average precision (MAP),
precision at 10 (P@10), the term smoothing parame-
ter (µ), and the proximity feature smoothing param-
eter (µprox).

We see that once again this year the depen-
dence model improves effectiveness. This year it
(indri05Adm) provided a 7.8%, statistically signifi-
cant, increase in MAP over the baseline. Last year
the increase was 6.8%. This provides further evidence
of the importance of term proximity features, espe-
cially for this task.

Our best title-only run (indri05AdmfS), which
combined the dependence model with pseudo-
relevance feedback, showed a 19.5% increase in MAP
over the baseline and a 10.9% increase over the depen-
dence model only run, both of which are statistically
significant. Therefore, we see that pseudo-relevance
feedback was much more effective this year than last,
mostly due to better parameter tuning.

Finally, the title + description + narrative run
that made use of dependence modeling, pseudo-
relevance feedback, and the document quality prior
(indri05AdmfL) yielded our best overall MAP. De-
spite this, the 4.0% improvement over the title-only
version of the run was not statistically significant.
Interestingly, if we perform the same run without ap-
plying the document quality prior we achieve a MAP
of 0.4150, which is statistically better. Further anal-
ysis must be done to determine why the document
quality prior hurt performance. We also continue to

Run ID µ µprox MAP P@10
indri05Aql 1500 - 0.3252 0.5840
indri05Adm 1500 4000 0.3505 0.5960

indri05AdmfS 1500 4000 0.3886 0.6340
indri05AdmfL 2000 2000 0.4041 0.6580

Table 4: Summary of official ad hoc task runs.

look at better ways to incorporating the information
from the description and narrative fields, because we
feel it should translate into even better effectiveness
numbers than we are currently seeing.

Therefore, our runs this year show that term prox-
imity information and pseudo-relevance feedback can
significantly improve ad hoc retrieval results on a
large web collection. Results using the descrip-
tion/narrative fields and the document quality prior
are mixed, but potential areas of future interest.

4 Named Page Finding Task

Since this was the first year that UMass participated
in any type of named-page finding task, our runs were
highly experimental and designed to give us a better
feel for the task. Following what has been successful
in the past, we used both document structure and
link analysis techniques.

We indexed title, mainbody, heading, and
inlink fields, where mainbody is the main text of
the document and inlink consists of all the anchor
text pointing to the document, if any. We also inves-
tigated the use of a number of query independent
document priors, such as PageRank, inlink count,
url depth, and document length. Individual priors
were estimated based on empirical distributions from
TREC 9 and 10 relevance judgments [4]. After some
preliminary experimentation, we decided to limit our
focus to PageRank and inlink count priors.

We focused on two primary named-page finding
models, both of which incorporate document struc-
ture and query independent features.

4.1 Feature-Based Model

The first is a linear, feature-based model based on
the work of Nallapati [9]. The scoring function has
the following form:

S(D;Q) = w
T
f(D,Q)

where f(·, ·) is a feature function that maps
query/document pairs into some d dimensional space
and w is a weight vector. Given a set of training
data (feature vectors plus relevance judgments), we
aim to estimate the w that optimizes some metric.
Rather than maximizing the likelihood or margin, as
was done in previous studies, we directly maximize
with respect to mean reciprocal rank.

For our specific instantiation of this model, we used
the 6 features used in [9] for each of the four document
structure fields indexed, a PageRank feature, and an
inlink count feature, for a total of 26 features. Our
indri05Nf run makes use of this model.

4.2 Mixture of Language Models

The second model we use combines a mixture of lan-
guage models approach with document priors [4, 11].
The following scoring function is used to rank docu-
ments:

P (D|Q,Θ) ∝ P (D)
∏

q∈Q

∑

i

P (i)P (q|D, i)

where P (i) are mixture weights, P (q|D, i) represents
language model component i, and P (D) is a docu-
ment prior. We use one mixture component for each
indexed field, estimate P (D) using PageRank and in-
link count, and hand tune the mixture weights.

Both the indri05Nmp and indri05Nmpsd runs
make use of this formulation, with the latter using
the sequential dependence variant of Metzler’s depen-
dence model [7].

4.3 Results

The results from our official runs are given in Table 5.
As we see, the results are much lower than most of the
named page finding results obtained at the 2004 Web

Run ID MRR S@10 Not Found
indri05Nf 0.375 0.528 0.187

indri05Nmp 0.414 0.563 0.175
indri05Nmpsd 0.441 0.583 0.171

Table 5: Summary of official named page finding task
runs.

Track. It is not clear whether or not this is caused
by a fault in our formulation or if it is an artefact of
the data set (documents or queries).

However, when comparing our results, we see that
the feature-based model (indri05Nf) performs the
worst, which is most likely caused by the fact that
we trained on the WT10g named-page finding topics,
which may be inappropriate. During training, the
MRR values achieved were comparable to past state
of the art systems. Further tests are necessary to
determine why it performed so poorly.

The two mixture of language model runs
(indri05Nmp and indri05Nmpsd) performed better
than the feature-based model. In fact, the run that
made use of the dependence model was our best run,
which indicates that term proximity information may
also be important for named page finding, as well.

Since this was our first year taking part in a named
page finding task, we hope to perform a detailed
failure analysis to better understand the strengths
and weaknesses of our approaches. In particular, we
are interested in understanding how to make better
use of document priors and what potential impact
term proximity information, via use of the depen-
dence model, can help for this task.

5 Conclusions

This year we continued to investigate how to effi-
ciently and effectively use the Indri search engine for
retrieval tasks on large scale web collections. Pos-
itive results were obtained using pseudo-relevance
feedback and dependence modeling for the ad hoc
task, while using document structure and link anal-
ysis techniques proved effective for the named page
finding task.

Acknowledgments

This work was supported in part by the Center for
Intelligent Information Retrieval, in part by NSF
grant #CNS-0454018, in part by Advanced Research
and Development Activity and NSF grant #CCF-
0205575, and in part by NSF grant #IIS-0527159.
Any opinions, findings and conclusions or recommen-
dations expressed in this material are the author(s)
and do not necessarily reflect those of the sponsor.

References

[1] James P. Callan, W. Bruce Croft, and
Stephen M. Harding. The INQUERY retrieval
system. In Proceedings of DEXA-92, pages 78–
83, 1992.

[2] Charles Clarke, Gordon Cormack, and Forbes
Burkowski. Shortest substring ranking (multi-
text experiments for trec-4). In Proceedings of
the TREC-4, 1995.

[3] W. Bruce Croft and John Lafferty. Language
Modeling for Information Retrieval. Kluwer
Academic Publishers, 2003.

[4] Wessel Kraaij, Thijs Westerveld, and Djoerd
Hiemstra. The importance of prior probabilities
for entry page search. In Proceedings of SIGIR
2002, pages 27–34, 2002.

[5] Victor Lavrenko and W. Bruce Croft. Relevance-
based language models. In Proceedings of SIGIR
2001, pages 120–127, 2001.

[6] Donald Metzler and W. Bruce Croft. Combin-
ing the language model and inference network
approaches to retrieval. Information Processing
and Management, 40(5):735–750, 2004.

[7] Donald Metzler and W. Bruce Croft. A markov
random field model for term dependencies. In
Proceedings of SIGIR 2005, pages 472–479, 2005.

[8] Donald Metzler, Trevor Strohman, Howard Tur-
tle, and W. Bruce Croft. Indri at trec 2004: Ter-
abyte track. In Proceedings TREC 2004, 2004.

[9] Ramesh Nallapati. Discriminative models for
information retrieval. In Proceedings of SIGIR
2004, pages 64–71, 2004.

[10] Paul Ogilvie and James P. Callan. Experiments
using the lemur toolkit. In Text REtrieval Con-
ference, 2001.

[11] Paul Ogilvie and Jamie Callan. Combining doc-
ument representations for known-item search. In
Proceedings SIGIR 2003, pages 143–150, 2003.

[12] Trevor Strohman. Dynamic collections in indri.
Technical report, Center for Intelligent Informa-
tion Retrieval, 2005.

[13] Trevor Strohman, Donald Metzler, Howard Tur-
tle, and W. B. Croft. Indri: A language model-
based serach engine for complex queries. In Pro-
ceedings of the International Conference on In-
telligence Analysis, 2004.

[14] Trevor Strohman, Howard Turtle, and W. Bruce
Croft. Optimization strategies for complex
queries. In Proceedings of SIGIR 2005, pages
219–225, 2005.

[15] Howard Turtle and W. Bruce Croft. Evalu-
ation of an inference network-based retrieval
model. ACM Transactions on Information Sys-
tems, 9(3):187–222, 1991.

[16] Yun Zhou and W. Bruce Croft. Document qual-
ity models for web ad hoc retrieval. In Proceed-
ings of CIKM 2005 (to appear), 2005.

[17] X. Zhu and S. Gauch. Incorporating quality met-
rics in centralized/distributed information re-
trieval on the world wide web. In Proceedings
of SIGIR 2000, pages 288–295, 2000.

