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Abstract

Complex tasks in speech and language processing often include random
variables with large state spaces, both in speech tasks thatinvolve pre-
dicting words and phonemes, and in joint processing of pipelined sys-
tems, in which the state space can be the labeling of an entiresequence.
In large state spaces, however, discriminative training can be expen-
sive, because it often requires many calls to forward-backward. Beam
search is a standard heuristic for controlling complexity during Viterbi
decoding, but during forward-backward, standard beam heuristics can
be dangerous, as they can make training unstable. We introducesparse
forward-backward, a variational perspective on beam methods that uses
an approximating mixture of Kronecker delta functions. This motivates
a novelminimum-divergence beam criterion based on minimizing KL di-
vergence between the respective marginal distributions. Our beam selec-
tion approach is not only more efficient for Viterbi decoding, but also
more stable within sparse forward-backward training. For astandard
text-to-speech problem, we reduce CRF training time fourfold—from
over a day to six hours—with no loss in accuracy.

1 Introduction

Complex tasks in speech and language processing often include random variables with
large state spaces. Training such models can be expensive, even for linear chains, because
standard estimation techniques, such as expectation maximization and conditional maxi-
mum likelihood, often require repeatedly running foward-backward over the training set,
which requires quadratic time in the number of states. During Viterbi decoding, a standard
technique to address this problem isbeam search, that is, ignoring variable configurations
whose estimated max-marginal is sufficiently low. For sum-product inference methods
such as forward-backward, beam methods can be dangerous, however, because standard
beam selection criteria can inappropriately discard probability mass in a way that makes
training unstable.

In this paper, we introduce a perspective on beam search thatmotivates its use within sum-
product inference. In particular, we cast beam search as a variational procedure that approx-
imates a distribution with a large state space by a mixture ofmany fewer Kronecker delta
functions. This motivatessparse forward-backward, a novel message-passing algorithm in
which after each message pass, approximate marginal potentials are compressed after each



pass. Essentially, this extends beam search from max-product inference to sum-product.
Our perspective also motivates theminimum-divergence beam, a new beam criterion that
selects a compressed marginal distribution with a fixed Kullback-Leibler (KL) divergence
of the true marginal. Not only does this criterion perform better than standard beam crite-
ria for Viterbi decoding, it iteracts more stably with training. On one real-world task, the
NetTalk text-to-speech data set [5], we can now train a conditional random field (CRF) in
about 6 hours for which training previously required over a day, with no loss in accuracy.

2 Sparse Forward-Backward

Standard beam search can be viewed as maintaining sparselocal marginal distributions
such that together they are as close as possible to a large distribution. In this section,
we formalize this intuition using a variational argument, which motivates our new beam
criterion for sparse forward-backward.

Consider a discrete distributionp(y), wherey is assumed to have very many possible con-
figurations. We approximatep by a sparse distributionq, which we write as a mixture of
Kronecker delta functions:

q(y) =
∑

i∈I

qiδi(y), (1)

whereI = {i1, . . . , ik} is the set of indicesi such thatq(y = i) is non-zero, andδi(y) = 1
if y = i. We refer to the setI asthe beam.

Consider the problem of finding the distributionq(y) of smallest weight such that
KL(q‖p) ≤ ǫ. First, suppose the setI = {i1, . . . , ik} is fixed in advance, and we wish
to choose the probabilitiesqi to minimize KL(q‖p). Then the optimal choice is simply
qi = pi/

∑

i∈I pi, a result which can be verified using Lagrange multipliers onthe normal-
ization constraint ofq.

Second, suppose we wish to determine the set of indicesI of a fixed sizek which minimize
KL(q‖p). Then the optimal choice is whenI = {i1, . . . , ik} consists of the indices of
the largestk values of the discrete distributionp. First, defineZ(I) =

∑

i∈I pi, then the
optimal approximating distribution is:

arg min
q

KL(q‖p) = arg min
I

{

arg min
{qi}

∑

i∈I

qi log
qi

pi

}

(2)

= arg min
I

{

∑

i∈I

pi

Z(I)
log

pi/Z(I)

pi

}

(3)

= arg max
I

{

log Z(I)
}

(4)

That is, the optimal choice of indices is the one that retainsmost probability mass. This
means that it is straightforward to find the discrete distribution q of minimal weight such
that KL(q||p) ≤ ǫ. We can sort the elements of the probability vectorp, truncate after
log Z(I) exceeds−ǫ, and renormalize to obtainq.

To apply these ideas to forward-backward, essentially we compress the marginal beliefs
after every message pass. We call this methodsparse forward-backward, which we define
as follows. Consider a linear-chain probability distribution p(y,x) ∝

∏

t Ψt(yt, yt−1,x),
such as an hidden Markov model (HMM) or conditional random field (CRF). Letαt(i)
denote the forward messages,βt(i) the backward messages, andγt(i) = αt(i)βt(i) be the
computed marginals. Then the sparse forward recursion is:

1. Pass the message in the standard way:

αt(j)←
∑

i

Ψt(i, j,x)αt−1(i) (5)



2. Compute the new dense beliefγt as
γt(j) ∝ αt(j)βt(j) (6)

3. Compress into a sparse beliefγ′(j), maintaining KL(γ′‖γ) ≤ ǫ. That is, sort the
elements ofγ and truncate afterlog Z(I) exceeds−ǫ. Call the resulting beamIt.

4. Compressαt(j) to respect the new beamIt.

The backward recursion is defined similarly. Note that in every compression operation,
the beamIt is recomputed from scratch; therefore, during the backwardpass, variable
configurations can both leave and enter the beam on the basis of backward information.
Just as in standard forward-backward, it can be shown by recursion that the sum of final
alphas yields the mass of the beam. That is, ifI is the set of all state sequences in the beam,
then

∑

j aT (j) =
∑

y∈I

∏

t Ψt(yt, yt−1,x). Therefore, because backward revisions to the
beam do not decrease the local sum of betas, they do not damagethe quality of the global
beam over sequences.

The criterion in step 3 for selecting the beam is novel, and wecall it the miniumum-
divergence criterion. Alternatively, we could take the topN states, or all states within
a threshold. In the next section we will compare to these alternate criteria.

Finally, we discuss a few practical considerations. We havefound improved results by
adding a minimum belief size constraintK, which prevents a belief stateγ′

t(j) from being
compressed belowK non-zero entries. Also, we have found that the minimum-divergence
criterion usually finds a good beam after a single forward pass. Minimizing the number of
passes is desirable, because if finding a good beam requires many forward and backward
passes, one may as well do exact forward-backward.

3 Results and Analysis

In this section we evaluate sparse forward-backward for both max-product and sum-product
inference in HMMs and CRFs and the well known NetTalk text-to-speech dataset [5] which
contains 20,008 English words. The task is to produce the proper phones given a string of
letters as input.

3.1 Decoding Experiments

In this section we compare the our minimum-divergencecriterion to traditional beam search
criteria during Viterbi decoding. We generate synthetic data from an HMM of length75.
Transition matrix entries are sampled from a Dirichlet withevery αj = .1. Emission
matrices are generated from a mixture of two distributions:(a) a low entropy, sparse con-
ditional distribution with10 non-zero elements and (b) a high entropy Dirichlet with every
αj = 104, with mixture weights of.75 and .25 respectively. The goal is to simulate a
regime where most states are highly informative about theirdestination, but a few are less
informative. We compared three beam criteria: (1) a fixed beam size, (2) an adaptive beam
where message entries are retained if their log score is within a fixed threshold of the best
so far, and (3) our minimum-divergence criterion withKL ≤ 0.001 and an additional min-
imum beam size constraint ofK ≥ 4. Our minimum-divergence criterion finds the exact
Viterbi path an average only9.6 states per variable. On the other hand, the fixed beam re-
quires between20 and25 states to reads the same accuracy, and the simple threshold beam
requires30.4 states per variable. We have similar results on the NetTalk data (omitted due
to space).

3.2 Training Experiments

In this section, we present results showing that sparse forward-backward can be embedded
within CRF training, yielding significant speedups in training time with no loss in testing
performance.
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Figure 1:Comparison of sparse forward-backward methods for CRF training on both synthetic data
(left) and on the NetTalk data set (right). Both graphs plot log likelihood on the training data as
a function of training time. In both cases, sparse forward-backward performs equivalently to exact
training on both training and test accuracy using only a quarter of the training time.

First, we train CRFs using synthetic data generated from a100 state HMM in the same
manner as in the previous section. We use50 sequences for training and50 sequences for
testing. In all cases we use exact Viterbi decoding to compute testing accuracy. We compare
five different methods for discarding probability mass: (1)the minimum-divergence beam
with KL ≤ 0.5 and minimum beam sizeK ≥ 30 (2) a fixed beam of sizeK = 30,
(3) a fixed beam whose size was the average size used by the minimum-divergence beam,
(4) a threshold based beam which explores on average the samenumber of states as the
minimum-divergence beam, and (5) exact forward backward. Learning curves are shown
in Figure 1(a).

Compared to exact training, sparse forward-backward uses one-fourth of the time of exact
training with no loss in accuracy. Also, we find it is important for the beam to be adaptive,
by comparing to the fixed beam whose size is the average numberof states used by our
minimum-divergence criterion. Although minimum divergence and the fixed beam con-
verge to the same solution, minimum divergence finishes faster, indicating that the adaptive
beam does help training time. Most of the benefit occurs laterin training, as the model
becomes farther from uniform.

In the case of the smaller, fixed beam of sizeN , our L-BFGS optimizer terminated with
an error as a result of the noisy gradient computation. In thecase of the threshold beam,
the likelihood gradients were erratic, but L-BFGS did terminate normally. However the
recognition accuracy of the final model was low, at67.1%.

Finally, we present results from training on the real-worldNetTalk data set. In Figure
1(b) we present run time, model likelihood and accuracy results for a52 state CRF for the
NetTalk problem that was optimized using 19075 examples andtested using 934 examples.
For the minimum divergence beam, we set the divergence threshold ǫ = .005 and the
minimum beam sizeK ≥ 10. We initialize the CRF parameters using a subset of12%
of the data, before training on the full data until convergence. We used the beam methods
during the complete training run and during this initialization period.

During the complete training run, the threshold beam gradient estimates were so noisy that
our L-BFGS optimizer was unable to take a complete step. Exact forward backward train-
ing produced a test set accuracy of91.6%. Training using the larger fixed beam (N = 20)
terminated normally but very noisy intermediate gradientswere found in the terminating
iteration. The result was a much lower accuracy of85.7%. In contrast, the minimum diver-



gence beam achieved an accuracy of91.7% in less than25% of the time it took to exactly
train the CRF using forward-backward.

4 Related Work

Related to our work is zero-compression in junction trees [3], described in [2], which con-
siders every potential in a clique tree, and sets the smallest potential values to zero, with the
constraint that the total mass of the potential does not fallbelow a fixed valueδ. In contrast
to our work, they prune the model’s potentials once before performing inference, whereas
we dynamically prune the beliefs during inference, and indeed the beam can change during
inference as new information arrives from other parts of themodel. Also, Jordan et al.
[4], in their work on hidden Markov decision trees, introduce a variational algorithm that
uses a delta on a single best state sequence, but they provideno experimental evaluation of
this technique. In computer vision, Coughlan and Ferreira [1] have used a belief pruning
method within belief propagation for loopy models which is very similar to our threshold
beam baseline.

5 Conclusions

We have presented a principled method for significantly speeding up decoding and learning
tasks in HMMs and CRFs. We also have presented experimental work demonstrating the
utility of our approach. As future work, we believe a promising avenue of exploration
would be to explore adaptive strategies involving interaction of our L-BFGS optimizer,
detecting excessively noisy gradients and automatically settingǫ values. While results here
were only with linear-chain models, we believe this approach should be more generally
applicable. For example, in pipelines of NLP tasks, it is often better to pass lattices of
predictions rather than single-best predictions, in orderto preserve uncertainty between the
tasks. For such systems, the current work has implications for how to select the lattice
size, and how to pass informationbackwards through the pipeline, so that higher-level
information from later tasks can improve performance on earlier tasks.
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