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Abstract

Recent work in statistical topic models has investi-
gated richer structures to capture either temporal or
inter-topic correlations. This paper introduces a topic
model that combines the advantages of two recently
proposed models: (1) The Pachinko Allocation model
(PAM), which captures arbitrary topic correlations with
a directed acyclic graph (DAG), and (2) the Topics
over Time model (TOT), which captures time-localized
shifts in topic prevalence with a continuous distribution
over timestamps. Our model can thus capture not only
temporal patterns in individual topics, but also the tem-
poral patterns in their co-occurrences. We present re-
sults on a research paper corpus, showing interesting
correlations among topics and their changes over time.

Introduction
The increasing amount of data on the Web has heightened
demand for methods that extract structured information from
unstructured text. A recent study shows that there were
over 11.5 billion pages on the world wide web as of Jan-
uary 2005 (Gulli & Signorini 2005), mostly in unstructured
data. Lately, studies in information extraction and synthe-
sis have led to more advanced techniques to automatically
organize raw data into structured forms. For example, the
Automatic Content Extraction (ACE) program1 has added
a new Event Detection and Characterization (EDC) task.
Compared to entity and relation extraction, EDC extracts
more complex structures that involve many named entities
and multi-relations.

While ACE-style techniques provide detailed structures,
they are also brittle. State-of-the-art named entity recogni-
tion and relation extraction techniques are both errorful, and
when combined, yield even lower accuracies for event ex-
traction. Furthermore, they require significant amount of la-
beled training data. In this paper, we explore an alternative
approach that models topical events. Instead of extracting
individual entities and relations for specific events, we cap-
ture the rise and fall of themes, ideas and their co-occurrence
patterns over time. Similar to Topic Detection and Tracking
(TDT) (Allan et al. 1998), which extracts related contents
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from a stream of newswire stories, we discover topics from
documents and study their changes over time. While this ap-
proach is less detailed and structured, it is more robust and
does not require supervised training. In addition to provid-
ing a coarse-grained view of events in time, these models
could also be used as a filter, or as an input to later, more
detailed traditional processing methods.

Statistical topic models such as Latent Dirichlet alloca-
tion (LDA) (Blei, Ng, & Jordan 2003) have been shown
to be effective tools in topic extraction and analysis. Al-
though these models do not capture the dynamic properties
of topics, many of the large data sets to which they are ap-
plied are often collected over time. Topics rise and fall in
prominence; they split apart; they merge to form new topics;
words change their correlations. More importantly, topic co-
occurrences also change significantly over time, and time-
sensitive patterns can be learned from them as well.

Some previous work has performed post-hoc analysis to
study the dynamical behaviors of topics—discovering topics
without the use of timestamps and then projecting their oc-
currence counts into discretized time (Griffiths & Steyvers
2004)— but this misses the opportunity for time to improve
topic discovery. A more systematic approach is the state
transition based methods (Blei & Lafferty 2006) using the
Markov assumption. Recently, we proposed a simple new
topics over time (TOT) model to use temporal information
in topic models (Wang & McCallum 2006) which represents
timestamps of documents as observed continuous variables.
A significant difference between TOT and previous work
with similar goals is that TOT does not discretize time and
does not make Markov assumptions over state transitions in
time. Each topic is associated with a continuous distribution
over time, and topics are responsible for generating both ob-
served timestamps as well as words.

To generate the words in a document, TOT follows the
same procedure as Latent Dirichlet Allocation (LDA) (Blei,
Ng, & Jordan 2003). Each document is represented as a
mixture of topics and each topic is a multinomial distribu-
tion over a word vocabulary. The mixture components in the
documents are sampled from a single Dirichlet distribution.
Therefore, TOT focuses on modeling individual topics and
their changes over time.

However, in real-world text data, topics are often corre-
lated. That is, some topics are more likely to co-occur than



others. In order to model this correlation, we have recently
inrtoduced the Pachinko Allocation model (PAM), an exten-
sion to LDA that assumes a directed acyclic graph (DAG) to
capture arbitrary topic correlations. Each leaf in the DAG is
associated with a word in the vocabulary, and each interior
node represents a correlation among its children, which are
either leaves or other interior nodes. Therefore, PAM cap-
tures not only correlations among words like LDA, and also
correlations among topic themselves. For each topic, PAM
parameterizes a Dirichlet distribution over its children.

Although PAM captures topic correlations, and TOT cap-
tures the distribution of topics over time, neither captures the
phenomena that the correlation among topics evolves over
time. In this paper, we combine PAM and TOT to model
the temporal aspects and dynamic correlations of extracted
topics from large text collections. To generate a document,
we first draw a multinomial distribution from each Dirichlet
associated with the topics. Then for each word in the doc-
ument, we sample a topic path in the DAG based on these
multinomials. Each topic on the path generates a times-
tamp for this word based on a per-topic Beta distribution
over time.

With this combined approach, we can discover not only
how topics are correlated, but also when such correlations
occur or disappear. In contrast to other work that models
trajectories of individual topics over time, PAMTOT topics
and their meanings are modeled as constant. PAMTOT cap-
tures the changes in topic co-occurrences, not the changes in
the word distribution of each topic.

The Model
In this section, we first present the Pachinko allocation
model (PAM) which captures individual topics and their cor-
relations from a static point of view. Then we introduce a
combined approach of PAM and topics over time (TOT) for
modeling the evolution of topics. We are especially inter-
ested in the timelines of topic correlations. While PAM al-
lows arbitrary DAGs, we will focus on a special four-level
hierarchical structure and describe the corresponding infer-
ence algorithm and parameter estimation method.

Pachinko Allocation Model
The notation for the Pachinko allocation model is summa-
rized below.
V = {x1, x2, ..., xv}: a word vocabulary.
S = {y1, y2, ..., ys}: a set of topic nodes. Each of them

captures some correlation among words or topics. Note that
there is a special node called the rootr. It has no incoming
links and every topic path starts from it.
D: a DAG that consists of nodes inV andS. The topic

nodes occupy the interior levels and the leaves are words.
G = {g1(α1), g2(α2), ..., gs(αs)}: gi, parameterized by

αi, is a Dirichlet distribution associated with topicyi. αi is
a vector with the same dimension as the number of children
in yi, specifying the correlation among them.

To generate a documentd, we follow a two-step process:

1. Sampleθ(d)y1 , θ(d)y2 , ..., θ(d)ys from g1(α1), g2(α2), ...,

gs(αs), whereθ(d)yi is a multinomial distribution of topic

yi over its children.

2. For each wordw in the document,

• Sample a topic pathzw of Lw topics : <
zw1, zw2, ..., zwLw >. zw1 is always the root andzw2

throughzwLw are topic nodes inS. zwi is a child of
zw(i−1) and it is sampled from the multinomial distri-

butionθ(d)zw(i−1) .

• Sample wordw from θ
(d)
zwLw

.

Following this process, the joint probability of generating
a documentd, the topic assignmentsz(d) and the multino-
mial distributionsθ(d) is

P (d, z(d), θ(d)|α) =
s∏
i=1

P (θ(d)yi
|αi)

×
∏
w

(
Lw∏
i=2

P (zwi|θ(d)zw(i−1)
)P (w|θ(d)zwLw

))

Combining PAM and TOT
Now we introduce a combined approach of PAM and top-
ics over time (TOT), which captures the evolution of top-
ics and their correlations. Each document is associated with
one timestamp, but for the convenience of inference (Wang
& McCallum 2006), we consider it to be shared by all the
words in the document. In order to generate both words and
their timestamps, we modify the generative process in PAM
as follows. For each wordw in a documentd, we still sam-
ple a topic pathzw based on multinomial distributionsθ(d)y1 ,

θ
(d)
y2 , ..., θ(d)ys . Simultaneously, we also sample a timestamp
twi from each topiczwi on the path based on the correspond-
ing Beta distribution Beta(ψzwi

), whereψz is the parameters
of the Beta distribution for topicz.

Now the joint probability of generating a documentd, the
topic assignmentsz(d), the timestampst(d) and the multino-
mial distributionsθ(d) is

P (d, z(d), t(d), θ(d)|α,Ψ) =
s∏
i=1

P (θ(d)yi
|αi)×

∏
w

(
Lw∏
i=1

P (twi|ψzwi
)
Lw∏
i=2

P (zwi|θ(d)zw(i−1)
)P (w|θ(d)zwLw

))

Integrating outθ(d) and summing overz(d), we get the
marginal probability of a document and its timestamps as:

P (d, t(d)|α,Ψ) =
∫ s∏

i=1

P (θ(d)yi
|αi)×

∏
w

(
∑
zw

Lw∏
i=1

P (twi|ψzwi)
Lw∏
i=2

P (zwi|θ(d)zw(i−1)
)P (w|θ(d)zwLw

))dθ(d)

Finally, the probability of generating a corpus with times-
tamps is the product of the probability for every document:

P (D,T|α,Ψ) =
∏
d

P (d, t(d)|α,Ψ)
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Figure 1: Graphical model for four-level PAMTOT. The dot-
ted lines describe how to sample timestamps from topics,
while the solid lines correspond to PAM without time.

Based on the above generative process, each word is as-
sociated with multiple timestamps sampled from different
topics. When fitting our model, each training document’s
timestamp is shared by all the words in the document. But
after fitting, if it actually runs as a generative model, this pro-
cess would generate different timestamps for every word.

Four-Level PAMTOT
While PAM allows arbitrary DAGs to model the topic cor-
relations, in this paper, we focus on one special structure in
our experiments. It is a four-level hierarchy consisting of
one root topic,s2 topics at the second level,s3 topics at the
third level and words at the bottom. We call the topics at the
second level super-topics and the ones at the third level sub-
topics. The root is connected to all super-topics, super-topics
are fully connected to sub-topics and sub-topics are fully
connected to words. We also make a simplification similar
to LDA; i.e., the multinomial distributions for sub-topics are
sampled once for the whole corpus, from a single Dirichlet
distributiong(β). The multinomials for the root and super-
topics are still sampled individually for each document. In
comparison to LDA, this special setting of PAM has one ad-
ditional layer of super-topics modeled with Dirichlet distri-
butions, which is the key component to capturing topic cor-
relations in this model. We present the graphical model in
Figure 1. Since the root is fixed, we only show the variables
for super-topics and sub-topics.

Inference and Parameter Estimation
The hidden variables in PAMTOT include the sampled
multinomial distributionsθ and topic assignmentsz. In ad-
dition, we need to learn the parameters in the Dirichlet dis-
tributionsα = {α1, α2, ..., αs} and the Beta distributions
Ψ = {ψ1, ψ2, ..., ψs}. We could employ the Expectation-
Maximization (EM) algorithm for inference, which is often
used to estimate parameters for models with hidden vari-
ables. However, EM has been shown to perform poorly for
topic models, as they have many local maxima.

Instead, we apply Gibbs Sampling to perform approxi-
mate inference and parameter estimation. For an arbitrary
DAG, we need to sample a topic path for each word given

other variable assignments enumerating all possible paths
and calculating their conditional probabilities. In our special
four-level PAMTOT structure, each topic path contains the
root, a super-topic and a sub-topic. Since the root is fixed,
we only need to jointly sample the super-topic and sub-topic
assignments for each word, based on their conditional prob-
abilities given observations and other assignments, and hav-
ing integrated out the multinomial distributionsθ. The fol-
lowing equation shows the joint probability of a super-topic
and a sub-topic. For wordw in documentd, we have:

P (zw2 = yk, zw3 = yp|D,T, z−w, α, β,Ψ) ∝

n
(d)
1k + α1k

n
(d)
1 +

∑
k′ α1k′

×
n

(d)
kp + αkp

n
(d)
k +

∑
p′ αkp′

× npw + βw
np +

∑
m βm

× (1− tw2)ψk1−1tψk2−1
w2

B(ψk1, ψk2)
× (1− tw3)ψp1−1t

ψp2−1
w3

B(ψp1, ψp2)

We assume that the root topic isy1. zw2 andzw3 corre-
spond to super-topic and sub-topic assignments respectively.
z−w is the topic assignments for all other words. Excluding
the current token,n(d)

i is the number of occurrences of topic

yi in documentd; n(d)
ij is the number of times topicyij is

sampled from its parentyi in documentd; ni is the num-
ber of occurrences of sub-topicyi in the whole corpus and
niw is the number of occurrences of wordw in sub-topic
yi. Furthermore,αij is thejth component inαi. βw is the
component for wordw in β. ψi1 andψi2 are the two param-
eters in the Beta distribution of topicyi. B(a, b) is the Beta
function.

Note that in the Gibbs sampling equation, we assume that
the Dirichlet parametersα and the Beta parametersΨ are
given. Since they capture different topic correlations and
different distributions over time, we cannot assume uniform
distributions for them, and instead, we need to learn these
parameters from the data during Gibbs sampling, e.g., us-
ing maximum likelihood or EM. However, since there are
no closed-form solutions for these methods and we wish to
avoid iterative methods for the sake of simplicity and speed,
we estimate them by the method of moments.

Related Work
Several studies have examined topics and their changes
across time. Rather than jointly modeling word co-
occurrence and time, many of these methods simply use
post-hoc or pre-discretized analysis (Griffiths & Steyvers
2004; Wang, Mohanty, & McCallum 2005; Songet al.
2005).

More recently, time series analysis rooted models have
become popular, many of which are based on dynamic mod-
els, with a Markov assumption that the state at timet + 1
or t + ∆t is independent of all other history given the
state at timet. Hidden Markov models and Kalman fil-
ters are two such examples. For instance, Blei and Lafferty
(2006) present Dynamic Topic Model (DTM) in which the
alignment among topics across time steps is modeled by a
Kalman filter on the Gaussian distribution in the logistic nor-
mal distribution (Blei & Lafferty 2006). This approach is



Speech Recognition SR and Knowledge Rep. Machine Translation MT and Ontology

speech speech knowledge language language semantic

word word process translation translation ontology

words words domain natural natural description

corpus corpus case english english xml

statistical statistical conceptual machine machine ontologies

part part processes languages languages rdf

semantic semantic concepts sentence sentence documents

context context base sentences sentences schema

recognition recognition construction target target annotation

automatic automatic categories source source concepts

speech speech knowledge language language semantic

spoken spoken database natural natural ontology

recognition recognition databases translation translation description

speaker speaker domain processing processing annotation

adaptation adaptation sources sentence sentence concepts

vocabulary vocabulary discovery linguistic linguistic ontologies

dependent dependent base generation generation rdf

acoustic acoustic conceptual machine machine terms

items items relational syntactic syntactic descriptions

short short large languages languages semantics

Figure 2: Two examples discovered by PAMTOT (above) and PAM (bottom) from the Rexa dataset. Each example consists of a
sub-topic and a super-topic. The titles are our own interpretation of the topics. Histograms show how the topics are distributed
over time; the fitted Beta PDFs is shown also. (For PAM, Beta distributions are fit in a post-hoc fashion). For sub-topics, we
list the top words below the histograms. For super-topics, we list the top words for their child topics.

quite different from PAMTOT. First, it employs a Markov
assumption over time; second, it is based on the view that
the “meaning” (or word associations) of a topic changes over
time.

Another Markov model that aims to find word patterns
in time is Kleinberg’s “burst of activity model” (Klein-
berg 2002). This approach uses an infinite-state automa-
ton with a particular state structure in which high activity
states are reachable only by passing through lower activity
states. Rather than leveraging time stamps, it operates on
a stream of data, using data ordering as a proxy for time.
Its infinite-state probabilistic automaton has a continuous
transition scheme similar to Continuous Time Bayesian Net-
works (CTBNs) (Nodelman, Shelton, & Koller 2002). How-
ever, it operates only on one word at a time, whereas the
PAMTOT model finds time-localized patterns in wordco-
occurrences.

Like TOT, PAMTOT uses time quite differently than the

above models. First, PAMTOT does not employ a Markov
assumption over time, but instead treats time as an observed
continuous variable. Second, many other models take the
view that the “meaning” (or word associations) of a topic
changes over time; instead, in PAMTOT we can rely on top-
ics themselves asconstant, while topic co-occurrence pat-
terns change over time.

Although not modeling time, several other topic models
have associated the generation of additional modalities with
topics. E.g., the aforementioned Group-Topic (GT) model
(Wang, Mohanty, & McCallum 2005) conditions on topics
for both word generation and relational links. As in TOT and
PAMTOT, GT results also show that jointly modeling an ad-
ditional modality improves the relevance of the discovered
topics. Another flexible, related model is the Mixed Mem-
bership model (Erosheva, Fienberg, & Lafferty 2004), which
treats the citations of papers asadditional “words”, thus the
formed topics are influenced by both words and citations.



Genetic Algorithms GA and Neural Networks GA and SVM

genetic genetic network genetic kernel

optimization optimization networks optimization vector

evolutionary evolutionary neural evolutionary support

problems problems input problems online

algorithms algorithms output algorithms svm

population population hidden population music

evolution evolution units evolution principal

fitness fitness inputs fitness pca

ga ga layer ga semi

global global training global profiles

genetic genetic network genetic classification

evolutionary evolutionary networks evolutionary training

evolution evolution neural evolution classifier

population population input population classifiers

ga ga training ga vector

fitness fitness abstract fitness set

selection selection layer selection multiple

mutation mutation architecture mutation svm

crossover crossover units crossover support

operators operators inputs operators binary

Figure 3: Another example showing a pattern discovered by PAMTOT. The first column is a sub-topic and the other two
columns correspond to two parent super-topics that capture its correlations with other topics.

Experimental Results
In this section, we present example topics discovered by the
PAMTOT model, focusing on the interesting patterns in the
evolution of topics and their correlations.

The dataset we use in our experiments comes from Rexa,
a search engine over research papers. Rexa has a large col-
lection of papers from a wide range of research areas. We
choose a subset of paper titles and abstracts that are mostly
about machine learning and natural language processing.
Then from this subset, we randomly draw 4454 documents
spanning from the years 1991 to 2005. For each of the
15 years, there are exactly 300 documents except 1991, for
which there were only 254 machine learning documents in
the corpus. The overall distribution is therefore close to uni-
form. After down-casing and removing stopwords, we ob-
tain a total set of 372936 tokens and 21748 unique words.

In our experiments, we use a fixed four-level hierarchical
structure that includes a root, 50 super-topics, 100 sub-topics
and a word vocabulary. For the root, we assume a fixed
Dirichlet distribution with parameter 0.01. We can change

this parameter to adjust the variance in the sampled multino-
mial distributions. We choose a small value so that the vari-
ance is high and each document contains only a small num-
ber of super-topics, which tends to make the super-topics
more interpretable. We treat the sub-topics in the same way
as LDA, i.e., assume they are sampled once for the whole
corpus from a given Dirichlet with parameter 0.01. So the
only parameters we need to learn are the Dirichlet param-
eters for the super-topics and the Beta parameters for both
super-topics and sub-topics.

We show two example trends in Figure 2. Each column
corresponds to one sub-topic or super-topic. The titles are
our own interpretation of the topics. The Beta distributions
over time and their actual histograms over time are displayed
in the graphs. We also list the 10 most likely words for each
sub-topic and the highly correlated children of each super-
topic. As a comparison, we also show their most similar
PAM topics at the bottom, decided by KL-divergence. The
time analysis for PAM topics is done post-hoc.

The first column in Figure 2 demonstrates how the sub-



Table 1: Errors and accuracies of time (publishing year) pre-
dictions for PAMTOT

L1 Error E(L1) Accuracy
PAMTOT 1.56 1.57 0.29
PAM 5.34 5.30 0.10

topic “Speech Recognition” changes over time. As we can
see, this topic has a relatively smooth distribution between
year 1991 and 2005. More interestingly, as shown in the
second column, a super-topic that captures the correlation
between “Speech Recognition” and another topic “Knowl-
edge Representation” has more dramatic changes in the fre-
quency. These two topics are well connected before 1994
and the correlation gradually ceases after 1998. Our under-
standing is that other techniques for speech recognition have
become more popular than knowledge-based approaches. At
the bottom of these two columns, we show the correspond-
ing sub-topic and super-topic discovered by PAM without
time information. While the time distribution of “Speech
Recognition” remains almost the same, PAM alone cannot
discover the correlation pattern between these two topics.

The two columns on the right show another example.
“Machine Translation” has been a popular topic over the en-
tire time period. On the other hand, “Ontologies” is a rela-
tively new subject. We see increasing correlation between
them from year 2000. Again, without time information,
PAM does not pick up this trend clearly.

Figure 3 shows another pattern that becomes clearer when
we analyze two super-topics at the same time. The first
column corresponds to the sub-topic “Genetic Algorithms”.
Its frequency has been slowly decreasing from year 1991
to 2005. Its connection with other topics are more local-
ized in time. As shown by the second and third columns, it
co-occurs more often with “Neural Networks” around 1996,
and from 2000, the focus has shifted to other topics like
“Support Vector Machines”. This pattern reflects the pop-
ularities of these techniques in different years. We cannot
capture this trend by PAM and post-hoc analysis of time. As
the graphs at the bottom show, we can only see slight de-
crease of the correlation between “Genetic Algorithms” and
“Neural Networks” over the years, and also the connection
with “Support Vector Machines” has too much noise to ex-
hibit any interesting pattern over time.

One interesting feature of our approach (and one not
shared by state-transition-based Markov models of topical
shifts) is the capability of predicting the timestamp given the
words in a document. This task also provides another oppor-
tunity to quantitatively compare PAMTOT against PAM.

On the Rexa dataset, we measure the ability to predict
the publishing year given the text of the abstract of a paper,
as measured in accuracy, L1 error (the difference between
predicted and true years) and expected L1 distance to the
correct year (average differences between all years and true
year). As shown in Table 1, PAMTOT achieves almost triple
the accuracy of PAM, and provides an L1 relative error re-
duction of 70%.

Conclusions
This paper has presented an approach combining the
Pachinko allocation model and topics over time that jointly
captures topic correlations and identifies their localization
in time. We have applied this model to a large corpus of
research papers and discovered interesting patterns in the
evolution of topics and the connections among them. We
also show improved ability to predict time given a docu-
ment. Unlike some related work with similar motivations,
PAMTOT does not require discretization in time or Markov
assumptions on state dynamics. The relative simplicity pro-
vides advantages for future extensions to model more com-
plex structures among not only topics, but other related in-
formation as well.
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