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Abstract

Most offline handwriting recognition approaches pro-
ceed by segmenting words into smaller pieces (usually
characters) which are recognized separately. The recog-
nition result of a word is then the composition of the
individually recognized parts. Inspired by results in cogni-
tive psychology, researchers have begun to focus on holistic
word recognition approaches. Here we present a holis-
tic word recognition approach for single-author historical
documents, which is motivated by the fact that for severely
degraded documents a segmentation of words into charac-
ters will produce very poor results. The quality of the orig-
inal documents does not allow us to recognize them with
high accuracy - our goal here is to produce transcrip-
tions that will allow successful retrieval of images, which
has been shown to be feasible even in such noisy environ-
ments.

We believe that this is the first systematic approach to
recognizing words in historical manuscripts with extensive
experiments. Our experiments show a recognition accuracy
of 65%, which exceeds performance of other systems that
operate on non-degraded input images (non historical doc-
uments).

1. Introduction

Despite results from cognitive psychology, which indi-
cate that humans largely recognize wordsholistically when
reading text, much of the handwriting recognition research
has focused onanalyticalcharacter recognition approaches.
In this paradigm, words are broken down into characters (or
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other units), which are then individually recognized to de-
termine the correct word label.

However, this approach requires one to determine the
character boundaries [1], which can only be achieved by
having already recognized the characters. This paradox
has led researchers to consider over-segmentations, mul-
tiple segmentations and other similar strategies to address
the problem. More recently, the holistic approach [10] has
gained in popularity as an attractive and more straightfor-
ward solution. Holistic recognition approaches treat words
as an inseparable unit. No segmentation is performed and
the whole word is recognized at once.

While holistic approaches may be most popular for
their simplicity and their parallels to the human read-
ing apparatus, our approach here is driven by an entirely
different motivation: most handwriting research is con-
ducted on recently acquired data of good quality. There
are, however, documents that are significantly degraded,
e.g. the manuscripts of George Washington at the Li-
brary of Congress, which we used in our experiments (see
Figure1 for an example). Such documents are of great in-
terest to a broad community of researchers, scholars and
the general public. However, their poor quality makes it dif-
ficult to recognize them using the analytical character
recognition approach that employs character segmenta-
tion.

Here we provide an approach to the recognition of whole
words in such collections. A document is described using
a Hidden Markov Model [14], where words to be recog-
nized represent hidden states. The state transition probabili-
ties are estimated from word bigram frequencies. Our obser-
vations are the feature representations of the word images
in the document to be recognized. We use feature vectors of
fixed length, using features ranging from coarse (e.g. word
length) to more detailed descriptions (e.g. word profile).
The collection that was used to train and evaluate the recog-
nition system consists of 20 page images with a total of
4856 words. We believe that this is the first systematic ap-
proach to recognizing words in historical documents.



Our focus is not on producing perfect transcriptions, but
rather on achieving reasonable recognition accuracy, which
enables us to perform retrieval of handwritten pages from
a user-supplied ASCII query. Currently it is not feasible
to produce perfect or even near-perfect recognition results
for document corpora like the George Washington collec-
tion. However, it has been demonstrated [6, 5] that satisfac-
tory retrieval can still be performed in related noisy envi-
ronments such as speech and printed words using the noisy
outputs of recognizers.

An additional application for our model is the automatic
alignment of a transcription with a page like in [18] (e.g. for
training purposes). In this scenario the recognition lexicon
is constrained to that of a supplied transcript, which is also
used to estimate unigram/bigram frequencies. The recogni-
tion output can then be used to align lexicon terms and their
respective location in the page image.

The remainder of this article is organized as follows: the
next section puts our work in context with related work, then
we introduce our holistic word features in section2, fol-
lowed by the description of our recognition model3. Next,
we present our experimental evaluation (section4) and then
conclude the paper in section5.

1.1. Related Work

In recent years, research in handwriting recognition [13]
has advanced to a level that makes commercial applications
(e.g. Tablet PCs) feasible. However, this success has been
mostly limited to theonline handwriting recognition case,
where the pen movements are recorded as a user writes.
Offlinehandwriting recognition, that is, recognition of text
from an image of the writing, has only been successful
in small-vocabulary and highly redundant domains such
as automatic check processing and mail sorting (e.g. [9]).
More recently, the community has started to look at large-
vocabulary tasks [19].

While the recognition output of such systems will not
satisfy a human reader, it can be used for text retrieval. Re-
sults from information retrieval on ASR (automatic speech
recognition) output [5] and OCR (optical character recogni-
tion) output [6] indicate that retrieval performance does not
drop significantly even for 30% word error rates when com-
pared to retrieval performed on undistorted text.

The authors of [10] provide a survey of the holistic
paradigm in human reading and its applications in handwrit-
ten word recognition. They show that holistic word recog-
nition is a viable alternative to the popular analytical (char-
acter segmentation-based) approach to handwriting recog-
nition, and point out parallels in human reading studies.
In particular theword-superiority effect[2], which states
that humans are able to recognize certain words faster than

it takes them to recognize an individual character. This is
strong evidence in favor of a holistic recognition process.

In [11], the authors discuss the application of a Hidden
Markov model for recognizing handwritten material that
was produced specifically for this purpose. First, they asked
a number of subjects to write out a set of pages. To im-
prove the quality of the writing, the subjects were asked
to use rulers and not to split words across lines. Recogni-
tion was performed with a Hidden Markov model with 14
states for each character. These Markov models were con-
catenated to produce word and line models. A statistical lan-
guage model was used to compute bigrams and the authors
showed that this improved the results by about 10%. The
authors showed a recognition rate of about 60% for vocabu-
lary sizes ranging from 2703 to 7719 words. The paper also
contains a discussion of recognition rates obtained by other
researchers - these varied from a recognition rate of 42.5%
for a 525 word vocabulary and 37% for a 966 word vocab-
ulary reported in [12] to a recognition rate of 55.6% in a
1600 word vocabulary reported by [8].

The work in this paper focuses on recognizing historical
handwritten manuscripts using simple HMMs - one state for
each word. We show that results of comparable quality may
be obtained for this problem. Although there is great value
in the preservation of handwritten historical documents, lit-
tle research has been undertaken in this area, presumably
due to the challenges in this domain - which include de-
graded manuscripts with ink bleed and poor scanning qual-
ity. The domain was tackled by [16], who use word spotting
- they form equivalence classes of words by matching them
in pairs. Equivalence classes with certain word frequencies
can then be used for indexing by having a human annotate
them. While this process can provide fast and good-quality
retrieval, the cost for creating equivalence classes is cur-
rently prohibitive for very large collections.

Although [16] allows the retrieval of handwritten docu-
ments based on ASCII queries, the technique makes use of
image matching techniques, rather than attempting to recog-
nize word images. The results in [18] have shown how dif-
ficult this can be: the authors aligned a page of Thomas Jef-
ferson with its manually generated transcript using recog-
nition. To achieve reasonable performance, they had to as-
sume that a manually generated transcript of the page was
available, and they had to restrict the lexicon (to an aver-
age of 13 words). Given these restrictions, the overall align-
ment accuracy was 83%. We note that while the use of a
transcript is a reasonable strategy for the task of alignment,
it is not reasonable when the task is recognition. In the work
here, we assume that the recognizer has no knowledge of the
transcript of the test page and further that the entire vocab-
ulary is used.

All handwriting recognition systems rely on prepro-
cessing routines in order to normalize the variations that



Figure 1: Part of a scanned document from the George Washington collection.

are present even in single-author handwriting. We per-
form slant/skew/baseline normalizations that are com-
monly used in the literature (for example, see [11]). While
some of our features are generally used for the recogni-
tion of handwritten characters [17], we use them to repre-
sent the shape of entire words.

2. Features

Many word images can be distinguished easily by look-
ing at simple holistic features such as the width in pixels.
However, differing word images with the same coarse fea-
tures require a more detailed description in order to distin-
guish between them. Previous work [15, 16] has shown the
value of profile-based features (e.g. projection profiles) for
this task. Consequently, the feature set we use here consists
of a coarse-to-fine range of features.

Our observation model for a given word image describes
its features as being drawn from a state-conditional distri-
bution. In order to easily describe this process, we represent
each word imageIj by a feature vectorfj of fixed length
(D = 27 dimensions). While scalar features such as word
image length can be easily used as a feature vector dimen-
sion in this framework, the profile-based features – which
vary with the width of a word image – have to be turned
into a fixed-length description. This is achieved by using the
low order coefficients from a DFT (Discrete Fourier Trans-
form) of each of the original profile-based features.

Together, the scalar and profile-based features form a
vector of fixed-length for word images of all sizes. In our

experiments, we also normalized the range of each feature
dimension to the unit interval. The entire process of fea-
ture vector generation is illustrated in Figure2. In the fol-
lowing sections, we will first describe the image normaliza-
tions we perform prior to the feature extraction. Then our
feature set is described, starting with the scalar features.

2.1. Image Normalization

One of the major challenges in recognizing handwriting
is its variability. Even in the case of single-author handwrit-
ing, there are differences between the same words written
at different times. We compensate for part of these varia-
tions by normalizing the slant and skew in handwriting.

(a) original image, as segmented from document,

(b) after cleaning and normalization.

Figure 3: Image cleaning and normalization.

Figure3(a)shows an original image, which has been seg-
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Figure 2: Feature generation process.

mented from a document. In the first step, we remove parts
from other words that reach into the bounding box. Then we
estimate and remove slant and skew (cursive angle and incli-
nation of writing). In the last step, the background of the im-
age is set to a constant color and the image is padded in or-
der to move the baseline1 to a predefined location. This en-
sures that all images are divided into two parts of the same
proportions by their respective baselines. Figure3(b)shows
a typical result of these normalization steps.

2.2. Scalar Features

Each of the features described here, can be expressed by
a single number. Part of them have been used previously
(see e.g. [16]) to quickly determine coarse similarity be-
tween word images. For a given image with tight bound-
ing box (no extra space around the word) we extract:

1. the heighth,

2. the widthw,

3. the aspect ratiow/h,

4. the areaw · h, and

5. an estimate of the number of descenders in the word,
i.e., strokes below the baseline (e.g. lower part of ’p’).

6. an estimate of the number of ascenders in the word.

While the aspect ratio and area features are redundant, their
distributions differ from those of the height and width fea-
tures.

2.3. Profile-Based Features

The variable-length features we use, give a much more
detailed view of a word’s shape than single-valued features
can. All of the profile features below have been successfully
used in a whole-word matching approach [16]. Each feature
results from recording a single number per image column

1 The baseline is the imaginary line that people write on.

of the word, thus creating a “time series” (x-axis= time) of
the same length as the width of the image.

(a) projection profile,

(b) upper word profile.

Figure 4: Two of the three utilized profile features. Both fea-
tures were directly extracted from image3(b).

We generate three time series:

1. Projection Profile: Each time series value is the sum
of the pixel intensities in the corresponding image col-
umn (see Figure4(a)for an example).

2. Upper Word Profile: Each value is the distance from
the top of the word’s bounding box to the first “ink”
pixel in the corresponding image column (see Figure
4(b)).

3. Lower Word Profile: The same as the upper word pro-
file, but the distance is measured from the bottom of
the image bounding box.

The quality of these features strongly depends on good nor-
malization, as detailed in section2.1. For example, slant can
affect the visibility of parts of words in terms of the word
profile features (e.g. the ’l’ leaning over the ’e’ in Figure
3(a)).

While these time series features capture the shape of a
word in great detail, they vary in length, and thus cannot



be used in our framework, which requires fixed-length fea-
ture vectors. A time series can be adequately approximated
by the lower-order coefficients of its Discrete Fourier Trans-
form (DFT) [3]. The DFT representation also takes into ac-
count that images can have different lengths, since one pe-
riod of the DFT basis functions is equal to the number of
sample points.

Figure 5: Projection profile time series from Figure4(a), re-
constructed using 4 lowest-order DFT coefficients.

We perform the DFT on the time seriesf = f0 . . . fn−1

to get its frequency-space representationF = F0...Fn−1:

Fk =
n−1∑
l=0

fl · e−2πilk/n, 0 ≤ k ≤ n− 1. (1)

From the DFT representation we extract the first 4 real (co-
sine) components and 3 imaginary (sine) components2 for
use as scalar features. Figure5 shows a reproduction of the
time series in Figure4(a)using these features. For our pur-
poses, this approximation suffices, since the goal is not to
represent the original signal in all details, but rather to cap-
ture the global word shape with a small number of descrip-
tors.

3. Mathematical Model

In this section we formalize handwriting as a Markov
Process with hidden states corresponding to words in the
vocabulary and observable states representing a noisy
(handwritten) rendition of those words. LetV be the set
of words in a given language, and suppose a given au-
thor is trying to create a manuscript of lengthn. First, we
shall assume that the author has an extremely short mem-
ory span and is able to keep in mind only the last word she
has written. Given that the last word waswj−1 ∈ V , the au-
thor picks the next wordwj according to some probability
distributionP (wj |wj−1). Then the author decides on a gen-
eral shape in which she will write out the word. As we
described in section2, the shape of the word is repre-
sented by aD-dimensional real-valued vector of fea-
tures fj ∈ IRD. The shapefj depends on which word

2 For real-valued signals, the first imaginary coefficient of the DFT is
always 0.
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Figure 6: A Hidden Markov Model for capturing the hand-
writing process. Words (Wi) represent the hidden states in
the author’s head. From these states the author samples fea-
ture vectors (Fi) which describe the intended shape of the
word. The author then writes out the word according to the
shape feature vector.

wj the user decided to generate; we model this depen-
dency by a word-conditional probability density:p(fj |wj).
The density accounts for the variation in the handwrit-
ten shapes of the same word. Once a shape is determined,
the user writes the word down, producing a word im-
ageIj . The entire process is illustrated in Figure6.

The above process can be captured by a Hidden Markov
Model [14]. The wordsw1. . .wn represent the state se-
quence. Each state depends only on the previous state
and the transitions are governed by the distribution
P (wj |wj−1). Feature vectorsfj represent the observa-
tions, which are conditionally independent of each other
given the identity of the wordwj . We assume that the fi-
nal word imageIj is a deterministic function offj .
Under this process, the probability of generating the se-
quence of wordsw1. . .wn together with their handwritten
formsI1. . .In is given by the following expression:

P (w1. . .wn, I1. . .In) =
n∏

j=1

P (wj |wj−1)p(fj |wj) (2)

In the above formula, we assume that the shape vectorfj

completely determines the handwritten formIj , so there is
no need to modelP (Ij |fj). As a matter of convenience we
takew0 to be a special unwritten word that always marks
the beginning of discourse. In the remainder of this section
we describe the components of the model and discuss how
the model can be used for transcribing a handwritten docu-
ment.

3.1. Using the Model for Transcription

Suppose we are given a sequence of word images
I1. . .In and want to generate its transcriptionv1. . .vn. The
model outlined above would guide us to search for the se-
quencew1. . .wn that is the most likely state sequence given
the observationsI1. . .In. In other words, the ideal tran-
scription would satisfy:



v1. . .vn = arg max
w1...wn

P (w1. . .wn|I1. . .In) (3)

Note that the conditional probability in equation (3) and
the joint probability in equation (2) are different by a factor
independent of the state sequencew1. . .wn. Consequently,
we can simply search for the state sequence that maximizes
equation (2). While there are exponentially many candidate
sequences, we can quickly find the best sequence by using
the Viterbi algorithm[4]. In order to use the algorithm we
need to specify the two components of our model: the state
transition probabilitiesP (w|v) and the observation density
p(f |w).

3.2. State Transition Probabilities

The standard procedure for learning the parame-
ters of the Hidden Markov Model is the Baum-Welch
algorithm[14]. However, in our case the learning can be
substantially simplified, since our states correspond to
words in the English vocabularyV . This allows us to
learn the state transition probabilitiesP (w|v) by sim-
ply counting how many times wordw follows the word
v in a large collection of text. Similarly, we can esti-
mate the initial state probabilitiesP (w|w0) by the relative
frequency ofw in the same collection. IfT is a collec-
tion of text, the probabilities would take the form:

PT (w|w0) =
(

number of timesw occurs inT

total number of words inT

)
PT (w|v) =

(
number of timesv, w occurs inT

number of timesv occurs inT

)
(4)

The choice of collectionT has the most direct impact
on the quality of the resulting probability estimates. Ide-
ally, we would like to have unlimited quantities of text by
the writer of the manuscript. However, in practice we usu-
ally have large volumes of text from other sources (TO) and
only a small amount of text from the target author (TA). We
used simple averaging to smooth the probability estimates
from TO andTA

3 :

P̂ (w|w0)=
1
3

[
PTA

(w|w0) + PTO
(w|w0) +

1
|V |

]
P̂ (w|v)=

1
3

[
PTA

(w|v) + PTO
(w|v) + P̂ (w|w0)

]
(5)

3 Note: rather than using uniform weights of1
3

for each component, we
could have tuned the weights to optimize likelihood of a held-out por-
tion of text. In our experiments tuning did not lead to significant im-
provements in the overall accuracy of the model.

The uniform probability 1
|V | is necessary to avoid zero

probabilities. Note that we interpolate the bigram and the
unigram probabilities in equation (5).

3.3. Observation Probabilities

We chose to model the observation probabilitiesp(f |w)
by a multi-variate normal distribution. Each statew corre-
sponds to a Gaussian with meanµw and covariance matrix
Σw. The likelihood of seeing observationf in statew is
given by the following expression:

p(f |w) =
exp

{
− 1

2 (f − µw)>Σ−1
w (f − µw)

}√
2DπD|Σw|

(6)

Here|Σw| denotes the determinant of the covariance ma-
trix, andD is the number of features (dimensions) used to
represent the word image. In order to estimate the parame-
tersµw andΣw for each wordw we need a training set of
transcribed manuscripts. Suppose thatgw,1. . .gw,k are the
different feature vectors for images of the wordw in the
training set. Then the meanµw can be estimated as:

µw[d] =
1
k

k∑
i=1

gw,i[d] , d = 1. . .D (7)

Here d denotes a particular dimension of the feature
vectors. The covariance matrixΣw can be estimated ac-
curately only if the training set contains sufficiently many
examplesgi,w of the wordw. In our experiments this was
never the case, so we approximated the covariance matrix
asΣw≈σavg·I. HereI is the identity matrix andσavg is the
mean feature variance, computed as:

σavg =
1
D

D∑
d=1

(
1

Ntr − 1

Ntr∑
i=1

(gi[d]− µ[d])2
)

(8)

In equation(8), vectorµ represents the average of all
vectors in the training set. The inside summation goes over
all Ntr vectorsgi in the training set and represents the vari-
ance along dimensiond. The outside summation goes over
the dimensionsd = 1. . .D of the feature vectors.

4. Experimental Evaluation

In this section we describe a set of experiments we
carried out to test the effectiveness of our model on the
task of transcribing a collection of George Washington’s
manuscripts. We start by describing the dataset, training re-
sources and the evaluation procedure. Then we look at a
sample transcription and analyze the errors that were made
by our model. Finally, we take a detailed look at how the
amount of training data affects recognition errors.



4.1. Experimental Setup

Our evaluation corpus consists of a set of 20 pages from
a collection of letters by George Washington. The collec-
tion is accurately segmented into words, and we have manu-
ally transcribed every word image. We do not lowercase the
transcribed words, so“Fort” and“fort” are treated as two
different words. We do not transcribe punctuation and non-
alphanumeric characters. There are a total of 4856 words
in the collection, 1187 of them unique. This is a relatively
small amount of data, and we have to use it both for learning
the parameters of the model and for evaluating the perfor-
mance. To improve the stability of our results we carried out
20-fold cross-validation as follows. During each iteration
we pick one page as our testing page, estimate the model
from the remaining 19 pages and test the performance on
the testing page. We also evaluate the model when fewer
than 19 pages are used for estimation.

4.1.1. Evaluation Measures.We use Word Error Rate
(WER) as our measure of performance. WER is a pro-
portion of the words that were not recovered exactly as
they were in the manual transcript. As we perform cross-
validation, we report the mean error rate across 20 pages
along with the standard deviation. Because of the relatively
small size of our dataset, a large proportion of the errors is
caused by out-of-vocabulary (OOV) words. These are the
words which occur only in the testing page, and not in any
of the training pages. Since we model the words in their
entirety, we cannot possibly provide the correct transcrip-
tion for these words. To separate the OOV errors from mis-
matches we report two types of WER, one that includes
OOV words and one that omits them from evaluation.

4.1.2. Additional Resources.In addition to the 20 pages
of transcribed manuscripts, we have access to a large elec-
tronic collection of writings by George Washington and
Thomas Jefferson. The collection contains over 4.5 mil-
lion words, which is enormous compared to the 4.6 thou-
sand words we have in the 20 handwritten pages. We exper-
imented with different ways of estimating the bigram model
P (w|v), which governs state transitions in our model. For
one experiment, we used only the training set to estimate
bigrams. For a second experiment we added the Jeffer-
son portion of the Washington-Jefferson collection. For a
third experiment we used the entire collection, including
the Washington portion. We took particular care to remove
the 20-page testing set from this collection, so there is
no possible overlap between the training and testing sets.
The Washington-Jefferson collection will be used as “other
sources” (TO) in our experiments. It is worth noting that the
bigrams from this collection do not represent a perfect fit
to the 20-page set. The reason is that in the 20-page set a
large number of words are split (hyphenated) across differ-

ent lines. None of the split words are present in the elec-
tronic Washington-Jefferson collection.

4.2. Example Transcription

Figure7 gives an example of transcription that could be
generated by our model. The example is a letter from the
last page of the dataset. The model was estimated from the
preceding 19 pages and used the Washington-Jefferson col-
lection for bigrams (along with bigrams from the 19 training
pages). Our model made 7 errors in the transcript of the let-
ter, this corresponds to a 17% word error rate, which is sub-
stantially better than our average performance. The errors
are underlined in Figure7. Out of 7 mistakes, two are due to
out-of-vocabulary (OOV) words:“hereof” and“5th” were
not found in the 19 training pages and were transcribed as
“twenty” and“16th” respectively. Our model replaced the
word“meet” with a similar-looking“not” . It is not immedi-
ately clear what could account for replacing“Captain John
Mercer” with “Captain Peter Bacon”.

4.3. Impact of State Transition Probabilities

Transcription accuracy is greatly influenced by the
amount and the quality of the training data. In the remain-
der of this section we try to quantify the effect of train-
ing data and provide a reasonable estimate for the amount
of resources that would be necessary to achieve satisfac-
tory transcription. We start by looking at our state transition
model. We consider 5 possible ways to estimate transi-
tion probabilitiesP (w|v):

1. None: In this case we make no attempt to model the
transitions.P (w|v) is simply 1/|V | for all words w
andv. For every feature vectorf , the model will se-
lect the wordw with the highestp(f |w), even ifw is
very unlikely in this position. Note that Viterbi decod-
ing is unnecessary in this case.

2. Unigram: We model relative frequencies of the words,
but not transitions from one word to another.P (w|v)
is the same asP (w|w0), independent ofv. Probabili-
ties are estimated from the training 19 pages. Viterbi
is, again, unnecessary, the model will pick a wordw
with the highestp(f |w)P (w|w0).

3. 19 pages:We estimate the bigram model from the 19
pages in the training set and interpolate them with the
unigram model.

4. 19+Jeff: Get the bigrams from the Jefferson portion of
the electronic collection, interpolate them with the 19-
page bigrams and unigrams.

5. 19+J+W: Get bigrams from both Washington and Jef-
ferson together, interpolate with the 19-page bigrams
and unigrams.



16th To Captain Peter Bacon of the Virginia Regiment You are immediately upon receipt twenty

to repair to Winchester where you will not with Colonel Washington and receive further orders

the Stores &c GW aid de camp Alexandria December 5th 1755

Figure 7: Part of a scanned letter by George Washington and the automatic transcription generated by our model.

6. Target: Estimate the bigrams from the testing page, in-
terpolate with unigrams from the testing page. This is a
cheating experiment, meant to provide an upper bound
on bigram performance.

State Transition Model Word Error Rate
Source Size exclude OOV include OOV

None 0 0.531 ± 0.05 0.603 ± 0.05
Unigram 4.6K 0.448 ± 0.05 0.533 ± 0.05
19 pages 4.6K 0.414 ± 0.06 0.503 ± 0.07
19+Jeff 191K 0.388 ± 0.05 0.481 ± 0.06

19+J+W 4,533K 0.349 ± 0.06 0.449 ± 0.07
Target 243 0.045 ± 0.03 0.063 ± 0.04

Table 1: Effect of different ways of estimating the state
transition probabilities. See section4.3 for a detailed de-
scription of sources. Size refers to the aggregate number of
words from which bigrams were estimated.

For each of these conditions we perform 20-fold cross-
validation with 19 training and 1 testing pages. We report
mean word error rate and standard deviation, both with and
without OOV. Table1 shows the results. We observe that
without modeling state transition we get mean WER of over
53%. Adding prior (unigram) probabilities from the train-
ing pages reduces WER to 45%, and adding the training bi-
grams drops it to 41%. The drop in word error rate from
53% to 41% is statistically significant and makes a strong

case for the importance of modeling state transitions. By
adding the bigrams from the Jefferson collection we are
able to bring the error rate down to 39%, and with Wash-
ington the error reduces to 35%, marking a substantial im-
provement over the 41% WER we achieved by using the 19
training pages alone. The last condition, using the bigrams
from the testing page, is a cheating experiment. While it
does not represent a valid transcription experiment, it sug-
gests that our system could be used toalign manuscripts and
their transcripts with an alignment error rate of around 6%.

4.4. Impact of Observation Probabilities

Now we turn our attention to the observation probabili-
ties p(f |w) which model the generation of feature vectors
from word states. This part of the model is trained entirely
from the manually transcribed manuscript pages, there are
no external resources. We want to get a sense of how the
number of training pages affects transcription accuracy. In
order to do that we modify our cross-validation procedure to
usen < 19 training pages in each split. State transition bi-
grams are interpolated with the Washington-Jefferson col-
lection. For eachn we record the mean number of words in
the training portion, the mean number of out-of-vocabulary
words on the testing page, and the mean error rates. Re-
sults are presented in Figure8 and in Table2. We observe
that with small number of training pages the OOV errors
are extremely high, while the non-OOV errors remain be-
low 45% even with just one training page. This is under-
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Figure 8: The number of training pages has a strong ef-
fect on transcription accuracy, especially on the out-of-
vocabulary errors.

standable, since more than half of all the words are out-of-
vocabulary. With 10 training pages one out of five words
is out-of-vocabulary, and the non-OOV error rate is a re-
spectable 39%. With 19 training pages the OOV error is
down to 45%, while non-OOV WER is at 35%.

4.5. Summary of Results

Under favorable training condition our model achieved a
mean word error rate of 0.349, which corresponds to recog-
nition accuracy of 65%. This compares very favorably with
previously published results [8, 11, 12] which were ob-
tained with similar vocabulary sizes but on much cleaner
collections. One may argue that the resources we used to
achieve 65% accuracy may not always be available in an op-
erational setting. However, tables1 and2 demonstrate that
the model can achieve a reasonable accuracy (55-60%) even
with relatively meager resources, such as 10 training pages
and a contemporary text collection for estimating the bi-
grams (e.g. the Jefferson collection). Finally, the last exper-
iment in Table1 suggests that the current model could be
used to align manuscripts and transcripts with an accuracy
of at least 93%.

4.6. Model Improvements

Our current recognition suffers from a number of weak-
nesses. Here we would like to address some of these issues
and provide suggestions as to how they could be resolved.

1. Out of vocabulary terms: The current system can only
recognize words that are in the training vocabulary.

Among the several strategies that are possible, auto-
matic generation of training instances would fit natu-
rally into our current model. We could create artificial
training instances for words which have few or no oc-
currences in the training set (e.g. see [7]). The sim-
plest way would be to create words from a represen-
tative font (possibly with multiple different styles for
each letter) which is extracted from the training docu-
ments. In order to further increase the training set size
and to simulate real conditions once could distort ei-
ther the artificial word images or their feature repre-
sentations. When doing this, it is important to ensure
that the distortions of word images will not be reversed
by the preprocessing stage.

2. N-gram model: To a great extent the quality of the
recognition results depends on the accuracy of the N-
gram (unigram, bigram, . . . ) frequency estimates that
are used. Higher accuracy can be achieved by extend-
ing the training corpus that is used to estimate such fre-
quencies. However, for historical documents one not
only has to consider factors such as the particular topic
of discussion and writing style of the author, but also
the spelling of words. This means a suitable corpus for
N-gram estimation would also have to be picked from
the same period of time as the document that is to be
recognized.

3. Hyphenations: Our current document collection con-
tains many hyphenations, which break words into two
parts. Given an already large vocabulary, it is virtu-
ally impossible to obtain training data for all hyphen-
ations of words in the vocabulary. This problem could
be addressed by implementing a hyphenation detec-
tor into the document preprocessing stage. When a hy-
phenation is detected, the two parts of a word image
are concatenated across lines in order to form a sin-
gle word.
The detection and removal of hyphenations would also
have an additional positive effect on the recognition ac-
curacy: bigram estimates from a text corpus are not in
general created for hyphenated words. With no more
hyphenated word images, all of the segmented images
in a document correspond to complete words.

5. Conclusions

We have presented a handwriting recognition approach
for single-author historic manuscripts with large vocabular-
ies. In order to address the poor quality of the page images
we have chosen a holistic word recognition approach that
does not require character segmentation. The error rates we
achieve are comparable to those of multi-writer recognition
systems for high-quality input pages. While the accuracy is
not yet sufficient to produce automatic transcripts that will



Train. Training words Testing words OOV words Word Error Rate
pages total unique total unique total unique excluding OOV including OOV

1 216 132 242 150 143 112 0.440 ± 0.07 0.764 ± 0.05
3 731 321 242 150 88 78 0.439 ± 0.07 0.640 ± 0.07
5 1223 457 242 150 71 65 0.420 ± 0.07 0.588 ± 0.07

10 2381 702 242 150 56 51 0.394 ± 0.07 0.530 ± 0.08
15 3679 1012 242 150 42 39 0.359 ± 0.06 0.468 ± 0.06
19 4613 1151 242 150 37 35 0.349 ± 0.06 0.449 ± 0.07

Table 2: The number of training pages has a strong effect on transcription accuracy, especially on the out-of-vocabulary er-
rors.

be acceptable for human readers, successful retrieval of his-
toric documents and transcription alignment can already be
performed.
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