A Service Paradigm for Reconfigurab le Agents-

Gary Holness Deepak Karuppiah Subramanya Uppala Roderic Grupen
Laboratory for Perceptual Robotics

S. Chandu Ravela
Center for Intelligent Information Retrieval

Department of Computer Science
University of Massachusetts, Amherst, MA 01003 USA

{gholness, deepak, uppala, ravela, grupen}@Qcs.umass.edu

ABSTRACT

Applications of multiple processors embedded in the sys-
tems involved with entertainment, informatics, climate con-
trol, communication, transportation, and food preparation
are already commonplace. A network of these embedded
processors presents application development challenges since
the state space grows exponentially as new devices attach
to the network. The programming model for such systems
will need to change if reliable systems are to be realized.
By observing information about sensorimotor activity, such
systems can gather information useful to programming the
network. Through such interaction, a network can build
hierarchies of shareable computational structures for repre-
senting various activities. This application domain presents
additional challenges due to disparate sensor and actuator
bandwidth, hardware disparities and partial system failure.
We present an architecture that fuses sensing and control
with the Jini Network Technology in a distributed senso-
rimotor network. This network can grow dynamically over
time and facilitates the automatic creation of persistent data
structures.

Categoriesand Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distribut-
ed Systems— Distributed Applications

Keywords

*The authors gratefully acknowledge support for this work
from NSF CDA-9703217 (Infrastructure), DARPA/ITO
DABT63-99-1-0022 (SDR), and DARPA /ITO DABT63-99-
1-0004 (MARS). Ravela’s contribution was also based on
work supported in part by the Library of Congress and De-
partment of Commerce under cooperative agreement num-
ber EEC-9209623. Any opinions, findings and conclusions or
recommendations expressed in this material are the authors
and do not necessarily reflect those of the sponsor.

Distributed Objects, Dynamic Service Discovery, Ubiqui-
tous Computing, Reconfigurable Agents, Networked Sensory-
Motor systems

1. INTRODUCTION

A wide range of applications, from climate control to nav-
igation employ an ever increasing number of sensorimotor
sub-systems [10, 4]. The premise behind this approach is
that multiple distributed sensorimotor components provide
a robust basis for interacting with the environment. For
example, large physical environments such as buildings can
benefit from networks of articulated sensors and robotic a-
gents that interact with human users to provide a plethora of
services including maintenance, navigation, security, mon-
itoring, hazard-recovery and communication. While con-
structing agents that reason within such environments is an
active area of research, significant issues still need to be ad-
dressed.

The first issue is complexity. Computational processes for
inference must be able to handle an increasing variety of
sensors and motors. The design and use of custom device
interfaces yields agents that are neither flexible nor reusable
and can be expected to scale poorly.

The second issue is one of fault-tolerance. An environment
containing multiple sensorimotor systems is subject to var-
ious failure modes. This includes failure in the hardware
site, network link, or in the algorithms attached to the de-
vices. Since the environment is instrumented with multiple
(possibly redundant) devices, it is possible to switch devices
or change process modes when devices and associated algo-
rithms fail. Fault-tolerance for a distributed computation is
not feasible without a reliable architecture for detecting and
reporting such faults[14].

The third issue is one of timing and synchronization. In gen-
eral, an agent must process observations and generate con-
trol commands with heterogeneity in sensors, signal band-
widths, dynamic range, features and control actions. Any
inference regarding the environment or internal state funda-
mentally relies on synchronization between disparate device

timings in the network. While there are several approach-
es to synchronization, it is important that such mechanisms
neither be ad-hoc nor embedded somewhere deep within the
agent’s architecture. That is, there has to be a consistent
notion of an event’s occurrence across the network.

This paper presents an architecture for constructing flexi-
ble agents from networks of sensor and motor devices. The
proposed paradigm is based on a service model. In this mod-
el, physical devices adopt a consistent interface and present
themselves as services to the network. These service in-
terfaces expose failure modes in a consistent manner and
maintain a means of publishing information to clients at
necessary rates. This model is recursive in that higher level
services can be constructed from other services in addition
to those grounded directly in physical devices. In addition
to having the same interface properties, higher level services
have a built in notion of fault tolerance. When parameter-
ized with a set of services, an algorithm, and a state machine
specification whose transitions are driven by an objective
function, higher level services change modes (if necessary)
to maintain the property of the system for which they are
constructed.

The proposed service architecture uses Java to develop con-
sistent service interfaces. The network time protocol and
first order extrapolation methods are used to achieve syn-
chronization. The Jini network technology is used to dynam-
ically post and discover services across a network, as well as
to establish interfaces between the service site (where the
device is) and the agent[16]. This core substrate also fa-
cilitates fault reporting by combining structured exception
handling with a periodic data push model.

In this paper, we present the service architecture and demon-
strate its utility in an example agent for tracking a hu-
man subject by orchestrating multiple sensorimotor services.
This system is tolerant to multiple physical faults and run-
time context changes. In this example, the agent maintains a
tracking task using the best service resources as determined
by an objective function for network reachability and algo-
rithm performance criteria. Objective functions optimizing
for other metrics such as minimum algorithmic complexity,
energy cost, minimum response time, and quality are also
possible.

The remainder of this paper is organized as follows. In Sec-
tion 2 the proposed architecture is described. In Section 3
implementation and run-time performance for the tracking
application are discussed.

2. THE ARCHITECTURE

Situated agents, interacting with the physical world through
their sensors and motors, garner information integrated over
time to form the basis of their understanding of the world
[8]. We factor an agent into basic parts including an algo-
rithm, an objective function, sensors and motors. The agent
relies on the services of its sensors and motors in order to
perceive and act in its environment. Whether coupled tight-
ly through a system backplane or coupled loosely through
a network, the agent makes use of its sensors and motors
through a communication medium. To the agent, its sensors
and motors are services accessed through a communication

network.

A sensor or motor may be co-located with and share a phys-
ical interface with an embedded processor. The processor
executes a low level driver that samples raw signal data or
produces control signal data. The processor also executes
an arbiter that interacts with the driver and the communi-
cation medium. Through the arbiter, a client poses requests
to the sensors and motors. If the arbiter exports sensori-
motor interfaces and is the point of contact on the network,
it becomes the sensorimotor service. This approach follows
the tenets of object-oriented systems in that a structure ex-
ports an interface whose implementation details are hidden
from clients. This provides an elegant mechanism for system
decomposition into flexible reusable components which may
be shared across the network. Moreover, the implementa-
tion details within the component include the protocol for
contacting the sensorimotor device. This frees clients from
embedding custom protocols.

A higher level sensorimotor service can be assembled by
combining a set of sensorimotor services. The resulting
service appears identical to every other sensorimotor ser-
vice. Repeated construction results in a hierarchy of ser-
vices. This gives rise to a network of sensors and motors
which may be reconfigured dynamically [9] by fitting togeth-
er various components and adding computation. An agent
endowed with sensorimotor services can also mode change
across different services in its hierarchy or change its reper-
toire by adding or deleting services.

In dealing with systems that export objects across a net-
work, the distinction between local and distributed compu-
tation is crucial [14]. A distributed computation consists
of a number of nodes connected through a network which
must collaborate or reach consensus by exchanging mes-
sages. Such systems may fail on account of node failure
or link failure. These failures may be transient or may per-
sist over time. The Jini Network technology is a distribut-
ed computing infrastructure well suited for building reliable
distributed systems which deal with partial failures [16].

Also in a distributed system, a computation must deal with
issues of clock skew and synchronization. This is important
if the understanding of an event’s occurrence is to be kept
consistent across the network. The Network Time Protocol
(NTP) is a simple mechanism useful for nodes on a network
to synchronize their clocks [13, 15].

2.1 SensorSewice

Figure 1 depicts the processes that a service attaches to a
physical sensor. Raw signal information is passed through
a bank of filters to produce feature vectors. Queries for the
delivery of these features will be posed to the sensor service
from across the network. To properly satisfy its task, an
agent is interested in such features in a timely fashion in
order to build a good representation of what is happening
in the world. In a real-time scenario, the driver and filters
may be implemented to produce features at characteristic
rates. In a system that satisfies real-time guarantees, both
the network and remote procedure call (RPC) mechanism
used to deliver these features must have a timing guarantee
that satisfies an upper bound. Our current implementation

Host/Embedded System

Physical Interface

Filters Features
Driver — _
Raw Data ooe
[J
transducer o000 []
\ L — —
®—> [X X J

INI periodic Timer Network
Extrapolatorl) Connection

1 Lease Engine
1
1

|—= : T
: PTl \
1 [J
1
H []
! b4 >
i T | /

1 : PTh Jini Discovery/Join
1 Protocol
1
! 1

c/C++ 1| Java
Proxy Object

Sensor Service

Figure 1: Sensor service using Jini Network Technology

does not make strict real-time guarantees.

A client request consists of a feature type, the duration of
interest , the period defining feature delivery rate, and a tar-
get where the client can be contacted. A mechanism is need-
ed to manage feature propagation at client specified rates.
Together, the lease engine and the extrapolator serve this
purpose. Caching context from feature streams, the extrap-
olator computes features for generation times between a real
feature and its successor in the stream. This process can use
statistical models or other function approximation method-
s. Error in extrapolation is governed by the length of the
interval over which a computed feature must be produced.
Our current approach uses first order spatio-temporal fea-
ture statistics for extrapolation.

Filter algorithms, drivers, and extrapolation techniques op-
timized in C and C++ are integrated into networked services
using the Java Native Method (JNI) interface. Java objects
corresponding to the computed features are constructed and
handed to the Java process responsible for delivery to the
client.

A sensor service exports objects that satisfy the following
interface:

public interface Sensor extends Device {
DeviceRegistration reportFeature(Type type,
long duration,
long period,
RemoteEventListener target)
throws LeaseDeniedException, RemoteException

Where a Device is an interface which serves as the root
of the type hierarchy for sensors and motor services and a
DeviceRegstration is:

public class DeviceRegistration

extends EventRegistration {

If a request is deemed unachievable by a service, the re-
quest for feature delivery is not granted. This is signalled
by throwing a LeaseDeniedException. If the request is
achievable, using its lease engine, service grants the leas-
ing of a periodic timer satisfying the given duration and
period. The timer also includes code responsible for retriev-
ing features and delivering them to a client through a target
RemoteEventListener object.

Once instantiated, the periodic timer executes its action at
regular intervals for the specified duration. The action re-
quests a feature estimate for the current time from the ex-
trapolator. If a feature sample is available, a feature object
is constructed and delivered. If one is not available, the ex-
trapolator computes an approximate feature and an object
for the resultant feature estimate is constructed and deliv-
ered. A client is returned a DeviceRegistration object if
its request is achievable. With this registration token, the
client can extend or renew the requested duration. It is at
the discretion of the service to grant such lease renewals.
This approach uses Jini Distributed Events and Leases [2].

2.2 Motor Sewice
Figure 2 depicts the processes which a service attaches to a
physical motor.

A motor service is composed of a set of concurrent controller-
s acting together to issue commands to a motor. These
compositions act through an arbitration mechanism ensur-
ing that a subordinate controller does not interfere with a
dominant controller where their configuration spaces over-
lap[11]. Unaware of the service’s constituent controllers, the
client perceives the motor service as being governed by a
single controller on which it may set goal references. Upon
reaching a client initiated goal, the motor service generates
an event signalling convergence.

Host/Embedded System

JNI Convergence Monitor
et Controllers ~ <oMol Network
Driver Arbitration Selection : ﬁ Lease Engine Connection
1
Control m :]
Commands v = cm —
: 1
|_| ° 1 °
transducer o 1 °
L] . '
! b4 >
1
m ! 1 /
u 1>1CMy Jini Discovery/Join
1 Protocol
Physical Interface : /|\
c/C++ 1 Java
Proxy Object

Motor Service

Figure 2: Motor Service using Jini Network Technology

The client packages its goal reference inside of a ControlRef
object which it constructs and includes in its request along
with a deadline, period and RemoteEventListener target
object. The deadline represents the duration during for
which the client is interested in convergence events. The
period represents how aggressively convergence should be
monitored.

The RemoteEventListener target serves as a proxy object
used to contact the client with convergence events. A motor
service also maintains a lease engine. Upon receipt of an
achievable request, a lease is granted for a control monitor
containing the target listener, period, ControlRef object,
and deadline. The monitor sets the reference point on the
control selection mechanism which, in turn, sets appropriate
references on the proprietary controllers. At the specified
rate, the monitor periodically checks for convergence status
and sends an event to the client signalling the result.

A motor service may deem a request unachievable if it vi-
olates the boundary conditions in which the service oper-
ates. A client who poses an achievable request is returned
a DeviceRegistration object. This registration token may
be used to extend the duration. A motor service is not ob-
ligated to grant renewal requests. This approach uses Jini
Distributed Events and Leases[2]. A motor service exports
objects satisfying the following interface:

public interface Actuator extends Device {
DeviceRegistration actuate(ControlRef ref,
long duration,
long period,
RemoteEventListener target)
throws LeaseDeniedException, RemoteException

A single sensorimotor service may export objects which im-
plement both the Sensor and Actuator interfaces.

3. IMPLEMENT ATION AND RUN-TIME PER-

FORMANCE

In the experiment described in this document, sensor ser-
vices have been implemented for pyro-electric (thermal) sen-
sors, panoramic cameras and pan/tilt/zoom (PTZ) cameras.
Motor services have been implemented to move PTZ cam-
eras. Our sensor and motor services are written using the
Jini Network Technology and are dynamically discovered as
they attach to the network. These services also associate
attributes used to inform the agent where in the room the
devices are located. We have also constructed higher level
sensors which return headings from delivered features. We
have constructed an agent consisting of a triangulation al-
gorithm, a set of heading sensors, motor services for PTZ
cameras, a finite state description for sensor pairs and an
objective function. The objective function decides the state
transition by selecting the best heading sensors based on
network reachability and the number of missed periods for
feature delivery.

When the agent is run, it constructs heading services from
dynamically discovered sensor services for panoramic and
PTZ cameras. A triangulation algorithm is initialized with
the heading service pair identified by an initial state. The
agent then obtains the human’s spatial location from the
triangulation algorithm. As the human walked around the
room, a number of faults were introduced. Faults included
walking behind an occlusion, unplugging a camera, cover-
ing a camera, walking too swiftly the PTZ camera’s motors
to maintain tracking, and walking collinear with the two
panoramic cameras.

If a sensor was unable to maintain the track, features from
it would no longer be available causing it to miss feature de-
livery periods. The faulting sensor’s rating was downgraded
and the objective function induced a state transition by se-
lecting a new best pair. A similar situation occurred when
the human moved too quickly for the PTZ camera.

When a collinearity fault occurred when using the pair of

(a) tracking with left panoramic and lower PTZ

(c) tracking with two panoramics

(d) collinear fault induced, switch to lower PTZ and left
panoramic

Figure 3: Frames from a recorded tracking task demonstrating agent reconfiguration

panoramic camera heading sensors, a new best pair consist-
ing of a PTZ and panoramic heading sensor pair was selected
by the objective function. When the state transition was in-
duced by the objective function, our algorithm forwarded
the last known spatial location computed by triangulation
as a goal reference for the PTZ camera’s motor service. The
PTZ camera saccaded to the last known human target lo-
cation. The PTZ and panoramic heading sensor pair then
provided heading information and tracking continued.

We have implemented a user interface which accepts human
target locations from the agent and records and can re-play
tracking data. We can run our agent consistently for a 24
hour period.

Figure 3 shows a replay of a recorded track. In the figure
the two panoramic camera devices are labeled Pa and two
PTZ cameras are labeled Pt. Scan lines are drawn in the
user interface for the headings returned by the heading sen-
sors for visualization purposes. As can be seen, the system
tracks the moving target using the best pair of sensorimo-
tor services. This figure demonstrates robust tracking of a
human subject and must be read in order a,b,c,d. In frame
a, heading services for the left panoramic and lower PTZ
camera track the subject as he approaches an occluding of-
fice partition. As the target walks behind the partition,

the left hand panoramic can no longer view the subject and
begins missing deadlines for periodic feature delivery. The
panoramic’s rating by the objective function is downgraded,
a state transition is induced, and the lower PTZ and right
hand panoramic pair are selected in frame b. The subject
emerges from behind the partition, but is no longer visible
to the lower PTZ. A fault occurs and the objective func-
tion selects the panoramic pair which continue to track the
subject in frame c. The target moves collinear with the the
panoramic cameras. A fault occurs and the objective func-
tion selects the left panoramic and lower PTZ pair in frame
d. We would like to stress that this is not a simulation. Our
agent is a real implementation grounded in physical systems
which we have used for successful tracking.

Using NTP and first order extrapolation techniques, we were
able to produce features from cameras which bound uncer-
tainty in headings to features to under a foot. Figure 4
depicts two subjects being tracked, namely the target on
the left and the target on the right. The ground truth for
the actual paths along which the two subjects walk is plot-
ted along with the positions reported by the sensorimotor
services. Note that each tile is a foot in length.

4. FUTURE WORK

I'In_

Figure 4: This figure demonstrates a tracking uncertainty bounded within 1 foot for camera services

In the future, we plan to implement sensor and motor ser-
vices for audio, sound, and mobile robots. We also plan
to increase the capabilities in the DeviceRegistration ob-
ject which allows a client to switch features and to adjust
the periods. Our higher level sensorimotor elements are im-
plemented in the Java programming language. Since Java
objects may be serialized, we would also like to make virtual
sensorimotor compositions persistent so that an automated
process may index and recall previously created higher level
services instead of constructing them on line each time. We
plan to harden our service implementations with the goal of
conducting experiments which run continuously for weeks
at a time. Such a long running sensorimotor network will
yield the kind of information necessary to begin building rich
representations of activity as we look toward implementing
activity maps and algorithms for learning activity in the
room.

5. ACKNOWLEDGEMENTS

We would like to thank Dr. Zhigang Zhu, Prof. Edward
M. Riseman, Prof. Allen R. Hanson for their involvement
in the development of this research. We would also like to
thank Yuichi Kikuchi for many contributions to this work.

6. REFERENCES
[1] Gregory D. Abowd and Elizabeth D. Mynatt.
Charting past, present and future reseach in ubiqgitous
computing. ACM Transactions on Computer-Human
Interaction, Speial Issue on HCI in the new
Millenium, 7(1):29-58, March 2000.

[2] K. Arnold, B. O’Sullivan, R. Scheifler, J. Waldo, and
A. Wollrath. ”The Jini Specification”. Addison
Wesley, 1999.

[3] D. Chakraborty C. Pullela, L. Xu and A. Joshi. A
component based architecture for mobile information
access. Tech. Report TR-CS-00-05, University of
Maryland, Baltimore County, March 2000.

[4]

[5

—_

[10]

[11]

[12]

[13]

[14]

[15]

H. Chen. Developing a dynamic distributed intelligent
agent framework based on the jini architecture.
Masters thesis, University of Maryland, Baltimore
County, January 1999.

Michael H. Cohen. Building brains for rooms:
designing distributed software agents. Tech. report,
MIT Artificial Intelligence Laboratory, 1997.

Michael H. Cohen. Design principles for intelligent
environments. In Proceedings of the National
Conference on Artificial Intelligence (AAAI),
Madison, Wisconsin, July 1998.

Y. Ge. Jini smart sensor application in mobile
interactive data acquisition systems(midas). Masters
thesis, Oregon State University, March 2000.

T. Henderson and R. Grupen. Logical behaviours. In
Journal Of Robotic Systems, volume 7, pages 309-336,
Santa Barbara, California, June 1990.

T. Henderson and E. Shilcrat. Logical sensor systems.
Journal of Robotic Systems, 1(2):169-193, March 1984.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for
networked sensors. In Proceesings of the 9th
International Conference on Architectural Support for
Programming Languages and Operating Systems,
Cambridge, Massachusetts, November 2000.

M. Huber and R. A. Grupen. Learning robot
control-using control policies as abstract actions.
NIPS’98 Workshop : Abstraction and Hierarchy in
Reinforcement Learning, 1998.

D. Karuppiah, P. Deegan, G. Holness, Z. Zhu,

B. Lerner, R. Grupen, and E. Riseman. Software
mode changes for continuous motion tracking. In
International Workshop on Self Adaptive Software,
Oxford, England, April 2000.

D. Karuppiah, Z. Zhu, P. Shenoy, and E. Riseman. A
fault-tolerant distributed vision system architecture
for object tracking in a smart room. In International
Workshop on Computer Vision Systems, Vancouver,
Canada, July 2001.

S. Kendall, J. Waldo, A. Wollrath, and G. Wyant. A
note on distributed computing. Tech. Report TR
94-29, Sun Microsystems Laboratory, November 1994.

D.L. Mills. Improved algorithms for synchronizing
computer network clocks. IEEE/ACM Transactions
on Networking, 3, 1995.

Jim Waldo. The Jini architecture for network-centric
computing. Communications of the ACM, 42(7):76-82,
July 1999.

