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ABSTRACT
In a multimedia world, one would like electronic access to
all kinds of information. But a lot of important information
still only exists on paper and it is a challenge to efficiently ac-
cess or navigate this information even if it is scanned in. The
previously proposed “word spotting” idea is an approach for
accessing and navigating a collection of handwritten docu-
ments available as images using an index automatically gen-
erated by matching words as pictures. The most difficult
task in solving this problem is the matching of word im-
ages. The quality of the aged documents and the variations
in handwriting make this a challenging problem. Here we
present a number of word matching techniques along with
new normalization methods that are crucial for their success.
Efficient pruning techniques, which quickly reduce the set of
possible matches for a given word, are also discussed. Our
results show that the best of the discussed matching algo-
rithms achieves an average precision of 73% for documents
of reasonable quality.

Keywords
Multimedia content analysis, audio/image/video processing,
content-based multimedia retrieval

1. INTRODUCTION
There exist numerous collections of handwritten historical
manuscripts which could serve as a valuable resource to his-
torians and others who wish to read them. Examples include
the early Presidential papers at the Library of Congress and
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the collected works of W.E.B. Du Bois - the African Amer-
ican civil rights leader - at the University of Massachusetts
Library. Unfortunately, many such collections, although
available through public libraries or the internet, are only
loosely organized, i.e. without any index information or just
manually annotated. Since manual document transcription
- which is the current solution to this problem - is a very
expensive task, an automatic way to build document in-
dexes for easy navigation is preferred. Previously the “word
spotting” idea has been proposed to solve this problem [8,
7, 6]. In word spotting, an index is automatically gener-
ated for a collection of handwritten documents, which are
only available as images by matching words as pictures. Af-
ter segmenting all pages in a given corpus into pictures of
words, image matching techniques are used to cluster all oc-
currences of a word throughout the collection. Then, the
largest clusters (most frequent words in the collection) form
the index terms. Here we compare a number of algorithms
for matching word images and we present the extensive nor-
malization techniques that make these algorithms work.

A preliminary study in [8, 7, 6] identified two algorithms
for matching images, Euclidean Distance Matching (EDM)
- which compensates for translations - and the SLH algo-
rithm (proposed by Scott and Longuet-Higgins) [12] which
handles affine transforms. However, techniques which work
on carefully scanned images fail on the George Washing-
ton collection where the noise and the range of distortions
is larger. The previously discussed EDM technique only
handled translations. Here, we propose new normalization
schemes to handle these distortions and show that the result-
ing affine-normalized EDM technique performs much bet-
ter than four other image matching techniques including
SLH, SSD (correlation) and the shape context matching al-
gorithm.

Word spotting is a challenging problem, because of the qual-
ity of the data that has to be dealt with. The most promi-
nent factors are the following:

• Age of the documents: historic manuscripts suffer from
fading ink (for example see Figures 1(b) or 7), ink that
shines through pages and non-uniform backgrounds.

• Bad scanning quality: our collection of George Wash-
ington’s letters was scanned from microfilm (possibly



(a) Scanned from a well preserved document

(b) From document with slightly faded ink

Figure 1: Examples of “good” quality images.

to protect the originals), which causes considerable
degradation in the quality of the scanned images.

• Compression artifacts: the test collection we received
was scanned at 300dpi and saved in JPEG format with
a high compression ratio, in order to reduce the storage
needs (see Figure 2 for an example of the magnitude
of the JPEG artifacts).

Additionally, since most historical documents were written
by hand, the words are difficult to recognize. This is a result
of the variations in handwriting, which affect the appear-
ance of a word at both the word- and the character-level:
throughout a document by the same author, words vary in
scale, length, slant, the way their characters are written and
other factors. For these reasons, optical character recog-
nition (OCR) approaches, which perform well on machine
printed documents against clean backgrounds, do not work
well in the handwriting domain. Our research indicates that
one of the best performing algorithms on the MNIST set of
handwritten digits [1] does not perform well on our collec-
tion of documents.

Figure 2: Edge image of an instance of the word
Alexandria: JPEG compression artifacts result in
“dirt” and phantom edges (e.g. horizontal edges).

The previously presented word spotting idea provides an al-
ternative solution for indexing large handwritten texts writ-
ten by a single person (or a few people). The goal is to
automatically create an index similar to the one at the back
of a book: the index would contain a list of words, each
word associated with a set of links, one link for each oc-
currence of that word in the collection. With these indexes,
libraries can put their collections of manuscripts on line, eas-
ily accessible to anyone who needed to do research on them.
The word spotting technique accomplishes this by creating
classes of word images, where each class consists of multiple
instances of the same word. A human could then provide
an ASCII equivalent for the classes. Such a system would
of course be applicable more widely, not just to the George

Washington collection. The matching techniques could also
be useful for other applications - for example in PDAs (ad-
dress/appointment retrieval or similar tasks). Previous work
has discussed the feasibility of word spotting [8, 7, 6] based
on a small sample of images which were scanned carefully.

The word spotting algorithm is outlined as follows:

1. A scanned greylevel image of the document is obtained.

2. The page is divided into units (words) which can be
compared singly. Our approach uses the algorithm
presented in [9].

3. Each word image is taken as a template and compared
against all other word images1.

4. Words are grouped into clusters/classes based on their
similarity.

5. A human provides an ASCII equivalent of the most fre-
quently occuring words (large clusters)2. Another way
to present the index in a user-interface would be to dis-
play the members of a cluster as clickable thumbnails
which point to the respective document locations.3

There are a number of advantages of word spotting over
conventional OCR. Most OCR systems recognize a charac-
ter at a time - with some language modeling constraints
on sequences of valid character strings. Using the entire
word image often provides better context and will make the
process easier (for example individual characters written by
people are often unrecognizable). In fact, there is empiri-
cal evidence that humans employ a similar “holistic” word
matching technique for reading [5]. Additionally, word spot-
ting avoids the automatic recognition process entirely and
focuses on matching word images. Recognition is often dif-
ficult to do and requires extensive training. Furthermore,
we believe that the word matching process is easier to solve
when the documents are written by one person (or a few).

Here we report the extensive image normalization methods
we used to account for a number of common variations in
handwriting. These techniques are crucial for the successful
matching of word images. We also discuss five algorithms
for matching words and compare the performance of four of
them on a set of 10 documents. Unless the quality of the
scanned images is very poor, our approach can achieve an
average precision of 73%. An online demonstration which
provides an index for a small set of George Washington’s
pages has been implemented.

2. BACKGROUND
The traditional approach to indexing documents involves
first converting them to ASCII and then using a text based

1For a large collection this is obviously prohibitive; we re-
duce the number of possible matches using pruning tech-
niques.
2The largest clusters will likely be stop-words (for example
the and of), which are not useful for indexing. Such words
should be omitted.
3The demonstration at http://ciir.cs.umass.edu/
research/wordspotting uses this interface.

http://ciir.cs.umass.edu/research/wordspotting
http://ciir.cs.umass.edu/research/wordspotting


retrieval engine [13, 11]. Scanned documents can be con-
verted into ASCII by first segmenting a page into words and
then running them through an OCR [2]. The OCR segments
the words further into characters and then attempts to rec-
ognize the characters using statistical pattern classification
[2]. This approach has been highly successful with standard
machine fonts against clean backgrounds. It has had much
more limited success when handwriting is used. Primarily,
this is because character segmentation is much more diffi-
cult in the presence of handwriting and also because of the
wide variability in handwriting (not only is there variability
between writers, but a given person’s writing also varies).
The successes of handwritten character recognition have oc-
cured in domains where the lexicon is small and/or the words
are highly constrained. For example, the US post office
uses OCR for reading addresses on envelopes [10] (many
of which are machine printed) by taking advantage of the
highly structured nature of such addresses and the fact that
different fields mutually constrain each other (for example,
the street name must be consistent with the town name and
zip). These machines also have databases of all the streets
in every city in the country. On the other hand, the current
state of the technology is such that OCR is unlikely to be
successful in the foreseeable future for handwritten archival
documents.

An approach similar to ours has been used to recognize
words in documents which use machine fonts [4]. The word
images are compared against each other and divided into
equivalence classes. The words within an equivalence class -
all of which are presumably identical - are used to construct
a noise-free version of the word. This word is then recog-
nized using an OCR. Recognition rates are much higher than
when the OCR is used directly [4].

Machine fonts have a number of advantages over handwrit-
ing. Multiple instances of a given word printed in the same
font are identical except for noise. This situation does not
hold for handwriting. Multiple instances of the same word
on the same page by the same writer show variations. The
variations are many - these include variations in ink, scaling
of the words with respect to each other, small changes in
orientation, and changes in the lengths of descenders and
ascenders. Figure 9 shows a number of identical words from
the same document, written by the same writer but nev-
ertheless with a fair amount of variation. It may thus be
necessary to account for these variations.

Word spotting requires that the text be previously segmented
into words. This is already by itself a non-trivial problem
and for the work done here, the scale space algorithm dis-
cussed in [9] is used to segment the document into words.
Figure 3 shows a page of Washington’s manuscripts which
has been segmented using this algorithm. Note that al-
though this page is of good quality, variations in the ink and
dark borders (artifacts of the microfilming/scanning pro-
cess) are present. The segmentation technique has proven to
work well (77-96 percent accuracy on Washington’s manu-
scripts), and has been used to segment our collection of 6000
pages of George Washington’s scanned manuscripts.

The output of the segmentation process is used as the input
to the word spotting algorithm. Here the segmented words

Threshold α Recall Precision % Returned
4 1.000 0.012 88.03
3 1.000 0.014 77.57
2 0.982 0.019 53.67

1.5 0.960 0.032 32.47
1.2 0.851 0.060 15.83
1.15 0.739 0.068 11.97

Table 1: Pruning results for similar length constraint
(equation 1).

are grouped into clusters/classes. This is done by comparing
one segment, the template, against the others, and ranking
matches by similarity scores. The top matches then form
the class.

Because all of the matching algorithms are very resource-
intensive, it is desirable to prune the images which are likely
not to be matches. This cuts down on the number of com-
parisons to be done by the matching algorithms. Section
3 outlines the techniques we used and their performance.
Images which are not discarded by the pruning process are
handed to the matching algorithm (see section 5). Our re-
sults show that even for good quality scans extensive filter-
ing, normalizing and transforming of these images is neces-
sary for producing good matching results.

3. PRUNING
Pruning is the process of determining which images are not
likely to be matches before running the scoring algorithm by
using easy-to-measure properties of the image. Since there
are O(n2) image pairs for n word-images, and due to the
resource-intensive nature of the matching algorithms, it is
desirable to prune the search space as much as possible,
while being careful not to dismiss valid matches. Several
types of pruning criteria were tested: image length, image
area, aspect ratio, number of ascenders and descenders, and
number of black-to-white transitions in a cross-section of the
image.

The first pruning method used the assumption that words
from the same class will have similar lengths in terms of
the widths of their bounding boxes. Thus, the following
constraint was used to determine whether a given word is a
possible match for a template:

1

α
≤ templatelength

imagelength
≤ α (1)

Table 1 shows the results obtained with the similar length
pruning constraint: Recall is the number of relevant words
that were left after pruning at a given threshold value di-
vided by the total number of relevant words. (a word image
is relevant to the query if it has the same ASCII translation.)
Precision is the percentage of relevant words in the returned
words. % Returned is the average percentage of word im-
ages left after pruning at the corresponding threshold (to-
tal word images before pruning: 2381). Ideally one would
like to maximize precision without lowering recall too much.
Due to the variations in handwriting, words belonging to the
same category can often have quite different lengths, so this
pruning method is likely to discard positive matches. For



Figure 3: Page from George Washington’s manuscripts after the segmentation process. This is a low resolution
version of a larger image. Note that there is some variation in ink even in this good quality image.



Threshold β Recall Precision % Returned
4 0.996 0.014 71.06
3 0.994 0.017 58.97
2 0.939 0.024 39.31

1.5 0.863 0.037 23.27
1.2 0.644 0.054 10.84
1.15 0.473 0.052 7.98

Table 2: Pruning results for similar area constraint
(equation 2).

Threshold δ Recall Precision % Returned
4 1.000 0.012 96.56
3 1.000 0.012 90.72
2 1.000 0.015 72.03

1.5 0.951 0.025 48.64
1.2 0.737 0.039 24.36
1.15 0.661 0.044 18.10

Table 3: Pruning results for similar aspect ratio con-
straint (equation 3).

this reason, two other pruning constraints, one based on the
number of pixels forming a word (“area”) and one on the
aspect ratios of the bounding boxes, were tried:

1

β
≤ templatearea

imagearea
≤ β (2)

and

1

δ
≤ templateaspect

imageaspect
≤ δ (3)

Figure 4: Visualization of upper and lower baseline.

The first constraint asserts that words in a cluster have sim-
ilar areas, the second one asserts that the bounding boxes of
such words have similar aspect ratios. The first assumption
obviously does not hold true if words in the same cluster
occur at different scales (words in the heading versus in the
body of a text), yet it has good pruning capabilities with-
out lowering the recall too much (the < 1 recall values even
for high thresholds are most probably due to words from
the same cluster, which occur at different scales). The sec-
ond constraint seems more sound, but since it makes a more
moderate assumption its pruning capability is not as strong
as the first constraint. These two techniques together pro-
vided a better estimate than length alone for the pruning
step (see tables 2 and 3), but still did not achieve the de-
sired high level of pruning while not removing valid words
from consideration.

To improve upon these techniques, we examined the number
of ascenders and descenders. For example, the word “exam-
ple” has one ascender, the “l”, and one descender, the “p”,

while the word “one” has neither ascenders nor descenders.
To find the number of ascenders, first the upper and lower
baselines of the main segment of the word were found. To
compute the baselines of the image, the vertical projection
of the black and white image is computed. The upper and
lower baselines are taken as the two points where the changes
in this projection are greatest. Figure 4 shows the resulting
baselines for an example image. Each connected component
above the upper baseline was then counted as an ascender.
Each connected component below the lower baseline was
counted as a descender. (To avoid counting false ascenders
and descenders, the components had to be larger than 10
pixels to be counted.)

While counting ascenders in this way was not very success-
ful, we were able to accurately determine the number of
descenders in a great number of cases. Furthermore, con-
straining the number of descenders in matching candidates
to the same number as in the template turned out to be a
good pruning technique. As a result, a combination of ex-
amining area (with β = 2), aspect ratio (with δ = 1.5), and
number of descenders (only words with the same number of
descenders are allowed) were used for the tests in the sub-
sequent steps. With these parameters, 87% of the possible
comparisons were avoided, and 94% of the relevant words
were retained. Note that this combined reduction is much
more efficient than that of its components (see Tables 2 and
3) and that lowering the area and aspect ratio thresholds
any further would drastically lower the recall.

4. NORMALIZATION
Originally (see [8, 7, 6]), images that were not discarded
by the pruning step were passed on directly to the match-
ing algorithm. We have found that applying a number of
normalization techniques before words are actually matched
can improve the accuracy of the match scores . With the
exception of the SLH and SC algorithms, all of the match-
ing algorithms presented in section 5 can only compensate
for translations of a match candidate relative to the tem-
plate. Since handwritten words in a collection are frequently
scaled4, skewed4 and rotated with respect to each other, the
success of a matching algorithm that can only compensate
for rigid translations is limited. For this reason we apply
a number of normalization techniques to match candidates.
The algorithms presented here compensate for different scale
(both directions) and skew (horizontal, i.e. word slant) in a
template and a match candidate.

4.1 Binarization and Artifact Removal
Since all of our matching algorithms work on black-and-
white images, the template and match candidate are both
binarized using a threshold which was picked by inspection.
A more robust thresholding scheme, such as automatically
selecting a threshold from a grey level histogram, may be
more robust for different collections. Figure 5(b) shows an
example output of the binarization procedure (Figure 5(a)
contains the original image).

A result of using bounding boxes as stencils to extract words
from document images are dangling descenders and ascen-

4Scaling and skewing frequently occurs independently in
horizontal and vertical direction.



(a) Original greyscale image (b) Binarized, artifacts removed (c) Slant-corrected

Figure 5: Different processing/normalization steps on a greyscale image of the word Regiment.

ders from other lines above and below which appear in the
segmented image. These artifacts negatively affect the match-
ing algorithms and thus need to be removed while preservin
the actual word. Our solution to this problem was to draw
a white box between the upper and lower baselines (see Fig-
ure 4) and compute the 8-connected components of the re-
sulting image. All connected components but the largest
one were removed from the original binarized image. Figure
5(b) shows a typical result obtained with a word-image with
a dangling descender (original in Figure 5(a)).5

4.2 Scale Normalization
The heights of the template and the candidate image were
normalized by scaling them so that the distance between the
lower baseline and the top for both images were the same.

Three normalization techniques have been tried for the width
normalization:

1. Normalization of the image width (same length of bo-
unding box): while better than no normalization, this
caused problems in cases where the segmentation rou-
tine missed the first or last letter of a word.

2. Normalization of the distance between two centroids:
two centroids were calculated for each image - one for
the left, and one for the right half of the image. This
method performed best among all of the width nor-
malization techniques.

4.3 Slant Correction
Most of the words in the George Washington collection are
slanted, but the slant angle is not consistent throughout
all documents. Therefore, we deslanted all words prior to
matching them. To do so, we estimated the slant angle of
a word from the average angle of the left edge of a word’s
first letter. These angle estimates were collected between
the upper and lower baseline of the word. With this angle
information a shear transformation was performed on the
image, in order to produce a slant-corrected version of it. A
typical result can be seen in Figure 5(c). Curls or tails on the
first letter of a word can interfere with the angle estimation,
which could be overcome by determining the slant angle at
several points in a word image, not just from the first letter.
Slight rotations or shears in the vertical direction were not
corrected so far.

4.4 Image Alignment
Before running matching algorithms on the normalized im-
ages, we roughly compensate for their relative translations

5Note that dots, such as that of the “i” in this example, are
removed as well.

by aligning their lower baselines (vertical displacement) and
leftmost pixels (horizontal displacement). The matching al-
gorithms in the next section will refine this alignment.

5. MATCHING ALGORITHMS
Five different matching algorithms were tried, ranging from
a very simple XOR computation to a much more sophisti-
cated calculation of thin-plate spline transformations. All
the matching algorithms took one image, designated it as a
template, and took each of the other images left after the
pruning step and compared them to the template to gener-
ate a match error. Then the images were ranked according
to how well they matched the template (low match errors
first).

5.1 XOR

(a) Image 1

(b) Image 2

(c) XOR-Image of Image 1 and 2

Figure 6: XOR-image for two occurrences of the
word Alexandria.

The simplest of the implemented matching techniques calcu-
lated a XOR-image, which contains white pixels in locations
where the two original images differ (see Figure 6 for an ex-
ample). The number of white pixels is counted and divided
by the total number of pixels in the XOR-image to form the
match error. This process is repeated for a number of small
translations of one of the images in order to compensate for
imperfect image alignments. The minium of the obtained
match errors is used as the final error measure. This tech-
nique was very fast, but did not produce accurate match
errors. The EDM algorithm, which has a slightly more so-
phisticated approach, performs significantly better.



(a) Example 1

(b) Example 2

(c) Example 3

Figure 7: Representative lines extracted from data sets 1, 2 and 3, respectively. Note the uniformity in ink
in the third line as compared with the other two. The difference in quality is more pronounced when the
images are displayed on a screen and also magnified when the images are binarized.

5.2 EDM
While the XOR matching algorithm provides a natural way
of assessing the similarity of two images, it has a flaw: each
mismatched pixel contributes the same amount to the error
measure. But isolated white pixels in the XOR image are
more likely to be the result of noise or small misalignments in
the compared images, whereas blobs of pixels are indicators
of a more serious mismatch, possibly due to non-negligible
differences in the two images. In order to account for this
observation, we applied the Euclidean Distance Mapping
(EDM) algorithm to the XOR images. Using this technique,
each white pixel in a XOR image contributes an amount to
the error measure, which is proportional to the distance be-
tween that pixel and the nearest black pixel. In our imple-
mentation we used the low-error EDM variant Sequential
Octagonal Distance Mapping [3].

Similar to the XOR error measure, the EDM measure needs
to be normalized in order to remove bias introduced by dif-
ferent image and template sizes. This was done by divid-
ing the EDM error by the area of the XOR image. We
calculated the EDM error measure for a number of small
translations (of the template relative to the other image) in
horizontal and vertical direction and used the minimum of
the observed error measures. The resulting word rankings
were significantly better than those obtained with the XOR
method.

5.3 SSD
This algorithm computes the correlation between an image
and a template using the Sum of Squared Differences (SSD)
technique. The smaller of the two images to be compared
was used as the template. For a number of horizontal and
vertical displacements x and y, the normalized SSD value
was computed using

SSD(x, y) =

∑
i

∑
j [I(x+i),(y+j) − Ti,j ]2√∑

i

∑
j(Ti,j)

2
√∑

i

∑
j(I(x+i),(y+j))2

(4)

where T is the template image and I is the image to be tested
against (subscripts indicate the coordinates of the pixel to
be evaluated). The normalization factors in the denomina-
tor remove the SSD-measure’s bias towards matches with
smaller templates (otherwise smaller templates would yield
smaller SSD values). The results obtained with this tech-
nique were roughly comparable to those of the XOR-image
method, but required more processing time.

5.4 SLH
All of the presented algorithms so far compare images pixel-
by-pixel. The following algorithm, which was also tested
on our collection, takes a different approach: Scott and
Longuet-Higgins [12] (SLH) suggested an algorithm which
explicitly accounts for affine transforms between two sets of
sample points. The correspondences between the sets are re-
covered and used to calculate an affine transform which best
maps one set of samples onto the other set. The estimated
affine transform is of the form

r′ = Ar + t (5)

where A is a 2 x 2 matrix and t is a 2-dimensional vector.
This type of transform can describe scaling, shear, trans-
lation in both directions, and rotation between two sets of
points. The reader is referred to [12, 6] for details on how
sample point correspondences are computed using this algo-
rithm.

When comparing two images, the first step is to reduce the
number of pixels that form the words in the images. We tried



Figure 8: Laplacian of Gaussian filter applied to the
image in Figure 5(a).

both Gaussian derivative edge-filters to extract word con-
tours and filtering with Laplacian of Gaussian filters. The
latter produced the best results (see Figure 5.4 for an ex-
ample output) and was used for our experiments in section
7.

The filtered images are used to generate two sets of sample
points I and J . These are simply all non-zero pixels in
the images. The sample points are then passed to the SLH
algorithm which recovers the correspondences between the
sets I and J and calculates an affine transform (A, t) using
least mean squares. The error (ESLH) between the affine
transformed set of points J ′ and I may be computed as
follows:

ESLH =
∑
v

(Iv −AJ ′v − t)2 (6)

where the subscript v indicates a single point in I or J ′.

Prior research using this method has provided encouraging
results [6]. However, while SLH had previously been used
on a set of images pruned with EDM (without normaliza-
tion!), here the SLH method was used as a separate match-
ing algorithm. Its performance could not reach that of the
EDM algorithm and the time needed by the algorithm was
far greater than was needed for the XOR, EDM and SSD
algorithms (see Table 7).

6. SHAPE CONTEXT
The matching algorithm based on the shape context descrip-
tor (SC) currently achieves the best results in the domain
of handwritten digit recognition [1]. This algorithm matches
images by recovering correspondences between pairs of points
on the edge contours of the two images. The correspon-
dences are used to find a transformation which maps one
image onto the other. Thus it is possible to use traditional
image matching techniques for determining the similarity
between two given images.

The similarity between pairs of points is measured using
the shape context descriptor, which describes the context
of a given point relative to the rest of the shape of which
it is a part: lines originating in the given point, equally
dividing the full 360◦ range and concentric circles around
that point with radiuses on a logarithmic scale mark the
bins of a histogram. Each histogram bin counts the number
of points on the shape contour which fall into it. The extent
of the shape context histograms (largest circle marking a
bin) is chosen so that it roughly covers the whole shape,
thus describing the “greater” context of a point within the
shape.

The point correspondences are recovered by finding an as-
signment between pairs of points which minimize a global
cost that is based on the similarity of the shape contexts of

all assigned points.

While we have had success in applying this algorithm to
other types of shapes, our tests with the freely available
demonstration code were not successful for matching word
images. An inspection on a number of similar and dissim-
ilar images showed no correlation between the similarity of
tested image pairs and the shape context cost measures. As
a result, the SC algorithm was not used in the tests described
in the next section.

The algorithm seemed to have problems finding the cor-
rect correspondences, possibly due to the coarse similarity of
words: contour points are almost always densely distributed
between the upper and lower baseline with few ascenders
and descenders. When points are picked from roughly the
same region in an image, they will have very similar shape
contexts and thus are not distinguishable. This can result in
falsely identified correspondences between neighboring char-
acters. In the case of shapes with less variation this problem
is not as pronounced. Another drawback of the algorithm
is its high computational demand, which results from the
extraction of correspondences from a cost matrix which is
of size n× n for n contour sample points. While this is not
an issue for contours which can be approximated with 100
sample points (for example digits), it becomes a problem for
words: for a rough approximation of the contour of the word
Alexandria we picked 280 random sample points, which re-
sulted in a running time of about 64 minutes on a 550MHz
PentiumIII.

7. EXPERIMENTAL RESULTS
For a set of test data on which to test the algorithms, three
sets of 10 consecutive pages were chosen from George Wash-
ington’s letters. These letters are part of the archival col-
lection at the Library of Congress, where they have been
scanned in and kept on microfiche. The images of the doc-
uments used in the experiments were scanned from the mi-
crofiche. Because these were third generation copies, there
was significant degradation in the quality of the image; un-
wanted artifacts had been introduced and image quality had
been lost. Additionally, the high JPEG compression-ratio
which was used for storing the collection introduced addi-
tional image artifacts.

7.1 Preparing the Test Sets
All documents in the 3 test sets were segmented into word
images using the techniques described in [9]. Each word
was manually tagged with its ASCII equivalent. Even for
such a small document set, this was a very tedious task
and it became very clear how useful word spotting is for
indexing documents. The segmentation algorithm was not
perfectly accurate, resulting in some cropped words. These
were treated as follows: if less than a letter was missing, the
entire word was used as the ASCII equivalent. If more than
that was missing, however, only the part of the word that
was included was used as the ASCII equivalent. If no letters
could be made out, a control character (‘#’) was used as the
word tag.

With the image tags, relevance between images could be
judged. An image was deemed relevant to another if the two
images had the same ASCII equivalent. When a ranked list



Data Set 1 D. Set 2 D. Set 3
Average Precision 0.4956 0.3365 0.7338
R-Precision 0.4852 0.3319 0.6846

Table 4: Comparison of recall-precision scores (us-
ing ‘affine” normalized EDM for matching) across
the three data sets.

XOR SSD EDM SLH
Average Precision 0.5414 0.5266 0.7338 0.4243
R-Precision 0.5011 0.4706 0.6846 0.3846

Table 5: Comparison of recall-precision scores for
the four matching algorithms.

of matches was returned by one of the matching algorithms,
recall-precision scores were computed.

After running tests on the three data sets, it became ap-
parent that two of the sets of 10 pages were of extremely
low quality and did not allow any of the matching algo-
rithms to work well. Figure 7 shows three typical lines, one
from each data set. Clearly, the lines from the first two
test sets are harder to recognize. These pages also caused
the most segmentation errors and difficulty in transcription.
Because the quality of the images within these two sets were
so poor, all tests reported here were run on the third set.
In addition, the third data set contained the most repeated
non-stopwords that would be useful to index and could be
chosen for tests. Table 4 shows the differences in average
recall-precision scores between the three sets.

15 words of varying lengths (2 to 14 characters) and varying
numbers of occurrences (4 to 110 appearances) were chosen
to form a test set for assessing the quality of the algorithms.
Each of the words was run through the matching algorithms
to generate a ranked list, and the average recall-precision
scores were calculated over all 15 queries. Table 5 shows
the differences in how the algorithms performed over these
queries.

7.2 Test Results
The results found in the experiments indicate that the EDM
algorithm is roughly as fast as XOR, but more importantly
is the most accurate matching method of those tested, with
recall-precision scores well above those achieved using ei-
ther SSD or SLH. This is a surprising result, since SSD is
a widely used matching algorithm in image processing and
SLH is a very flexible matching method, compensating for
affine transformations between a pair of images. Note, how-
ever, that the normalization to some extent compensates for
scale, shear and positional differences for all algorithms ex-

No Normalization With Norm.
Average Precision 0.0832 0.7338

R-Precision 0.0645 0.6846

Table 6: Comparison of recall-precision scores for
EDM with and without image normalization.

XOR SSD EDM SC SLH(half) SLH(full)
13.0 72.0 14.3 3855.1 121.4 5508.8

Table 7: Running times in seconds including nor-
malization for matching a pair of images of the word
Alexandria on a 550MHz PentiumIII. The SLH al-
gorithm was run for full- and half-size images.

(a) Matches
for Recruits

(b) Matches for
December

Figure 9: Top 8 matches from rankings, as deter-
mined by the EDM algorithm. The template is the
top ranked image in each list (Recruits and Decem-
ber respectively). The average precision values for
these two queries are 0.9526 and 0.7764 respectively.
The word images shown are the original word images
(before pre-processing). Note the wide variation in
size and also the matching error in each case.

cept SLH. In previous work on good quality images it was
noticed that SLH performed better [6]. This might indicate
that the performance of SLH is sensitive to the quality of
the image.

Table 6 shows the differences in EDM performance with and
without normalization of the images to be matched. The
results clearly indicate the importance of normalization, es-
pecially for images of poor quality.

Table 7 shows the time required to perform a single compari-
son using each algorithm. Note that these times include the
time required for image normalization for each algorithm,
which explains why the cost of the EDM and XOR algo-
rithms is about the same.

7.3 Test Summary
The above results indicate that normalization is an impor-
tant step for achieving good performance. Further, the
“affine” normalized EDM algorithm achieves about 73% av-
erage precision on documents with reasonable quality. The
success of EDM could not have been predicted by previous
work in image matching. When the scanned images are of
really poor quality the precision falls further. This indicates
that the simplest way of improving the performance of the



algorithms is to produce good quality scans in the first place.

Some insight into possible improvements in the EDM algo-
rithm can be gathered by viewing the results in the ranked
lists presented in Figure 9. One observation is that the last
entry in the list for “December” is actually the same word
image as the second entry in the “Recruits” list. Thus, in
an actual implementation of the matching algorithms, where
word classes were to be formed, the “Recruits” ranked eighth
in the “December” list would not be included in the “De-
cember” word class, as it appears more highly ranked in an-
other list. By gathering these ranked lists into actual word
classes, the recall-precision scores could be improved. Other
possibilities are discussed in the next section.

The EDM algorithm has been used to create an example im-
plementation for word indexing on a small set of documents.
The demonstration can be visited at http://ciir.cs.umass
.edu/research/wordspotting. Note that the demonstra-
tion does not constitute a complete implementation, its pur-
pose is rather to illustrate the idea of word spotting.

8. FUTURE WORK
Several directions to continue the work in this area have al-
ready been proposed. These fall into three categories: prun-
ing and normalization methods, additional testing, and im-
plementation of other matching algorithms.

We consider the pruning and normalization steps far from
finished. Pruning is a crucial part of the word spotting pro-
cess. In order to allow the approach to scale to large docu-
ment collections, more efficient pruning techniques must be
developed: as the number of words n in a collection grows,
the number of possible word pairs grows with O(n2). An
efficient pruning technique should be able to quickly reduce
the set of possible matches, so that the remaining set is
only of size O(n) or slightly worse. Pruning methods with
this characteristic and high recall-values still remain to be
found. We are currently implementing a demonstration with
the EDM algorithm for a test set of 100 documents. This
will provide further insight into scaling issues.

This work showed the importance of normalization for match-
ing a pair of images. Some of the techniques presented here
are empirical, for example image binarization with a manu-
ally selected threshold. These processes will be automated
in order to minimize the need for fine-tuning by the user
of an implemented system. Finally, we are currently inves-
tigating a number of techniques for matching word images
and hope to further improve the current results.

9. CONCLUSION
There are two problems central to indexing large collections
of handwritten documents in the presence of faded ink, scan-
ning and compression artifacts: the segmentation of pages
into words (largely solved by the scale-space techniques dis-
cussed in [9]) and the matching of word images in order
to build word clusters. The results here indicate that nor-
malization is extremely important in achieving good per-
formance - this is to be expected given the quality of the
images. EDM, the best performing algorithm, gives roughly
73% average precision on documents with reasonable qual-
ity. When the scanned images are of really poor quality the

precision falls further. This indicates that the simplest way
to achieve good results is to produce good quality scans in
the first place.
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