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Abstract

For the transition from traditional to digital libraries, the
large number of handwritten manuscripts that exist pose a
great challenge. Easy access to such collections requires
an index, which is currently created manually at great cost.
Because automatic handwriting recognizers fail on histori-
cal manuscripts, the word spotting technique has been de-
veloped: the words in a collection are matched as images
and grouped into clusters which contain all instances of the
same word. By annotating “interesting” clusters, an index
that links words to the locations where they occur can be
built automatically.

Due to the noise in historical documents, selecting the
right features for matching words is crucial. We analyzed
a range of features suitable for matching words using dy-
namic time warping (DTW), which aligns and compares
sets of features extracted from two images. Each feature’s
individual performance was measured on a test set. With an
average precision of 72%, a combination of features outper-
forms competing techniques in speed and precision.

1. Introduction

With the widespread use of computers and the Internet,
libraries and institutions would like to make their collec-
tions of handwritten historical manuscripts available online
or on digital media, such as DVDs. Due to the vast amounts
of information contained in such collections, convenient ac-
cess can only be achieved by generating some sort of index,
very much like in the back of a book.

Since the current approach, manual transcription and in-
dex generation from the transcript, is extremely expensive
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and time-consuming, automatic approaches would be favor-
able. However, due to the typically significant degradation
present in historic documents (faded ink, smudges, etc.; see
[7] for examples) traditional handwriting recognizers based
on Optical Character Recognition (OCR) do not perform
well on this task.

The word spotting idea has been previously proposed as
an alternative solution to this problem for single-author doc-
ument collections [4, 5]. The approach is to segment pages
into words, match the words as images, and use the match
scores to cluster word images. Each word image cluster
contains instances of the same word throughout the ana-
lyzed collection. By tagging a number of the resulting clus-
ters, a partial index can be constructed for the collection.

We believe that the problem of deciding whether two
given words are the same is easier than the recognition of a
degraded handwritten word. In this work we present the re-
sults of our investigation into features which can be used for
successful word image matching. In the following section
we put our work in context with previous research efforts.
Section 3 briefly explains the word spotting framework and
the basic matching algorithm we use before we present the
features we have tried in section 4. After presenting experi-
mental results in section 5 we conclude with a summary and
an outlook on further research.

2. Previous Work

The work by Tomai et al. [8] has shown the difficulty
of historical handwritten manuscript recognition. Their
goal was to produce a word-by-word mapping between a
scanned document image and a manual transcript of that
document. This would allow transcription words to be ex-
actly located on a page. For each line of the document, mul-
tiple segmentation hypotheses are generated and the seg-
ments recognized by an OCR. The recognizer is using a lim-
ited lexicon, which is obtained from the perfect transcript.
Even at a lexicon size of at most 11 words, the recognition
performance was poor. This clearly shows that OCR is not



a viable option for historical manuscript recognition.
The word spotting idea for handwritten manuscripts was

initially proposed by Manmatha et al. [4, 5]. They presented
preliminary work on matching techniques and “pruning”
methods, which can quickly discard unlikely matches for a
given word by using simple word features such as the aspect
ratio of a word’s bounding box. Extensions to the matching
algorithm and partial results on three data sets of 10 pages
each from the George Washington collection can be found
in [2].

In [3], matches for a user-provided template word im-
age are searched for in each line of several pages using
dynamic time warping on a number of features. This line
based approach is expensive since the line is not segmented
into words and the word has to be searched for at every pos-
sible position in the line. A number of heuristics are used to
limit the search along the lines and also to re-orient portions
of lines for matching. In addition, the matching algorithm
aligns each feature using a separate dynamic time warp and
combines the results heuristically. This means that for the
same word-line pair, each feature may produce a different
alignment. They provide results for 4 hand-picked queries
with multiple templates (examples) on the Archives of the
Indies - it appears that the best result for any individual word
template has a precision of 0.4 or less. In this paper on the
other hand, we correctly align the entire feature vector si-
multaneously so as to produce a common alignment over
all feature vectors and also show much better results.

3. Matching Algorithm

The word spotting idea is to use word image matching
results for building clusters, which contain words with the
same ASCII-equivalent. At the current stage of our project,
our research is solely focused on word matching techniques
and no clustering is performed. Instead, every image in a
given collection of documents (George Washington’s hand-
written manuscripts in our case) is treated as a query, which
is used to retrieve a list of image matches from the collec-
tion, ranked by the match score. The following is an outline
of the current system (see [7] for a more detailed explana-
tion):

1. Segment each page in the collection into words (see
[6] for a detailed explanation) and preprocess each seg-
mented word image.

2. For each imaget in the collection:

(a) Determine the set of imagesP which have an
appearance similar tot, based on some features
that can be quickly calculated (e.g. aspect ratio
of bounding box). This is thepruning step.

(b) Compare imaget against all images in the setP .

(c) Sort images inP by their match score and build
a ranked list of results.

Analyzing ranked result lists is a common task in the infor-
mation retrieval community, and tools that calculate widely
used statistics, such asaverage precisionandR-precision,
are readily available. We used thetrec eval program to
judge the effectiveness of the features we present here.

Our matching algorithm uses dynamic time warping to
align and compare sets of features which have been ex-
tracted from the matched images. A single feature vector
consists of one feature value per column of the image it
is calculated for. For example, if imageA = (a(i, j)) is
wA pixels wide, a featuref(A) would be a vector of length
wA:1

f(A) = (f(a(1, ·)), f(a(2, ·)), . . . , f(a(wA, ·))). (1)

The dynamic time warping matching algorithm simulta-
neously aligns twosetsof feature vectorsFA andFB , which
are extracted from the imagesA andB (FB similarly):

FA = (FA(1, ·), FA(2, ·), . . . , FA(wA, ·)), (2)

where every entryFA(x, ·) is ad-dimensional vector con-
sisting of all extracted feature values for image columnx.
That is, FA and FB consist ofd individually calculated
features that will be aligned together by the dynamic time
warping algorithm. The matching error2 for matching im-
agesA andB is defined as

merr(A,B) = merr(FA, FB) =
1
l
DTW (wA, wB), (3)

wherel is the length of the warping path recovered by the
dynamic time warping algorithmDTW (·, ·), which uses
the recurrence equation

DTW (i, j) = min

DTW (i − 1, j)
DTW (i, j)
DTW (i, j − 1)

 + d(i, j), (4)

d(i, j) =
d∑

k=1

(FA(i, k) − FB(j, k))2. (5)

In the following section we present a number of features
that we used for matching words as images, using the above
dynamic time warping algorithm.

4. Features

We have analyzed the performance of a number of fea-
tures for use in conjunction with the DTW matching algo-
rithm. Here we describe a selection of the more useful fea-
tures, some of which have been previously reported in the

1The constraint - which is implied by the notation here - that every
feature value is calculated strictly from the pixels in the corresponding
image column can be relaxed.

2Matchingscorescan be obtained fromerrorsby negation.
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literature (e.g. see [1, 3]). Their performance, when used
for matching word images, is analyzed in section 5.

Features are extracted from preprocessed rectangular
word images, which are slant/skew-normalized and do not
contain ascenders and descenders from other words. Some
features are sensitive to translations along the vertical axis.
For this reason, each image is padded on the bottom or top
in order to shift the lower baseline to a position, which
breaks the image into two areas at a ratio of 2/1. Figure
1 shows a typical result of this processing. All feature plots
presented in this work are extracted directly from this im-
age.

Figure 1. Preprocessed example image with
upper and lower baseline displayed.

Comparability of the feature values across multiple
words is ensured by normalizing the feature range to[0, 1].
The individual matching performance of the features when
used with the dynamic time warping algorithm is analyzed
in section 5.

4.1. Single-Valued Features

All of the features which are described in this section are
single-valued, i.e. one scalar value is calculated per column
in the original image.

Figure 2. Normalized projection profile fea-
ture. All feature values are inverted for vi-
sualization purposes.

Projection Profile Each feature vector value is calculated
by summing over the pixel values in the corresponding im-
age column. Figure 2 shows the plot of a typical feature
vector.

Partial Projection Profile The three partial profiles in
Figure 3 result from calculating projection profiles for three
horizontal strips in the original image: above, between
and below both baselines. A single normalization factor is
used for all of the three profiles, because the top and bot-
tom strip can exhibit low variation (words with no ascen-
ders/descenders). If all profiles would be separately normal-
ized, slight errors in the baseline position estimation could
seriously affect the result.

(a) above baselines.

(b) between baselines.

Figure 3. Partial projection profile features
(lower profile omitted).

Upper/Lower Word Profile Upper/lower word profile
features are computed by recording, for each image column,
the distance from the upper/lower boundary of the word im-
age to the closest “ink” pixel. If an image column does not
contain ink, the feature value is computed by linear inter-
polation between the two closest defined values. Figure 4
shows two typical profiles (feature values are inverted).

(a) lower word profile.

(b) upper word profile.

Figure 4. Word profile features.

Background to Ink Transitions This feature (see Figure
5) records, for every image column, the number of transi-
tions from the background to an “ink” pixel (determined by
thresholding).

Figure 5. Normalized number of background-
to-ink transitions feature.

Grayscale Variance The normalized variance of the
grayvalue intensities in every image column is recorded for
this feature (see Figure 6).
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Figure 6. Normalized variance of column pixel
intensities feature.

4.2. Feature Sets

All of the following features are multi-variate, i.e. a fixed
number of values is calculated per image column.

Gaussian Smoothing The original image is smoothed
with an isotropic Gaussian kernel and resized to a generic
height. Each line of the resulting image is now viewed as
a separate feature. Figure 7 shows the feature set extracted
from the original in Figure 1 (feature values are displayed
as grayscale intensities).

Figure 7. Gaussian-smoothed image ( σ = 4
pixels), resized to generic height (15 lines).

Gaussian Derivatives Similar to the feature set obtained
from Gaussian-smoothing, these two sets are obtained from
convolving the input image with a horizontal/vertical par-
tial derivative of a Gaussian kernel. These filters respond to
edges in the original image, which are widely used as fea-
tures, because they can usually be reliably located. Figure 8
shows the resulting feature sets after convolution with hor-
izontal/vertical derivative kernels and resizing to a generic
height.

(a) with horizontal partial derivative Gaussian kernel.

(b) with vertical partial derivative Gaussian kernel.

Figure 8. Images convolved with Gaussian
partial derivative kernels ( σ = 4 pixels), then
resized to generic height (15 lines).

5. Experimental Results

The features presented above have been used with the
dynamic time warping algorithm for word image retrieval

on a subset of the George Washington manuscript collec-
tion. 15 images from that collection of 2381 words were
used to retrieve ranked lists of similar word images3. In or-
der to cut down on the number of comparisons, a number of
simple features (such as the aspect ratio of the image bound-
ing box) where used to rule out unlikely matches. This pro-
cess reduces the set of image pair comparisons to 12.57% of
its original size, while retaining 90.33% of the true positive
matches in the reduced set.

After the test runs, thetrec eval program was used to
compute average precision and R-precision scores for the
results (we refer the reader to standard information retrieval
literature for an explanation of these statistics). Table 1
shows (among other things) each individual feature’s per-
formance on the set of 15 queries. Since the data set
was preprocessed differently, the combination results dif-
fer from those reported in [7]. Also, the results for EDM
have been adjusted as described in that work.

Among the single-valued features, theupper word pro-
file feature clearly performs best with about 64% average
precision. The two next best features (projection profile
andupper projection profile) follow at a significant distance
(both about 50%), but still perform well. Not surprisingly,
the lower projection profilefeature comes in last (25%), a
confirmation for the perceived low level of information con-
tained in the region of the word below the lower baseline:
only words with different descender characteristics can be
distinguished by this feature. The different levels of infor-
mation content in the upper and lower part of words can also
be noticed in the difference in average precision achieved
by theupper and lower word profilefeatures. Thelower
word profileperforms better than thelower projection pro-
file, since it also collects information from above the lower
baseline.

Among theFeature Setruns, which use responses to
Gaussian- and Gaussian derivative-kernels as features, the
Gaussian Smoothingfeature performed best (62.78%). The
good performance of all three of these features can be at-
tributed to the great amount of information that they con-
tain: an approximate reconstruction of the original word
can be easily achieved and is likely to be identifiable by
a human reader. The difference in performance between the
vertical derivativeresponse feature and the two others can
be explained by the lower stability of image locations in
horizontal direction in the vertical derivative response.

To test the matching performance based on a combina-
tion of features, two runs with the best 4 and 3 features
of theSingle-FeatureandFeature Setruns were performed
(Upper Proj. Profilewas not used because of its similar-
ity to Projection Profile). Each feature vector in the com-
bined run was constructed by merging corresponding en-
tries of all feature vectors into multi-variate entries. The

3The same set was analyzed in [2].
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Test Run Description Avg. Prec. R-Prec. Prec@5 execution time

Projection Profile (∗) 50.29 45.02 58.67 1.48
Upper Projection Profile 49.91 49.26 52.00 1.15
Middle Projection Profile 30.83 26.47 42.67 0.95
Lower Projection Profile 24.85 20.59 17.33 0.96Single-Feature
Upper Word Profile (∗) 64.29 58.07 69.33 1.48
Lower Word Profile (∗) 42.99 41.69 53.33 1.48
Bg./Ink Transitions (∗) 42.46 44.49 38.67 1.37
Graylevel Variance 37.88 36.27 46.67 1.62
Gaussian Smoothing (∗∗) 62.78 57.26 73.33 1.42

Feature Set Gauss. Horizontal Der. (∗∗) 59.63 53.22 68.00 1.74
Gauss. Vertical Der. (∗∗) 52.49 51.04 62.67 1.42
(features marked with∗) 72.56 65.17 77.33 1.68Feature Combinations
(features marked with∗∗) 67.31 64.02 72.00 2.42
XORa 54.14 50.11 n/a 13

Previously SSDa 52.66 47.06 n/a 72
Reported [2] SLHa 42.43 38.46 n/a 121.4

EDM 67.67 62.85 74.67 14.3

Table 1. Performance statistics (all in percent) and execution time (in seconds, for one image pair) of
various word matching algorithms.

first combined run (∗) performs best (72.56%), which can
be attributed to the higher redundancy present in the filter
response features.

The best combination run (∗) not only outperforms pre-
viously reported results [2] (72.56% vs. 67.67%), but it
is also faster in execution time. Therefore, the feature-
based matching approach based on dynamic time warping
is clearly the best choice.

6. Conclusion

We have presented a number of features suitable for
word image matching using the dynamic time warping al-
gorithm. Each feature’s individual matching performance
on a set of 10 pages has been analyzed and we showed the
increased benefit of combining the features, which yielded
performance superior to previously published results in both
precision and execution time.

The current feature combination assigns uniform
weights to all features. We hope to further increase the
matching precision by training weights for an improved fea-
ture combination. Also, with a successful matching algo-
rithm at hand, we can now tackle the scalability issues in
the word spotting project: we are currently working on im-
proving our pruning mechanisms so we can move to larger
data sets.

aPrec@5 could not be calculated, since ranked result lists were not
available.
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