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Abstract. Training and evaluation of techniques for handwriting recog-
nition and retrieval is a challenge given that it is difficult to create large
ground-truthed datasets. This is especially true for historical handwrit-
ten datasets. In many instances the ground truth has to be created by
manually transcribing each word, which is a very labor intensive pro-
cess. Sometimes transcriptions are available for some manuscripts. These
transcriptions were created for other purposes and hence correspondence
at the word, line, or sentence level may not be available. To be useful
for training and evaluation, a word level correspondence must be avail-
able between the segmented handwritten word images and the ASCII
transcriptions. Creating this correspondence or alignment is challenging
because the segmentation is often errorful and the ASCII transcription
may also have errors in it. Very little work has been done on the align-
ment of handwritten data to transcripts. Here, a novel Hidden Markov
Model based automatic alignment algorithm is described and tested. The
algorithm produces an average alignment accuracy of about 72.8% when
aligning whole pages at a time on a set of 70 pages of the George Wash-
ington collection. This outperforms a dynamic time warping alignment
algorithm by about 12% previously reported in the literature and tested
on the same collection.

1 Introduction

Off-line handwriting recognition and retrieval still remains an unsolved problem
in the general case for both modern and historical handwriting. In recent years,
there has been some work on large vocabulary datasets on both modern [17,
11] and historical documents [6, 13]. Evaluating handwriting recognition and re-
trieval techniques on large datasets requires annotated (ie. with ground truth)
large vocabulary datasets for training and testing. Creating such large anno-
tated datasets is challenging. For large modern datasets (like the IAM database
[10]) this has been achieved by having a number of different people copy out
in a specified manner articles that they have been provided. Such restrictions
include requiring people to use a ruler while writing and to make sure that each
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line corresponds to a line in the original article. Deriving word by word cor-
respondences from the given line by line correspondences is not that difficult
especially for clean modern databases like the IAM dataset [10]. The situation
is more challenging with historical handwritten documents. In many situations
the only text that is available is the handwritten one and the creation of ground
truth requires a labor intensive process of manually transcribing each word. This
is for example, how the publicly available George Washington dataset of 20 hand-
written pages [6] was produced. However, this is a very time consuming process.
Given the repetitive boring nature of the task errors are also produced during
the transcription process.

For some historical documents an electronic transcription is sometimes avail-
able 1. These may be scholarly transcriptions made for use in historical studies
or other related endeavors. For example, electronic transcripts for a portion of
George Washington’s papers 2 are available from the Library of Congress. The
alignment between the scanned images and the transcriptions is not available.
That is we do not know the correspondence between the words or lines in the
scanned image and the words or lines in the transcript. In many cases the situ-
ation is even worse and we do not accurately know which pages line up. This is
because each letter that in Washington’s papers is transcribed as a unit. On the
other hand in Washington’s manuscripts, a letter often ends halfway on a page
and a second letter begins right after that 3. An automatic procedure to align the
words on the transcript with the words on the handwritten page would be very
useful but is very challenging to do. This may be done for example by automat-
ically segmenting the handwritten words and then trying to find an alignment
between the segmented boxes and the words in the transcript. If there were
no errors in the segmentation or transcription, a simple linear alignment would
suffice. That is, by assigning the first transcript word to the first word-image,
the second transcript word to the second word-image and so on. This alignment
assumes the start and end points are specified. In practice errors in segmenta-
tion, or transcription ensure that this approach will not work. The segmentation
errors produced make linear alignment impractical. This will happen with any
practical segmentor for even a low rate of segmentation errors throws off a linear
alignment and would produce useless training/evaluation data. Another source
of error comes from words which are broken up at the end of the line and contin-
ued on the next page. A segmentor would treat these as two words while in the
transcript they only occur as a single word. Besides segmentation errors, there
may also be errors in the transcriptions. These errors may occur because of a
mistake on the part of the transcriber (historical documents are sometimes hard
to decipher) or for example because the transcriber expanded an abbreviation
in the original document.

1 Printed transcriptions pose an even greater challenge since optical character recog-
nition errors will also have to be taken into account during alignment.

2 There are actually multiple writers in this collection for George Washington em-
ployed secretaries to help him with his work

3 This is probably because these are copies of the actual letters that were sent out.
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Here we propose a new algorithm to align the output of an automatic word
segmentor on a handwritten page with a transcript. The data we have consists of
a set of pages from George Washington’s manuscripts. Each page is automatically
segmented using the automatic scale space segmentation algorithm reported in
[9, 8]. It is shown in [8] that for segmenting historical documents, this algorithm
outperforms a gap metrics based algorithm. We also have a transcript corre-
sponding to each page of the manuscript which has been generated by manually
labeling the words. Our goal is to assign one or more words from the transcript
to each of our automatically segmented word-images. Fig 1 shows an illustration
of alignment for two different lines. Each word image is assigned to one or more
transcript words. In the case of oversegmentation (or fragmentation), we wish to
assign the same transcript word to all fragments of the word image. In the case
of undersegmentation (or multiple words in a box), all corresponding transcript
words should be assigned to the bounding box.

(a) Alignment: Notice how we deal with the oversegmented word “Instructions”.

(b) Alignment: Notice how we deal with the undersegmented words “You” and “are”.

Fig. 1. Two automatically segmented lines and transcript alignments.

We treat the problem as one of aligning two sequences - a sequence of errorful
word images and a sequence of words from the transcript. The alignment uses
a linear Hidden Markov model and is solved using the Viterbi algorithm to
produce the most likely sequence. The HMM models the probability of generating
(observing) the word images given the words. The transition model accounts for
segmentation errors. The algorithm produces an average alignment accuracy
of about 72.8% when aligning whole pages at a time on a set of 70 pages of
the George Washington collection. This outperforms a dynamic time warping
alignment algorithm (by 12%) previously reported in the literature and tested
on the same collection.

Sequence alignment problems have been solved before in a number of lan-
guage technology areas and bioinformatics. For example, HMM’s have been used
for sequence alignment in speech recognition [15], the alignment of synthesized
speech with speech [7], the alignment of speech recognition output with closed
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captions in video [12], machine translation [1] and bioinformatics [2] and for
aligning parallel corpora in machine translation [4]. For print OCR [3] created
groundtruth by using a machine readable description to print the document and
then matching character bounding boxes with bounding boxes derived from a
scanned image of the document. [18] aligned an imperfect transcript obtained
from a scanned image of a printed page with the characters in unsegmented text.

There has, however, been little work in aligning handwritten text to tran-
scripts. Tomai et al. [16] assume that a line by line correspondence of the tran-
script and handwritten line is provided and that a word by word alignment is
required. They use a handwriting recognizer to produce a ranked list of words
from a vocabulary for each recognized word image. Different segmentations are
then made of each line and the segmentation that has the highest probability,
given the line transcript, is selected. Kornfield et al. [5] consider the problem of
alignment when line by line correspondences are available and also only when
page by page correspondences are provided. They show that the first case is
much easier than the second case. They treat word images and transcripts as
two time series and then use dynamic time warping to align them.

The rest of the paper is organized as follows: Section 2 introduces the idea
of using an HMM to align text with handwritten documents. Then, section 3
describes the the two components of our observation model. Next, we discuss the
transition model in section 4. Datasets are discussed in 5. Experiment results
are reported in the next section. Finally we conclude the paper.

2 Using a Hidden Markov Model to Align Text

Let H be a handwritten page. Let S1, . . . , Sx be a sequence of random variables
corresponding to the word-images from H. Let the transcript of H be of length
y, this is a sequence of words corresponding to near-perfect segmentation. Given
that we have some knowledge about the types of errors that the automatic
segmentor produces, our goal is to assign one or more transcript words to each
Si, thus aligning the transcript to the document. To do this we construct the
Hidden Markov Model shown in Fig. 2, where the hidden variables are S1, . . . , Sx,
and the observed variables are the feature vectors, F1, . . . ,Fx, extracted from
each of the word-images (the features are the same as described in [6]). The full
joint distribution for our HMM is given by:

P (S1 = s1, . . . , Sn = sn,F1 = f1, . . . ,Fn = fn) (1)

=

n
∏

i=1

P (Si = si|Si−1 = si−1)P (Fi = fi|Si = si) (2)

After constructing our HMM in this way, we run the Viterbi algorithm to
decode the sequence of assignments to each of our Si, thus assigning one tran-
script word to each of the word-images. After this, a postprocessing step may be
employed to assign more than one transcript word to some of the word-images
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(this is needed in the case of undersegmentation). This postprocessing step is
not discussed in this paper.

The next sections describe the two components of our HMM: the observation
model and the transition model.

Fig. 2. Graphical model of Hidden Markov Model used for Alignment

3 Observation Model - Feature Likelihoods

Let fi be the feature vector corresponding to the the random variable Si. Our
feature vector is 27 dimensional. It is the same set used in Lavrenko et al [6]
and consists of scalar features like length of the word or the number of ascenders
as well as profile features. Profile features include projection profiles and upper
and lower profiles. To obtain a constant length representation, a discrete Fourier
Transform is computed over the profiles and only the low order coefficients are
used. For more details on the features used see Lavrenko et al [6]. For every vo-
cabulary word wj in our transcript, we compute the feature-likelihood P (fi|wj),
which is a multivariate normal distribution give by:

P (fi|wj) =
exp

{

− 1

2
(fi − µw)T Σ−1

w (fi − µw)
}

√

2DπD|Σw|
(3)

with mean µw and covariance matrix Σw. |Σw| is the determinant of the
covariance matrix, and D represents the number of features extracted for each
of the word images, in our case D = 27.

The next step is to estimate µw and Σw. To do this, we use a training
set where the word images boxes are manually corrected (see section 5 for
more on experimental datasets). We also need a transcript for each document
- the words from which form our vocabulary. The transcripts, along with the
manually corrected word-images provide us with a set of pairs in the form
{word-image,ASCII-annotation}. If we let the length of our feature vectors be k,
then µw is a vector of length k containing the mean of all of the feature vectors
extracted from word images that have been labeled wi. In other words, for each
word wi in our vocabulary, we extract a set of feature vectors, gw,1, . . . ,gw,k from
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the training word images that have been labeled with w. Then µw is computed
as follows:

µw[d] =
1

k

k
∑

i=1

gw,i[d], d = 1, . . . , D (4)

where d is a dimension of the feature vector.

The covariance matrix Σw can only be estimated accurately for wj if there is
a sufficient number of word-images in our training set which have been annotated
with wj . Unfortunately, this is never the case and we approximate the covariance
matrix using one value, Σw ≈ σavg ∗I, for all words. I is the identity matrix and
σavg is the mean feature variance given by the following:

σavg =
1

D

D
∑

d=1

(

1

Ntr − 1

Ntr
∑

i=1

(gw,i[d]− µ[d])2

)

(5)

where µ is the average of value of all feature vectors in the training set and
Ntr is the number of all feature vectors, gw,i in our training set.

Some improvements may be obtained by smoothing the probability estimates
especially when the number of training samples is small. A discussion of smooth-
ing for this particular problem requires far more space than is available here and
is, therefore, omitted.

4 Transition Model

As mentioned before, errors can be either oversegmentations, undersegmenta-
tions, missed word, or extra bounding boxes. If we have an oversegmentation
then part of a transcript word will need to be assigned to two or more adjacent
word-images. In the case of undersegmentation, two transcript words will need
to be assigned to one bounding box. Extra bounding boxes may be dealt with by
assigning a transcript word to more than one word image (as in oversegmenta-
tion), and missed-words can be dealt with the same way that undersegmentation
is. The following describes a transition model designed to support this behavior.

We can use our transition model to account for segmentation errors by as-
signing positions in our transcripts in the following way (also see Fig. 3 for an
illustration):

1. No error: Si ← wj and Si+1 ← wj+1

2. Oversegmentation: Si ← wj and Si+1 ← wj

3. Undersegmentation: Si ← wj and Si+1 ← wj+k, k > 1

Where Si is the random variable corresponding to a word image on the page
and wj is the vocabulary word at position j in the transcript.

The setting of parameters for our model is discussed in section 6.2.
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Undersegmentation

Si← wj and Si+1← wj+k, k > 1

You toare

Instructions

Orders and

Si← wj and Si+1← wj+1

No Error

Si← wj and Si+1← wj

Oversegmentation

Fig. 3. Different alignment errors and their representations in the transition model.
The dangling “are” in the undersegmentation example is not handled by the HMM
directly. It could be assigned later using a postprocessing technique not discussed in
this paper.

5 Dataset

5.1 Characteristics of the 100 Page George Washington Collection

The 100 Page George Washington Collection (GW100) is a collection of digitized
pages, where each page contains one or more letters authored by George Wash-
ington and written by a few different secretaries. The pages that comprise this
collection were sampled from different portions of the Library of Congress, which
contains roughly 140,000 pages scanned at 300 dpi. The letters were scanned from
microfilm, and are of varying quality due to the degree of blotches, bleed-through,
and faded ink which are present on every page (see Fig. 4 for an example of a
document-image).

The data that were used for the experiments comprise a set of word-images
that were automatically segmented from each of the pages in GW100. The 100
documents were randomly split into three partitions so that 20 went to a train-
ing set, 10 to the validation set, and the remaining 70 to the evaluation set.
Transcripts were manually created for each page. In addition, a transcript map-
ping to word-images (ie. the true alignment) was also created manually using
the BoxModify tool [14]. These mappings on the training and validation set were
used to estimate parameters. On the test set they were only used for evaluation.
These transcripts contain a small number of typographical errors.
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Fig. 4. Image 2360237 from the George Washington Collection. Notice the
bleedthrough, faded ink, and blotches.
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6 Experiments and Results

We now discuss the experiments and results. First, we discuss the evaluation
procedure. This is followed by a brief discussion of how the parameters are
estimated. We then evaluate the alignment algorithm on the test set and discuss
the results.

6.1 Evaluating Alignment Performance

The goal of the algorithm is to produce an ASCII labeling of word images that
can be used as training data for handwriting recognition or handwriting retrieval
algorithms, and it is important that our evaluation measure reflects this. For the
groundtruth we used a set of automatically segmented word images labeled in
the following way:

– Each correctly segmented word image is labeled with the ASCII term corre-
sponding to the word image that is contained within its bounding box.

– Each oversegmented word image is labeled with the ASCII term correspond-
ing to the word image that is contained within the sum of its parts.

– An undersegmented bounding box is labeled with each of the ASCII terms
corresponding to the word images that are contained within.

Since the output of our alignment algorithm is a labeling of word images, it is
easily compared with the groundtruth. Let B = {b1, . . . , br} be the ASCII words
in the labeling of a bounding box and let G = {g1, . . . , gs} be the corresponding
groundtruth labeling. The score for B is given by the number of matching labels
in B and G divided by the greater of |B| or |G|. Or, more precisely:

σ(B,G) =

(

r
∑

i

t(i)

)

/max(|B|, |G|) (6)

where

t(i) =

{

1 ∃j : bi = gj

0 Otherwise
(7)

A score for a set of pages is computed by first assigning a score to each
bounding box and then averaging this score for all the bounding boxes in all the
pages.

6.2 Model Parameters

The optimal values of our parameters for both the observation model (feature-
likelihoods) and the transition model were discovered separately via parameter
sweeps.

For the observation model, we performed an exhaustive search using the
training and validation set to estimate the value of σ. The optimal value was
found to be 0.1.
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Transition Model Parameters Normally, the parameters for the transition
model in an HMM can not be estimated by a simple exhaustive parameter search
because the state space can be quite large. In our case, however, we are assigning
transcript words to bounding boxes such that once wj has been assigned to
Si−1, w1 . . . wj−1 are no longer in the state space of Si. We can further shrink
this state space by assuming that undersegmentation errors involving more than
three words in one bounding box are extremely rare. Our revised state space
for Si = {wj , wj+1, wj+2, wj+3}. This leaves us with only three parameters to
estimate.

The mean percentages of oversegmentation, undersegmentation and missed
words in the training set are 0.05, 0.06, and 0.03 respectively. Our initial setting
for the transition model was based on these values as follows:

– P (Si ← wj |Si−1 ← wj) = 0.05 - Compensates for oversegmentation.
– P (Si ← wj |Si−1 ← wj−1) = 0.86 - Corresponds to correct segmentation.
– P (Si ← wj |Si−1 ← wj−2) = 0.08 - Compensates for undersegmentation and

missed words.
– P (Si ← wj |Si−1 ← wj−3) = 0.01 Compensates for undersegmentation and

missed words.

However, a parameter sweep using the training and validation set showed
that performance over the validation set was optimized by choosing:

– P (Si ← wj |Si−1 ← wj) = 0.001 - Compensates for oversegmentation.
– P (Si ← wj |Si−1 ← wj−1) = 0.998 - Corresponds to correct segmentation.
– P (Si ← wj |Si−1 ← wj−2) = 0.0008 - Compensates for undersegmentation

and missed words.
– P (Si ← wj |Si−1 ← wj−3) = 0.0002 Compensates for undersegmentation

and missed words.

It was originally expected that the parameters could be estimated directly
from the segmentation errors. This parameter sweep shows this not to be the
case. The reason for this is due to very large feature likelihood scores being
produced by the observation model. Because the features are normalized before
computing the parameters of the observation model, σavg is a very small value.
This produces a very narrow Gaussian. Thus, the likelihood score for any two
similar feature vectors may differ by a few orders of magnitude and the transition
model must compensate for this.

6.3 Results

When the algorithm was run on the test set, the mean score over the 70 pages
was found to be 72.8%. The result was compared with that in Kornfield et al.
[5]. The experimental dataset is identical to the one used in our experiments.
Alignment is performed by treating the bounding boxes and transcripts like
two time series and then using dynamic time warping (DTW) to align them.
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They evaluated their algorithm by first concatenating the words together that
have been assigned to a bounding box, and then computing the Levenshtein
distance between the bounding box and the corresponding groundtruth (this
measure is close to the measure we use for evaluation). An average score of
60.5% over all bounding boxes was reported when page level alignment was
done. Our alignment algorithm, therefore, outperforms their algorithm by about
12%. HMM’s incorporate transition probabilities which may explain the better
performance.

Kornfield et al. [5] also show that if line break information is available (i.e.
line level alignment information is provided) their performance substantially in-
creases to 74.5% (any algorithm will show a substantial improvement in perfor-
mance when the input is line aligned). Our performance given page alignments
is close to their performance using line alignments. The HMM based alignment
algorithm presented here would perform even better if line break information
were available since the alignment would be much more accurate for shorter se-
quences. Line break information is rarely available and hence using line break
information is not practical for real world problems.

7 Conclusion and Future Work

Aligning transcripts to handwritten data is useful for creating training data. We
proposed a new HMM based automatic alignment algorithm for aligning word
images and transcripts at page level. This outperformed a previously reported
algorithm using dynamic time warping. Future improvements may be obtained
by using smoothing for the probability estimates or by using better models.
Improvements in segmentation may also improve performance.
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