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Abstract

In this paper we explore different approaches for improving
the performance of dependency models on discrete features
for handwriting recognition. Hidden Markov Models have
often been used for handwriting recognition. Conditional
random fields (CRF’s) allow for more general dependencies
and we investigate their use. We believe that this is the first
attempt at apply CRF’s for handwriting recognition. We
show that on the whole word recognition task, the CRF per-
forms better than a HMM on a publicly available standard
dataset of 20 pages of George Washington’s manuscripts.
The scale space for the whole word recognition task is large
- almost 1200 states. To make CRF computation tractable
we use beam search to make inference more efficient using
three different approaches. Better improvement can be ob-
tained using the HMM by directly smoothing the discrete
features using the collection frequencies. This shows the
importance of smoothing and also indicates the difficulty of
training CRF’s when large state spaces are involved.

1 Introduction

Although handwritten document recognition is a classical
vision problem and has been researched for a long time, it
is far from being solved. Good results have been achieved
for online handwriting recognition, which takes full advan-
tages of the dynamic information in strokes obtained using
special input devices like tables. However, dynamic infor-
mation is unavailable for huge volumes of valuable hand-
written documents, for example, George Washington’s let-
ters at the Library of Congress, Issac Newton’s papers at
Cambridge University and the collection of Joseph Grinnell
in the Museum of Vertebrate Zoology at U.C.Berkeley. Ef-
ficiently accessing and reading them requires advanced off-
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line handwriting recognition techniques. Off-line handwrit-
ing recognition is a harder problem. While good success has
been achieved for small-vocabulary and highly constrained
domains such as mail sorting and check processing, large
vocabulary recognition on modern and historical data is still
a challenging task [3, 10, 5]. A lot of work in handwriting
recognition has been done at the character-level, where it is
necessary to determine character boundaries - since charac-
ter boundaries are difficult to determine this is sometimes
done by jointly segmenting and recognizing the characters.
In this project, all the data for training and testing are from
a corpus of significantly degraded historical documents –
manuscripts of George Washington. As in many other hand-
written documents, the poor quality makes character bound-
aries hard to determine. So we directly recognize the entire
word without character segmentation, as [5] did, and the
recognition problem is formulated as a problem of labelling
observation sequences on a large-vocabulary of words.

In this paper, we mainly focus on the discrete features
since we want to compare the properties of Conditional
Random Fields (CRF’s) and HMMs on this same task and
directly using continuous features for CRFs is still prob-
lematic. We first investigate using HMMs with discrete fea-
tures for holistic word recognition in historical handwrit-
ten documents, where given a sequence of discrete feature
sets a HMM estimates the most possible word sequence
that could have generated it 1. We assume that both transi-
tion probabilities and generative probabilities are subject to
multinomial distributions. However, our experiments shows
a HMM with discrete features without any smoothing for
these features doesn’t perform that well. To improve the
recognition results, one way is to use a similar but more
powerful model, such as a CRF model.

Recent research on machine learning shows CRFs have
advantages over HMMs on tasks which involve labelling se-

1CRF’s require a feature to be monotonically distributed. This is not
true of the continuous features from which we derive our discrete features.
Further it is not clear how one would smooth continuous features. For both
these reasons we restrict our study to discrete features
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quence data. On this kind of task, generative models such as
HMM define a joint probability over observation and label
sequences, which theoretically requires enumeration of all
possible observation sequences. CRFs, as conditional undi-
rected graphic models, model the conditional probabilities
of label sequences given an observation sequence. In other
words they don’t involve generating a testing observation
sequence. Furthermore, CRFs allow arbitrary dependencies
on the observation sequence and have comparable computa-
tional efficiency if dependencies within state sequences are
constrained. So in this paper, we investigate using CRFs
for this task and compare them to HMMs and maximum
entropy. We believe this is the first use of CRFs in this do-
main.

CRFs have been successfully used for many other do-
mains, e.g. part of speech tagging [6], biomedical named
entity recognition [8] and table extraction [9]. But all these
applications are over a small state space. One challenge
faced by CRFs on our task is the large amount of computa-
tion when training and decoding over the large state space
- there is a state corresponding to each word (almost 1200
states). Linear-chain CRFs have similar computation com-
plexity (although actual running times are much larger) as
HMMs through analogous model optimization and decod-
ing algorithms: CRFs use a similar forward-backward sum-
product pass during model optimization to compute expec-
tations and employ an analoge of Viterbi to decode the test
observation sequence. To accommodate this model to the
domain with a large state space, we use beam search to
purge the state set when optimizing parameters and decod-
ing observation sequences. Beam search is basically an op-
timization of best first search algorithm where only a frac-
tion of paths are kept at each level. HMMs with Viterbi
beam search [14] have been widely used in speech recog-
nition to deal with large state space problem. Beam search
methods can have a fixed width of beam or adaptive width
based on different criterations, e.g. the cost(or probability)
of each state and the K-L divergence [16]. Here, we test
and compare three kinds of beam search methods based on
N-best, ratio threshold and K-L divergence respectively.

We show on a publicly available database of 20 pages
of George Washington’s papers that beam search can dras-
tically cut down computational time without hurting perfor-
mance too much. The CRF model performs better than the
HMM model with the same discrete features and a maxi-
mum entropy model.

Besides a CRF model, another way to improve the orig-
inal HMMs with discrete features is to use an appropriate
smoothing technique to estimate the probabilities of fea-
tures generated by each word. It has been shown for a num-
ber of different tasks that smoothing can affect performance
in a substantial manner [7]. The maximum likelihood es-
timate(MLE) for a HMM is often biased when the sample

is relatively small. Smoothing using background probabili-
ties of each discrete feature plays a role in the bias-variance
tradeoff. In this way, our experiments show that the HMM
model may be made to give better results than the CRF.
This is because while CRFs are much more powerful than
HMMs, many more parameters need to be estimated. In the-
ory this can probably be solved by using a lot more training
data. Practical limitations on obtaining large amounts of
training data and computational constraints limit the use of
large state space CRFs.

The remainder of this paper organized as follows: the
next section give a brief overview of related work on hand-
writing recognition and the work on pruning state space in
graphic models. Then we describe our HMM with discrete
features for this task. In the following sections, we inves-
tigate two methods to improve our original HMM. We first
introduce CRFs, a similar but more advanced model, and its
specialization to our task. This is followed by a discussion
of three different three different kinds of beam search mod-
els that can reduce the computation required for a large state
CRF. We finally discuss smoothing techniques to improve
the performance of our original HMM. Next, we present
our experiments and conclude the report with a discussion
of the results and future work.

1.1 Related Work

Although online handwriting recognition has advanced to
the level of commercial application, offline handwriting
recognition has only been successful in small-vocabulary
and highly constrained domains [17, 13]. Only very re-
cently have people started to look at offline recognition of
large vocabulary handwritten documents [3]. Marti et al
[10] proposed to use a Hidden Markov model (HMM) for
modern handwritten material recognition. Each character is
represented using a Hidden Markov model with 14 states.
Words and lines are modelled as a concatenation of these
Markov models. A statistical language model was used to
compute word bigrams and this improved the performance
by 10%. Vinciarelli et al [3, 4]used a sliding window HMM
with an -n-gram model (up to trigrams) and demonstrated
good results on modern large vocabulary handwritten data.
Rath et al [5] focused on recognizing historical handwritten
manuscripts using HMMs with one state for each word. By
adding word bigrams from similar historical corpora they
showed that the performance could approach an accuracy
of 60%. Feng and Manmatha [11] take word recognition
as a multi-class classification problem and survey the per-
formance of a bunch of classification models on it, includ-
ing naive Bayes models with kernel density estimate, max-
imum entropy models and support vector machines. Their
experiments show that with Gaussian kernel density esti-
mate naive Bayes models outperform some more sophisti-
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cated models such as support vector machines. This is not
surprising because the Gaussian kernel density emphasizes
the local information provided by each instance, which has
been shown to be very useful in multimedia data analysis.
Boosted decision trees [15] have also been shown to pro-
duce really good recognition results on the same dataset.
Edwards et al [12] show that for Latin manuscripts one can
apply gHMMs for recognizing words. Unfortunately, their
Latin manuscripts seem to show much less variation than
the test data here.

Results from information retrieval [1] show that for print
optical character recognition (OCR), the retrieval perfor-
mance doesn’t drop significantly even for high word error
rate. By analogy although the output will not satisfy the
standard for human reading, we believe it is useful for hand-
writing retrieval based on text queries. Rath et al [19] also
demonstrate a technique based on relevance models for his-
torical manuscript retrieval which do not require any recog-
nition. Finally word spotting techniques [20] have also been
demonstrated for searching handwritten data.

2 Word Recognition with HMMs

We first test a HMM based on discrete features. As a
generative model, a HMM estimates the joint probability
of a hidden state sequence and a given observation se-
quence, which in our task are a sequence of words S =<

s1, s2, . . . , sT > and a sequence of discrete feature vectors
O =< o1, o2, . . . , oT > extracted from word images re-
spectively:

P (S,O) =
T
∏

t=0

P (st|st−1)P (ot|st) (1)

where T denotes the length of the sequences, and both
transition probabilities P (st|st−1) and generative probabil-
ities P (ot|st) are assumed to be subject to multinomial dis-
tributions. For each discrete feature in the feature vector
ot =< ot1, ot2, . . . , otm > extracted from the t-th word im-
age, we assume it is independent of others given a hidden
word st. Thus we have P (ot|st) =

∏m

i=0 P (oti|st). Given
labelled handwritten documents as training set τ , these
probabilities can be easily computed using maximum like-
lihood estimation (MLE), which gives very simple forms to
calculate them. Let w and v be two arbitrary words from
vocabulary V , the transition probabilities are calculated as:

P (st = w|st−1 = v) =
](word pair(v, w) occurs in τ)

](word v occurs in τ)

Let Iw denotes all the word images labelled as w in the
training set τ , the generative probabilities are calculated as

P (oti|st = w) =
]( oti occurs as a feature of Iw )

](all features of Iw )
(2)

The estimation of transition probabilities is done as in [5]
and includes with an averaging over the background distri-
butions of these labels to smooth the probabilities:

P̂ (st|st−1) =
1

2
P (st|st−1) +

1

2
P (st) (3)

where P (st) is the background probability of label st in the
collection τ and calculated as:

P̂ (st = w) =
1

2
·

](w in τ )

](all words in τ)
+

1

2
·

1

|V |
(4)

where |V | is the size of the whole vocabulary.
Experiments in section 6.3 show this model doesn’t per-

form that well. One way to improve the performance is to
use a similar but more advanced model. In the next section
we investigate such a model – CRF – for this task.

3 Conditional Random Fields
Framework

A CRF [6] is defined as an undirected graphical model used
to calculate the probability of a possible label sequence con-
ditioned on the observation sequence. The structure of ran-
dom fields basically could be an arbitrary graph obeying
the Markov property. Let O =< o1, o2, . . . , oT > and
S =< s1, s2, . . . , sT > denote the observation sequence
and the label sequence respectively (In general CRFs, T

need not be the same for O and S). A CRF formulates the
conditional probability of S given O as:

Pθ(S|O) =
1

Zθ(O)

∏

q

(

exp

(

∑

k

λkfk(sq,oq)

))

(5)

where feature functions {fk} are defined on any subset
of the random variables in the sequences sq ⊂ S, oq ⊂ O,
λk is learned weight for each feature function, and Z is a
normalization factor over all possible state sequences:

Zθ(O) =
∑

S∈ST

∏

q

(

exp

(

∑

k

λkfk(sq,oq)

))

(6)

In the simplest case, the graph is an undirected linear
chain among output states, where CRFs make a first-order
Markov independence assumption. Under this configura-
tion, equation (5) is rewritten as:

Pθ(S|O) =
1

Zθ(O)
exp

(

T
∑

t=1

∑

k

λkfk(st, st−1, O, t)

)

(7)
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A feature function (as distinct from an image feature) is de-
fined over the the current state, the previous state and image
features computed over the whole observation sequence.
Usually feature functions are binary predicate. For exam-
ple, assume that the only image feature used is the length of
the current word image. Then, the feature function fk is 1 if
the current state corresponds to “Washington”, the previous
state to “Colonel” and the length of the current word is 8,
else kk = 0. Note that even in the simple case the number
of weights is O(|S|2|O|).

To reduce the number of parameters estimated, we sim-
plify the model into a conditionally-trained hidden Markov
model, in which all the incoming transitions into a state will
share the same weight and only at each separate step of the
sequence we create weights for the current state and obser-
vation. In this case, the conditional probability becomes:

Pθ(S|O) =
1

Zθ(O)
exp

(

T
∑

t=1

(

∑

k

(λkfk(st, O, t))

+
∑

l

(µlgl(st, st−1))

))

(8)

The number of parameters becomes O(|S||O| + |S|2).

3.1 Inference and Training in CRFs

Inference in CRFs is done as follows: Given an observation
sequence Õ, from all possible label(state) sequences find
the one S̃ with the largest conditional probability over the
distribution of P (S|Õ). This distribution is defined by the
undirected graphic structure and the set of weights. Note
the number of possible state sequences is exponential in
the sequence length T . For an arbitrarily-structured CRF, it
is intractable to calculate the normalization factor in equa-
tion (6). In HMM-Style CRFs, the normalization factor
becomes:

Zθ(O) =
∑

S∈ST

exp

(

T
∑

t=1

(

∑

k

(λkfk(st, O, t))

+
∑

l

(µlgl(st, st−1))

))

(9)

A dynamic programming algorithm like Viterbi decod-
ing can be used to efficiently calculate the normalization
factor.

The parameters θ = {λ . . .} are estimated through opti-
mizing the model over a training set consisting of labelled
sequences, D = {O(i), S(i)}N

i=1, i.e. try to find the set of
weights maximizing the log-likelihood of the labelled se-

quences in the training set:

L =
N
∑

i=1

log(P (S(i)|O(i))) −
∑

k

λ2
k

2σ2
(10)

where the second term is a Gaussian prior over parameters
smoothing over the training data [18].

Iterative scaling [6] is a general method to optimize
parameters of CRFs and other exponential models. Sha
and Pereira [21] use the limited memory quasi-Newton (L-
BFGS) [22] method instead, which is shown to be several
orders of magnitude faster than iterative scaling. Like iter-
ative scaling, L-BFGS is also a gradient based optimization
procedure but only requires the first-derivative of the objec-
tive function. The gradient of the likelihood function is [9]:

δL

δλk

=

N
∑

i=1

Ck(S(i), Oi) −

N
∑

i=1

(

Z(O(i))
∑

t

αtΦtβ
T
t

)

−
λk

σ2

where Ck(S,O) =
∑

t fk(st, st−1, O, t) is the count of
feature k given O and S, Φt = C(st, st−1, O, t), and αt

and βt are the forward and backward vectors transferred
throughout the linear chain. That means the optimization
procedure requires forward-backward inference at each it-
eration for each training sequence. Note the computations
of forward-backward algorithm are O(|S|2T ), so when the
state space is large the optimization procedure will be ex-
tremely slow.

Here, every word is taken as a state so there could be
thousands of states. In the next section we discuss applying
beam search for CRFs to significantly speed up the forward-
backward procedure.

3.2 Training and Inference with Beam
Search

The basic idea of beam search is simple. At each stage
of the trellis for inference before passing any message to
the next stage we first purge the states at this stage and
keep only a small fraction of them. The number of states
kept is usually called the width of beam. So when using
beam search for forward-backward procedure, the number
of outgoing transitions from the current stage to the next
stage will dramatically drop. Our goal is to prune as many
as possible states while minimize the loss of performance.
To determine the states to eliminate, we need some cri-
terion. Based on different criteria for purging states, the
beam search method works differently. Note that we talk
about the probabilities of states here, but actual implemen-
tations of inference and forward-backward algorithm use
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costs, which are equal to the negative logarithm of the prob-
abilities. In the implementation of beam search, these costs
need to be converted into probabilities.

1. N-best Beam Search

The simplest way to do beam search is to sort all the
states in the current stage according to their probabil-
ities in descending order. Then only the top K states
are kept and the other states are eliminated.

2. Ratio Threshold based Beam Search

At stage i, we first determine the maximal probability
Pm

i of all the states P m
i = maxs Pi(s). Then a dy-

namic threshold is calculated based on the value P m
i :

τi =
Pm

i

K
(11)

where K is a empirically selected constant. Then all
states s′ at this stage whose Pi(s

′) < τi will be elimi-
nated.
This method doesn’t have a fixed width of the beam at
each stage and the criterion for purge is based on the
individual probability of every state. This method is
widely used with HMMs in speech recognition [23].

3. K-L Divergence based Beam Search

Pal et al [16] recently present a novel beam search
method based on K-L Divergence. The basic idea is
to approximate single variable potentials with a con-
strained adaptively sized sum of Kronecker delta func-
tions and minimize the KL divergence between the ap-
proximated distribution and its original. At each stage
of the trellis for Viterbi inference or forward-backward
procedure, the probabilities of all the states form some
arbitrary discrete probability distribution, say p. Any
subset of these states, indexed with I = {1, . . . , k},
forms some other distribution which could be approxi-
mated as a sum of weighted and normalized Kronecker
deltas, say q. The goal is to find the subset of these
states which minimize the K-L divergence between p

and q. Pal et al[16] show this K-L divergence is equal
to the negative logarithm of the sum of the probabil-
ities of the subset states. More formally, suppose we
want to find the minimal subset of states such that the
K-L divergence KL(q||p) ≤ ε, then that implies mini-
mizing |I| s.t.

KL(q||p) = − log
∑

i∈I

pi ≤ ε (12)

Now it can be solved by sorting the states according
to their probabilities in a descending order and then
selecting the states from the top until the sum of their
probabilities satisfies equation (12).

4 Word Recognition with CRFs

Using CRFs for word recognition is quiet straightforward
when the data are given as labelled handwritten documents.
Handwritten documents are segmented into word images.
Each word image is an observation and its corresponding
label is the value of its state in CRFs.

The ideal case in each instance is a labelled sentence.
However this is intractable for degraded handwritten docu-
ments because important clues for sentences, such as punc-
tuations are faded or connected with words resulting in a
failure to detect them. In our case each sequence instance is
a completely labelled page, with a length within 200 ∼ 300
words. The drawback of using pages as training instances is
that unreliable transitions between connections of two sep-
arate sentences will be involved and learned by the model.

Because both the size of the state space and the length of
sequences in our project are large, we use the HMM-Style
CRFs described by equation (8) in section 3.

Continuous image features are first extracted from each
word image based on its scalar and shape. Each continuous
feature is quantized into a fixed number of bins. The set
of discretized features of each word image is its observa-
tion representation. Details on image features are given in
section 6.1.

The model features are defined in a straightforward way.
For example fk(st, O, t) is equal to 1 if the word image at
position t is labelled as ”Fredericksburgh” and its length
is at level 10 (the highest level for our discretized im-
age features), otherwise it is zero. The transition features
gk(st, st−1) are defined in a similar manner. For example
gk(st, st−1) is equal to 1 if the word image at position t

is labelled as ”Fredericksburgh” and the previous word is
”defend”, otherwise zero.

5 Feature Probability Smoothing for
HMMs

Besides the CRF model, we explore using smoothing tech-
niques to improve the performance of our original HMM
model in section 2 - note that we are smoothing the fea-
tures here not the words as is usually done. The maximum
likelihood estimate for generative probabilities in equation
2 is prone to be bias when the sample size is relative small.
To alleviate this bias we smooth the generative probabili-
ties using background probabilities of discrete features. In
stead of a direct averaging as in [5], we tune the weight to
optimize the likelihood on a held-out portion of a training
sample. The formulation for feature probability smoothing
has a linear form as follows:

P̂ (oti|st) = (1 − λ)P (oti|st) + λP (oti) (13)
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Figure 1: A part of one segmented page in our dataset.

where P (oti) is the background probability of discrete
feature oti in the training set τ , directly calculated as the fre-
quency of oti in τ . λ is the parameter of this linear smooth-
ing and tuned through optimizing the likelihood on a vali-
dation set created from a portion of the training sample.

6 Experimental Results

6.1 Experimental Setup

Our evaluation dataset consists of 20 pages from a collec-
tion of letters by George Washington. This is a publicly
available standard dataset (see Lavrenko et al [5]). Each
page is accurately segmented into individual word images,
each of which has been manually transcribed. We don’t
lowercase transcribed words, so ”region” and ”Region” are
taken as two different words. There are 4865 words in the
corpus in total and 1187 of them are unique. Figure 1 shows
a part of a segmented page in our dataset.

We used the feature set in [5]. 27 continuous features are
extracted from each word image, which consists of 6 scalar
features(i.e. height, width, aspect ratio, area, number of de-
scenders in the word, and number of ascenders in the word)
and 21 profile-based features which are obtained through a
discrete Fourier Transform(DFT) over three time series gen-
erated from the word image, which are projection profile,
upper word profile and lower word profile. To discretize the
continuous features, two overlapping binning schemes are
used. The first divides each feature dimension into 10 bins
while the second creates additional 9 bins shifted by half a
bin size. So totally we have 52 discrete features for each
word image. Please refer to [5, 19] for the feature details.

We use word accuracy rate as our performance measure,
i.e. the proportion of the words that are recovered exactly as
they were in the manual transcript. 20-fold cross-validation
is used to get a stable performance evaluation. Each itera-
tion leaves one page for test, and trains the model over the
other 19 pages. We use the mean accuracy rate as the fi-
nal evaluation measure. Since our dataset is relative small,

many words in the test set don’t occur in any training pages
- these are called out-of-vocabulary(OOV) terms as in [5]
and cause errors of the recognition. We use two types of
mean accuracy rate – mean accuracy rate with OOVs and
mean accuracy rate without OOVs.

Since our data are from a collection of natural language
documents(letters), the frequency of words can be approx-
imated by a Zipf distribution, in which a few words have
very high frequencies, and most words occur very infre-
quently. Over our whole dataset, 681 words have only one
occurrence; 1008 words have less than 5 occurrences each
but 30 words have 1856 occurrences in total. The unbal-
ance and sparsity of training data for different words make
the problem difficult.

6.2 Tune and Compare Beam Search for Our
CRF Model

All the three kinds of Beam Search in section 3.2 require
us to experimentally decide the parameters controlling the
width of beam. For this purpose, we select two pages from
our handwritten documents and use them as a training and
a test example respectively. Even in this small dataset with
486 words in total, there are 264 states(unique words). On
average there are less than 2 instances for each state, which
means our model has been very starved for training data.
But for this project, this is the smallest unit we can use for
tuning, including more pages results in a sharp increase of
the run time.

Table 1, Table 2 and Table 3 show the results using dif-
ferent values of tuning parameters for N-best, ratio thresh-
old and K-L divergence based beam search respectively. As
the tables show the accuracy changes non-linearly with the
tunint parameters. In certain regions it is realtively insen-
sitive while in others it is very sensitive. The tables only
show some values of the parameters - mostly those very
large changes occur.

Since with comparable accuracy N-best runs much
slower than the other two methods, we did not do exper-
iments using N-best over the whole dataset. We select
K = 1.01 and ε = 0.75 as the parameters of ratio thresh-
old and KL-divergence respectively when testing over the
whole dataset.

6.3 Results on the Whole Dataset

The final test of our CRF model on the whole dataset using
CRFs with the ratio threshold takes roughly one day on a
Intel Xeon 2.80GHz machine for one test instance while
with K-L divergence it takes 18 hours. Our HMMs using
discrete features are tested on the same feature set.

Table 4 show the results on the whole dataset using CRFs
with ratio threhold based beam search and K-L divergence
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Fixed Beam Width 10 80 105 106 107 132 264
Accuracy w/o OOV 0.001 0.001 0.001 0.645 0.645 0.645 0.645
Run Time (in Secs) 60 131 140 142 142 153 2944

Table 1: N-best Beam Search with different fixed beam widths

K in Equation (11) 1.0001 1.001 1.01 1.1 1.2 1.5 2
Accuracy w/o OOV 0.505 0.518 0.645 0.645 0.645 0.645 0.645
Run Time (in Secs) 97 99 107 1127 1238 1340 1527

Table 2: Ratio Threshold Beam Search with different K values

ε in KL ≤ ε 0.9 0.8 0.79 0.77 0.75 0.5 0
Accuracy w/o OOV 0.001 0.001 0.475 0.584 0.645 0.645 0.645
Run Time (in Secs) 62 70 75 87 91 209 2944

Table 3: KL Divergence Beam Search with different ε in KL ≤ ε

Accuracy Rate with OOV w/o OOV
Maximum Entropy with discrete features (in [11]) 0.416 0.494

HMM with discrete features 0.336 0.404
HMM with discrete features after smoothing 0.504 0.595

CRFs with Ratio threshold beam search 0.417 0.503
CRFs with K-L divergence beam search 0.428 0.525
HMM with continuous features (in [5]) 0.497 0.586

Table 4: Results and comparison on the whole dataset. CRFs and Maximum Entropy cannot really be used with the continuous features
described here and so are not directly comparable with HMMs using continuous features.

based beam search respectively and a comparison with a
Maximum Entropy model and HMM models. All discrete
features for these models are the same. For the Maximum
Entropy model, the model features are defined as those in
CRFs for observational-state pairs, only observation and
state at the same position are considered (see [11] for de-
tails). From the results, CRFs with a K-L divergence based
beam search outperforms that with a ratio threshold based
beam search by a small margin. Both CRFs outperform the
Maximum Entropy model, showing the importance of tran-
sition information - CRFs have them while the maximum
entropy model does not use them. The HMM with dis-
crete features where the features are not smoothed does not
perform that well (the words are smoothed for all HMMs).
HMM performance can be improved substantially by also
smoothing the features and as can be seen this makes them
better than the CRF’s. For reference, CRFs and Maximum
Entropy use some kind of Gaussian prior for smoothing
[18]. However, we believe that the poorer performance of
CRFs is due to the substantially larger number of parame-
ters that need to be estimated. In addition all the parameters
are estimated at the same time while the probabilities for
HMM’s are estimated separately in this special case. More
training data might improve the results but there are sig-
nificant difficulties in using more training data. First, cre-
ating large amounts of training data is labor intensive and

expensive. Second, CRFs are much slower and hence this
would also require large amounts of computation. An al-
ternative approach to increasing the amount of training data
required would be to drastically reduce the state space. This
would probably require dropping the whole word paradigm
and moving to a character based approach with its atten-
dant segmentation difficulties. We have so far compared all
techniques on the same features. Continuous features can
substantially improve performance. As a point of reference
we show the performance of an HMM using continous fea-
tures modeled by a single Gaussian [5]. As can be seen,
this performs better than all the other techniques. Even bet-
ter performance may be obtained using continuous features
(see for example [11]). However, directly using continu-
ous features for CRFs is still problematic. CRFs require
the continuous features to have a monotonic distribution.
Most of the continuous features used in the paper here are
not monotonic and in general it is non-trivial to find such
features. Using the existing non-monotonic continuous fea-
tures with CRFs leads to poor performance.

7 Conclusions and Future Work

This paper is the first application of CRFs to word recogni-
tion in handwritten documents, and one where a large state
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space is involved. Because even for linear-chain CRFs the
computation is quadratic with the number of states, standard
CRFs cannot finish the training and inference procedure in
reasonable time. To make CRFs practical on this task, we
investigate different beam search methods and their perfor-
mance. We successfully integrated it with CRFs to solve
large state space problems and dramatically speeded up the
decoding and optimization procedure with minimum effect
on performance. We show that a CRF performs better than
a HMM on the same discrete feature set if the HMM is not
smoothed. However, by smoothing with background col-
lection probabilities we can substantially improve the per-
formance of the HMM over the CRF showing that a more
sophisticated model is not the only criterion for good perfor-
mance. We suspect that in this case the CRF performs more
poorly because it has many more parameters and hence may
require much more training data. One approach to solv-
ing this problem is to reduce the state space and move to
character based CRFs and we will investigate this in the fu-
ture. Other possible extensions include initializing transi-
tion weights through external data from similar text corpus,
which will improve the estimation of transition parameters
and also speed up the model optimization procedure. More
sophisticated features might also help.

References

[1] S. M. Harding, W. B. Croft and C. Weir Probabilistic Re-
trieval of OCR Degraded Text Using N-Grams, In Proc. of the
1st European Conference on Research and Advanced Tech-
nology for Digital Libraries. 1997, pp. 345-359.

[2] Eugen C. Buehler, Lyle H.Ungar Maximum Entropy Meth-
ods for Biological Sequence Modeling, In Workshop on Data
Mining in Bioinformatics of KDD01, 2001.

[3] A. Vinciarelli, S. Bengio and H. Bunke Offline Recognition
of Large Vocabulary Cursive Handwritten Text. in The Proc.
of ICDAR’03, pp. 1101-1105.

[4] A. Vinciarelli, S. Bengio and H. Bunke Offline Recognition
of Unconstrained Handwritten Texts Using HMMs and Sta-
tistical Language Models. In IEEE Transactions PAMI, vol.
26, no. 6, 2004, pp. 709–720.

[5] Lavrenko, V., Rath, T. and Manmatha, R., Holistic Word
Recognition for Handwritten Historical Documents in the
Proc. of DIAL’04, pp. 278-287.

[6] J. Lafferty,A. McCallum, and F. Pereira. Conditional random
fields: Probabilistic models for segmenting and labeling se-
quence data. In Proc. ICML, 2001.

[7] C. Zhai and J. Lafferty. A Study of Smoothing Methods for
Language Models Applied to Information Retrieval. ACM
Trans. on Information Systems, 22(2):179-214,2004.

[8] B. Settles Biomedical Named Entity Recognition Using Con-
ditional Random Fields and Rich Feature Sets. In Proc. of the
International Joint Workshop on Natural Language Process-
ing in Biomedicine and its Applications(NLPBA), 2004.

[9] D. Pinto, A. McCallum, X. Wei, W.B. Croft Table Extrac-
tion Using Conditional Random Fields In the Proc. of ACM
SIGIR’03

[10] U.-V. Marti and H. Bunke Using a Statistical Language
Model to Improve the Performance of an HMM-Based Cur-
sive Handwriting Recognition System. in the Jnl. of Pattern
Recognition and Artifical Intelligence, I 15:1 (2001) 65-90.

[11] S.L. Feng and R. Manmatha, Classification Models for His-
torical Documents Recognition. In the Proc. of ICDAR’05,
pp. 528–532.

[12] J. Edwards , Y. Whye Teh, D. Forsyth, R. Bock, M. Maire
and G. Vesom Making Latin Manuscripts Searchable using
gHMMs, In the Proc. of NIPS 2004

[13] S. Madhavnath and V. Govindaraju The Role of Holistic
Paradigms in Handwritten Word Recognition IEEE Trans. on
PAMI, vol 23, no. 2, 2001, pp. 149–164.

[14] Mosur K. Ravishankar. Efficient Algorithms for Speech
Recognition. PhD thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, 1996.

[15] N. Howe, T. Rath, and R. Manmatha Boosted Decision Trees
for Word Recognition in Handwritten Document Retrieval. In
the Proc. of ACM SIGIR’05, pp. 377–383.

[16] C. Pal, C. Sutton, A. McCallum Constrained Kronecker
Deltas for Fast Approximate Inference and Estimation. sub-
mitted to UAI 2005.

[17] Plamondon and S. N. Srihari On-Line and Off-Line Hand-
writing Recognition: A Comprehensive Survey In IEEE
Trans. on PAMI vol 22, no. 1, 2000, pp. 63–84.

[18] S. F. Chen and R. Rosenfeld. A Gaussian prior for smoothing
maximum entropy models. Technical Report CMU-CS-99-
108, CMU, 1999.

[19] T. Rath, R. Manmatha and V. Lavrenko. A Search Engine
for Historical Manuscript Images in the Proceedings of SI-
GIR’04, pp. 297 -304

[20] T. Rath and R. Manmatha Word Image Matching Using Dy-
namic Time Warping. In the Proceedings of CVPR’03, vol. 2,
2003, pp. 521–527

[21] F. Sha and F. Pereira. Shallow parsing with conditional ran-
dom fields. In Proceedings of Human Language Technology,
NAACL, 2003.

[22] J.Norcedal and S.J. Wright. Numerical Optimization.
Springer, 1999.

[23] F. Jelinek Statistical Methods for Speech Recognition MIT
Press

8


	Introduction
	Related Work

	Word Recognition with HMMs
	Conditional Random Fields Framework
	Inference and Training in CRFs
	Training and Inference with Beam Search

	Word Recognition with CRFs
	Feature Probability Smoothing for HMMs
	Experimental Results
	Experimental Setup
	Tune and Compare Beam Search for Our CRF Model
	Results on the Whole Dataset

	Conclusions and Future Work

