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Abstract

Full-text information retrieval systems have tradi-
tionally been designed for archival environments.
They often provide little or no support for adding
new documents to an existing document collec-
tion, requiring instead that the entire collection be
re-indexed. Modern applications, such as infor-
mation filtering, operate in dynamic environments
that require frequent additions to document collec-
tions. We provide this ability using a traditional
inverted file index built on top of a persistent ob-
ject store. The data management facilities of the
persistent object store are used to produce effi-
cient incremental update of the inverted lists. We
describe our system and present experimental re-
sults showing superior incremental indexing and
competitive query processing performance.

Keywords: full-text document retrieval, incre-
mental indexing, persistent object store, perfor-
mance

1 Introduction

Full-text information retrieval (IR) systems are well estab-
lished tools for satisfying a user’s information need when
the information base is a relatively static collection of doc-
uments. However, modern information management sys-
tems must be able to handle a steady influx of new informa-
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tion. Applications such as information filtering and daily
news feed services are constantly processing new docu-
ments. If IR systems are to support such applications, they
must be able to manage continually growing document col-
lections.

A prerequisite to supporting a growing document collec-
tion is the ability to update the data structures used to index
the collection. An indexing structure used by many IR sys-
tems is the inverted file index [SM83, Fal85, HFBYL92].
An inverted file index consists of a record, or inverted list,
for each term that appears in the document collection. A
term’s inverted list stores a document identifier and weight
for every document in which the term appears. The weight
might simply be the number of times the term appears in
the document, or a more sophisticated measure of the sig-
nificance of the term’s appearance in the document. Addi-
tionally, the location of each occurrence of the term in the
document may be stored in order to support queries based
on the relative positions of terms within documents.

When a batch of new documents is added to an existing
document collection, a small number of the terms in the
batch will be new to the collection, while the majority of
the terms in the batch will already have inverted lists in the
index. These lists must be updated by appending to them
the term occurrences found in the new documents. This task
is made difficult by the size characteristics of inverted lists
and the techniques used to manage them in traditional IR
systems. The inverted lists for a multi-gigabyte document
collection will range in size from a few bytes to millions of
bytes, and they are typically laid out contiguously in a flat
inverted file with no gaps between the lists.

Adding to inverted lists stored in such a fashion requires
expensive relocation of growing lists and careful manage-
ment of free-space in the inverted file. Rather than update
existing inverted lists when adding new documents, many
IR systems simply rebuild the inverted file by adding the
new documents to the existing collection and indexing the
entire collection from scratch. This technique is expensive
in terms of time and disk space, resulting in update costs
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proportional to the size of the total collection after the addi-
tion. Instead, we would prefer the cost of the update to be
proportional to the size of the new documents being added.

The INQUERY full-text information retrieval sys-
tem [TC91, CCH92] provides this desirable update per-
formance using the Mneme persistent object store [Mos90]
to manage its inverted file index [BCCM94]. The key to
providingfast incremental indexing is a unique inverted file
structure made possible by the data management facilities
of the persistent object store. Inverted lists are allocated in
fixed size objects with a finite range of sizes, limiting the
number of relocations a growing list will experience. When
an inverted list has exceeded the largest object size, addi-
tional large objects are allocated and chained together in a
linked list. Experimental results show that our system is
able to provide superior incremental indexing performance
in terms of both time and space, with only a small impact
on query processing.

In the next section we briefly describe the main archi-
tectural features of INQUERY and Mneme. In Section 3
we discuss our inverted file structure in detail, including
the motivation for the design. We present experimental re-
sults in Section 4 comparing the performance of our system
with traditional techniques. In Section 5 we discuss related
work, and we offer concluding remarks in Section 6. Con-
tributions of our work include a technique for supporting
incremental update of inverted lists in full-text informa-
tion retrieval systems, along with an empirical analysis of
a working implementation. Also, we continue to demon-
strate that data management facilities for IR systems need
not be custom built to obtain superior performance. Rather,
IR systems can be effectively supported using appropriate
“off-the-shelf” data management software.

2 Architecture

In this section we highlight some of the basic features
of INQUERY and Mneme that are relevant to this work.
Throughout the paper we will refer to the system as it is
described here as the “old” version.

2.1 INQUERY

INQUERY is a probabilistic information retrieval system
based upon a Bayesian inference network model [TC91,
CCH92]. The power of the inference network model is the
consistent formalism it provides for reasoning about evi-
dence of differing types, allowing multiple retrieval models,
document representations, and query representations to be
combined simultaneously. Extensive testing has shown IN-
QUERY to be one of the best IR systems, as measured by the
standard IR metrics of recall and precision [Har94, TC92].
INQUERY is fast, scales well to large document collections,
and can be embedded in specialized applications.

In INQUERY, document retrieval is accomplished by
combining evidence from the document collection with ev-

idence from the query to produce a ranking of the documents
in the collection. The evidence for a document collection
is pre-computed and stored as the weights and locations in
an inverted file index. During retrieval, the inverted list for
each term in the query is accessed and the evidence in the
lists is accumulated and combined as dictated by the opera-
tors in the query. The inverted list for a term is obtained by
looking up the term in the term dictionary. The term dic-
tionary is built as a hash table with open-chaining conflict
resolution. A term’s entry in the dictionary contains col-
lection statistics for the term and a reference to the term’s
inverted list. Inverted lists are stored as Mneme objects,
where a single object of the exact size is allocated for each
inverted list.

2.2 Mneme

The Mneme persistent object store [Mos90] was designed
to be efficient and extensible. The basic services provided
by Mneme are storage and retrieval of objects, where an
object is a chunk of contiguous bytes that has been assigned
a unique identifier. Mneme has no notion of type or class
for objects. The only structure Mneme is aware of is that
objects may contain the identifiers of other objects, resulting
in inter-object references.

Objects are grouped into files supported by the operat-
ing system. Within files, they are physically grouped into
physical segments. A physical segment is the unit of trans-
fer between disk and main memory and is of arbitrary size.
Objects are also logically grouped into pools, where a pool
defines a number of management policies for the objects
contained in the pool, such as how large the physical seg-
ments are, how the objects are laid out in a physical segment,
how objects are located within a file, and how objects are
created. Object format is determined by the pool, allowing
objects to be stored in the format required by the applica-
tion that uses the objects (modulo any translation that may
be required for persistent storage, such as conversion of
main memory pointers to object identifiers). Pools provide
the primary extensibility mechanism in Mneme. By imple-
menting new pool routines, the system can be significantly
customized.

The base system provides a number of fundamental
mechanisms and tools for building pool routines, includ-
ing a suite of standard pool routines for file and auxiliary
table management. Support for sophisticated buffer man-
agement is provided by an extensible buffering mechanism.
Buffers may be defined by supplying a number of standard
buffer operations (e.g., allocate and free) in a system defined
format. How these operations are implemented determines
the policies used to manage the buffer.

3 Indexing

The old version of INQUERY uses the traditional method
of indexing a document collection and building the inverted
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Figure 1: Traditional indexing process.

file [HFBYL92]. This method is referred to as the alterna-
tive scheme in [STGM94]. The process involves multiple
steps, diagramed in Figure 1. The input to the process is a
file of documents, which in INQUERY may currently be at
most 256 Mbytes

�
. Collections larger than this limit must

be broken up into multiple files. In step 1, document pars-
ing assigns an identifier to each document and extracts the
terms from the documents, stemming each term to its root
and eliminating any stop words (words too frequent to be
worth indexing). A surviving term must then be located or
inserted in the term dictionary to obtain its term identifier
and update the statistics stored there. After each document
is parsed, it is inverted in main memory and a temporary
file of transactions is generated for the document. A trans-
action consists of a term identifier, the document identifier,
and the locations of each occurrence of that term in the
document, representing the portion of the inverted list for
the term that is contributed by the document.

To convert the transactions into inverted lists, all of the
per document inverted list portions for each term must be
combined by sorting on the term identifier and document
identifier. The transaction files may be over one-and-a-half
times the size of the document files, however, so for large
(multi-gigabyte) collections, it is impractical or impossible
to combine the transactions for all of the documents into a

�
This is due to the current encoding method used for document file

byte offsets. The largest number that can be encoded is � ��� .
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Figure 2: Cumulative distributions over inverted list size
for TIPSTER volume 1, with 627072 lists and 420 Mb total.

single file. Instead, the transactions are stored in multiple
files, one for each document file.

The transaction file from each document file is sorted in
step 2, and the sorted transaction file is split one or more
times into head and tail segments in step 3. All of the
transaction files are split at the same term �
	 , such that the
head segment for each transaction file will contain terms� � ������ ��	�� and the tail segment for each transaction file
will contain terms

� � 	�� � ����� ����� , where there are � terms
in the vocabulary. The corresponding segments for each
transaction file can then be merged in step 4 to produce
a fully sorted set of transactions for the entire document
collection, broken up into multiple segments.

The final step is to build the inverted file. This is simply
a matter of reading each inverted list from the sorted trans-
actions, compressing the list, creating a Mneme object for
the list, and storing the object identifier for the list in the
term dictionary entry for the term. In step 5, the transaction
segments are processed in order and the inverted lists are
created. Obviously, steps 3 and 4 are required only when
there are too many transactions from the document collec-
tion to handle in a single file. These steps may be eliminated
when indexing smaller collections.

Since the entries in each inverted list are sorted by doc-
ument identifier, if new documents are always assigned in-
creasing document identifiers, their inverted list entries may
simply be appended to any existing inverted lists. There-
fore, adding new documents to an existing collection does
not necessarily require that the entire document collection
be re-indexed. However, it does require the ability to grow
inverted lists. Providing this functionality is non-trivial,
such that many IR systems, the old INQUERY included,
simply re-index the entire collection.

Using the full functionality of Mneme, however, we can
create a more sophisticated inverted file structure that will
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in fact support growing inverted lists. To guide this design,
we first consider some of the characteristics of inverted lists,
all of which can be derived from the early observations of
Zipf [Zip49]. Figure 2 shows the distribution of inverted
list sizes for the TIPSTER volume 1 document collection
used in our performance evaluation below (see Table 1).
For a given inverted list size, the figure shows how many
lists in the inverted file are less than or equal to that size,
and how much those lists contribute to the total file size.
Our first observation is that over 90% of the inverted lists
are less than 1000 bytes (in their compressed form), and
account for less than 10% of the total inverted file size.
Furthermore, nearly half of all lists are less than 16 bytes.
This means that many inverted lists will never grow after
their initial creation. Therefore, they should be allocated
in a space efficient manner, i.e., reserving extra space for
these lists in anticipation of growth would be a mistake.
Also, it is well known that the vocabulary will continue to
grow indefinitely [Hea78], so we must always be prepared
to create more of these small inverted lists.

Most of the inverted file size is accounted for by a
very small number of large inverted lists. These in-
verted lists will experience continuous, possibly vigorous
growth. We have also observed that these large lists have
a high probability of being accessed during query process-
ing [BCCM94], so they must be allocated in a manner that
affords efficient access.

The main extension we make to the old inverted file
structure is this; instead of allocating each inverted list in
a single object of the exact size, we allocate lists using a
range of fixed size objects, where the sizes range from 16
to 8192 bytes by powers of 2 (i.e., 16, 32, 64, …, 8192).
When a new list is created, an object of the smallest size
large enough to contain the list is allocated. A list can then
grow to fill the object. When it exceeds the object, a new
object of the next larger size is allocated, the contents of the
old object are copied into the new object, and the old object
is freed. When a list exceeds the largest object size (8192
bytes), rather than copy the list into an even larger object,
we start a linked list of 8192 byte objects. Inverted list
growth is then accomplished by appending to the tail object
in the linked list, and adding a new object to the linked list
when the tail is full.

The largest objects are each allocated in their own phys-
ical segment and managed by a large object pool. The
smallest (16 byte) objects are stored in 4 Kbyte physical
segments, 255 objects per segment, and managed by a small
object pool. The remaining objects are stored in 8 Kbyte
physical segments, where each segment stores objects of
only one size, and contains as many objects of that size as
will fit. These objects are managed by a medium object
pool.

This scheme efficiently allocates the large number of rel-
atively small inverted lists in the small and medium object
pools, limits the number of times a list will be relocated due

to growth, and most importantly, needs to access only the
tail object when growing a large inverted list, leaving the
majority of the data in the inverted file untouched during an
update.

Now, the inverted file index can be built incrementally.
To add a batch of documents to the index, we parse just
the new batch, sort the generated transaction file to cre-
ate inverted lists for the new documents, and then add the
inverted lists to the existing inverted file, creating and grow-
ing inverted lists as described above. This corresponds to
steps 1, 2, and 5 in Figure 1, with step 5 modified appropri-
ately. The first two steps are performed independently of
the existing index. They are also disk oriented operations,
with small main memory requirements. Furthermore, they
produce complete inverted lists for the new documents.
During the final step an inverted list in the index will be
updated only once, minimizing the number of costly relo-
cations. Consequently, best performance is achieved when
new documents are added to the index in the largest batches
possible, reducing the overall number of updates.

4 Performance Evaluation

To evaluate our new inverted file structure, we measured
incremental indexing speed, disk space requirements, and
query processing speed using the resulting inverted file.
For comparison, we also measured the same costs using
traditional techniques. Below we describe our experimental
platform, the test collection used, and the results of our
measurements.

4.1 Platform

All of our experiments were run as superuser with logins
disabled on an idle DECSystem 3000/400 (Alpha AXP CPU
clocked at 133 MHz) running OSF/1 V1.3. The system
was configured with 64 Mbytes of main memory and six
1.3 Gbyte RZ58 SCSI disks. The executables were com-
piled with the DEC C compiler driver 3.11 using optimiza-
tion level 2. All of the data files and executables were
stored on the local disks, and a 64 Mbyte “chill file” was
read before each batch update or query processing run to
purge the operating system file buffers and guarantee that
no inverted file data was cached by the file system across
runs. All times reported below are real (wall clock) time.

4.2 Test Collection

For our experiments, we used volume 1 of the TIPSTER
document collection, a standard test collection in the IR
community. Volume 1 is a 1.2 Gbyte collection of full-text
articles and abstracts, divided into seven main files. Table 1
gives the relevant statistics for each of the files. The first
three files contain Wall Street Journal articles from years
1987, 1988, and 1989 respectively, doe contains Depart-
ment of Energy abstracts, ziff contains articles and abstracts
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Table 1: TIPSTER volume 1 file characteristics. Terms are
new with respect to all files earlier in the table.

File Mb Docs Posts Terms

wsj87 125.5 46449 11142690 125666
wsj88 104.3 39906 9402198 54292
wsj89 36.5 12380 3260711 17293
doe 183.8 226087 17061350 119467
ziff 242.5 75180 19764843 97489
ap 254.9 84678 21701358 78475
fr 249.5 26207 23599380 134390

total 1197.0 510887 105932530 627072

from various periodicals, ap contains Associated Press ar-
ticles, and fr contains Federal Register articles. For all
indexing and query processing, we use stemming to re-
duce words to roots, and a stop words list to eliminate the
frequent words not worth indexing.

4.3 Large Updates

Our first experiment treats each of the seven files as a sepa-
rate batch update and incrementally indexes the volume one
file at a time, in the order listed in Table 1. The results are
plotted in Figure 3. For the two “per update” lines (“Old,
per update” and “New, per update”), each point represents
the time required to add the respective batch to the existing
index (the first batch creates the initial index), where the
points moving left to right correspond to the files in Table 1
moving top to bottom. The per update times are plotted
against the total number of posts in the indexed collection
after the update.

“Old” is the traditional scheme that re-indexes the entire
collection each time a new batch is added. The figure indi-
cates that the time to add a batch is proportional to the size
of the entire collection after the update. This scheme clearly
does not scale well with the size of the collection. “New” is
the new scheme which builds the inverted lists for an update
batch separately and then adds them to the existing index,
using the new inverted file structure. The time to add a
batch is more proportional to the size of the batch, yielding
incremental update times that are significantly better than
in the old scheme.

Each point for the old scheme also gives the total time
required to index a collection of the cumulative size in one
batch (since the entire collection is re-indexed). The com-
parable times for the new scheme are the cumulative times
for the incremental updates, shown as “New, cumulative”.
This plot shows that the total time to incrementally index
the entire volume in the given batches with the new scheme
is actually less than the time required by the old scheme to
index the entire volume in a single batch. This rather sur-
prising result is due to the elimination in the new scheme
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Figure 3: Per batch update times for files in TIPSTER
volume 1, plotted versus the total number of postings in the
indexed collection after the update.

of a number of sequential passes over the temporary trans-
action files. Recall from Figure 1 that in order to handle
a large document collection, the old scheme must split and
merge transaction files in steps 3 and 4. The new scheme
eliminates these steps, saving up to four sequential passes
through the large temporary files. This represents a fairly
significant constant factor and the difference in the slope of
the “Old, per update” and “New, cumulative” lines. Note
that a cumulative plot for the old scheme is not shown.
Clearly, that plot would quickly shoot up off of the top of
the chart in a super-linear fashion.

In Figure 4 we show the batch update time per posting for
the two schemes. This is the time required to add the batch
to the index divided by the number of postings in the batch.
Here we can more clearly see that the update cost of the
old scheme grows with the size of the existing index, while
the update cost of the new scheme remains nearly constant.
The large peak for the old scheme during the wsj89 update
is due to the relatively small size of the update compared
to the size of the existing collection. The slight dip for
both schemes (in Figures 3 and 4) during the fr update
occurs because the documents in fr are relatively large.
Compared to a similar size batch with smaller documents,
there are fewer document identifier/weight entries in the
inverted lists for the same number of postings, and the per
posting update cost is reduced.

4.4 Small Updates

The batches used above might be considered large for ap-
plications that support periodic updates to the document
collection. Therefore, we also measured our new scheme
on a range of small batch sizes. We used TIPSTER volume 1
for our existing indexed collection, and generated new doc-
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Table 2: Characteristics of batches built from TIPSTER
volume 2. Terms are new with respect to all batches earlier
in the table, with TIPSTER volume 1 as the base.

Batch Mb Docs Posts Terms

1 1 172 89567 443
2 2 432 176409 1053
3 4 1076 350666 1256
4 8 2012 714205 2517
5 16 3668 1438467 4758
6 32 7363 2841542 10727
7 64 12620 5760450 18770

total 127 27343 11371306 39524

ument batches from volume 2 of the TIPSTER collection,
which contains the same types of files as volume 1. To
build the batches, we selected documents from the different
file types in round robin fashion until we had built seven
batches ranging in size from 1 Mbyte to 64 Mbytes, by
powers of 2. Statistics for the batches are given in Table 2.

Figure 5 shows the time required to incrementally index
each of the batches and cumulatively add them to the exist-
ing index. The data points moving left to right correspond
to batches 1 through 7 in Table 2, and are plotted against
the cumulative postings from the batches. We also plot the
time per posting for each batch update in Figure 6. The
figures show that as the size of the batch increases, the cost
per posting decreases. This is due to the following factors.
First, when building new inverted lists for a batch, enough
(maybe all) of the term dictionarymust be read in to identify
all of the terms in the batch and make entries for new terms.
Similarly, the dictionary must again be read in during the
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Figure 5: Per batch update times for range of batch sizes
cumulatively added to TIPSTER volume 1 index, plotted
versus the cumulative postings from the batches. Batches
range in size from 1 Mbyte to 64 Mbytes by powers of 2.

build phase when adding the new lists to the existing in-
dex. With larger batches, this cost is amortized over more
postings. Second, larger batches will benefit from locality
in the small and medium object pools. The inverted lists
in these pools are clustered in segments, such that reading
in a list to modify it causes all lists in the same segment
to be read in. The cost of reading in the segment can then
be amortized over any updates to other lists in the same
segment that occur before the segment is flushed out.

In an effort to better accommodate small batch updates,
we implemented an in-memory version of our system which
performs updates on-line. Rather than build complete in-
verted lists for the batch off-line and add them to the index
in a second step, the in-memory version builds the inverted
lists for the batch in main memory as the documents in
the batch are parsed. When the main memory inverted list
buffer becomes full, the partial inverted lists for the batch
are added to the existing index. The rationale behind this
scheme is that we will eliminate redundant I/O caused by
writing transactions, sorting off-line to build the inverted
lists, and then reading the lists again to add them to the
index. To test this scheme, we allocated 10 Mbytes for the
inverted list buffer (which accommodates around 800,000
compressed postings), 20 Mbytes of Mneme buffer space
for the existing inverted index, and 24 Mbytes of Mneme
buffer space for the term dictionary. We found, however,
that for batch sizes up to 8 Mbytes the in-memory version
was no faster than the off-line version, and much worse
for larger batches. The poor performance on batches larger
than 8 Mbytes is due to the inverted list buffer being flushed
to the index multiple times per update. The surprisingly
mediocre performance for batches that fit entirely in the in-
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cumulatively added to TIPSTER volume 1 index.

verted list buffer is attributed to insufficient main memory.
Besides the buffers mentioned above, the on-line version
requires additional space to parse the documents and build
the inverted lists in the main memory buffer. We suspect
that the system is paging excessively, although due to a bug
in OSF/1 V1.3, we could not obtain process resource usage
statistics to confirm this. We did observe, however, that run-
ning the in-memory version with a 20 Mbyte inverted list
buffer on a DECSystem 3000/500 with 128 Mbytes of main
memory gave much improved performance. Therefore, we
suggest that this technique bears further investigation and
may be appropriate for certain applications with adequate
resources and small updates.

4.5 Space Considerations

In addition to time, we must consider the disk space re-
quired by each indexing scheme. There are two aspects
to disk space: permanent space consumed by the index
files, and additional temporary space required for indexing.
To reduce the amount of permanent space consumed by
the inverted file, the inverted lists are compressed in a two
step process. First, the location information associated with
each document entry for a given term is run-lengthencoded,
where the first location is stored as an absolute value and all
subsequent locations are stored as deltas from the previous
location. This yields numbers of significantly smaller mag-
nitude. Then, all numbers (document identifiers, weights,
and encoded locations) are represented in base 2 using the
minimum number of bytes (up to four), with a continuation
bit reserved in each byte. This results in variable length
numbers where the largest representable number is ����� .

Compression yields the same space savings for both the
old and new indexing schemes. However, the old scheme
allocates objects exactly of the required size, while the new

scheme allocates fixed size objects for the variable length
lists. Therefore, we would expect a certain amount of in-
ternal fragmentation and an increase in inverted file size
for the new scheme. The inverted file created in seven
batches by the new scheme for TIPSTER volume 1 con-
sumes 473 Mbytes, of which 420 Mbytes is inverted list
data. Internal object fragmentation, or free space in ob-
jects that could be allocated in the future, accounts for
50 Mbytes, or about 12% of the size of the real data. The
remaining 3 Mbytes is Mneme overhead, including auxil-
iary file structures and links between objects, a relatively
insignificant 0.8% overhead. The total overhead is quite
tolerable, and other results show that as the index becomes
even larger, the overhead decreases slightly due to the full
utilization of all but the tail objects in the linked lists for
large inverted lists.

The difference in temporary disk space requirements be-
tween the two schemes during indexing is much more sig-
nificant. The transaction files generated by the old scheme
for TIPSTER volume 1 consume a total of 1.7 Gbytes, or
nearly 50% more disk space than the raw document collec-
tion. Each time an update is made, the transaction files for
the entire collection must be generated, resulting in tem-
porary disk space costs proportional to the size of the total
collection. The new scheme only requires enough space to
generate and sort the transaction file for the new documents,
yielding temporary disk space requirements proportional to
the size of the update. Both schemes could benefit from us-
ing suitable compression techniques on the transaction files
to reduce temporary disk space requirements, but again the
old scheme will still require temporary disk space propor-
tional to the size of the existing database.

4.6 Query Processing

The last performance issue is query processing, which we
evaluate by comparing query processing speeds on the in-
verted files built in Section 4.3. Since the new scheme must
assemble large inverted lists with multiple disk reads, we
expect its query processing performance to suffer. How-
ever, the allocation strategy for large lists, combined with
the small number of batch updates to build the index, work
to reduce this effect. Here is why. Large inverted lists allo-
cated in a linked list of large objects are grown by adding
new large objects to the tail of the list. New large objects are
each created in their own physical segment, and new phys-
ical segments are allocated at the end of the file. Therefore,
all objects added to a given linked list during a single batch
update will be allocated sequentially at the end of the file.
Since the index was built in seven batch updates, a large
inverted list will consist of at most seven separate blocks
of contiguous large objects, greatly reducing the disk seek
costs to assemble the list.

To further explore this effect, we measured query pro-
cessing performance on an index built using the on-line
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scheme described in Section 4.4 with a main memory in-
verted list buffer of 10 Mbytes. This produced an inverted
file laid out as if it had been built with many small batch up-
dates, where each batch contained approximately 800,000
postings.

The query set we used was generated locally from TIP-
STER topics 51-100 using automatic and semi-automatic
methods. We report the average of running the query set
on each scheme six times, where each run differed from
the average by less than 5%. The old scheme, with each
list stored as a single contiguous object, required 975 sec-
onds. The new scheme built on-line to simulate many small
batches required 1256 seconds, or 28.8% longer than the
old scheme. The new scheme built off-line withseven batch
updates required 1033 seconds, or only 5.9% longer than
the old scheme.

The results for the new index structure are surprisingly
good. The improvement from the second to third scheme
above indicates that query processing can be greatly im-
proved by simple periodic reorganization of the inverted
file to sequentially arrange the objects in linked lists. We
expect that query processing can be further improved for
the following reasons. First, the query processing model
used in these experiments is “term-at-a-time”, where the
entire inverted list for a term is read and processed all at
once. Many modern systems have adopted “document-at-
a-time” processing [Wil84], which calculates the complete
score for one document before proceeding to the next. In
this model, the inverted lists are read in small chunks, a
technique ideally suited to the linked list structure. Sec-
ond, our inverted file structure might be combined with
the query optimization techniques proposed by Wong and
Lee [WL93] and Moffat and Zobel [MZ94b], who describe
methods for eliminating processing on portions of inverted
lists. Again, the linked list structure could be used to avoid
I/O on these portions of the lists. Third, buffer management
has not been tuned for the new file structure. Fourth, we
have not considered any low level optimizations, such as
overlapping I/O with processing, sophisticated pre-fetching
schemes, or disk optimizationssuch as striping, all of which
will reduce the time to assemble large inverted lists.

5 Related Work

Efficient management of full-text database indexes has re-
ceived a fair amount of attention. Faloutsos [Fal85] gives an
early survey of the common indexing techniques. The two
techniques that seem to predominate are signature files and
inverted files. Since INQUERY uses an inverted file index,
we do not discuss signature files. Zobel et al. [ZMSD92]
investigate the efficient implementation of an inverted file
index for a full-text database system. Their focus is on
compression techniques to limit the size of the inverted file
index. These techniques could be usefully incorporated
into our system. They also address updates to the inverted

file using large fixed length disk blocks, where each block
has a heap of inverted lists at the end of the block and a
directory into the heap at the beginning of the block. As
inverted lists grow they are rearranged in the heap or copied
to other blocks with more space. Techniques for handling
inverted lists larger than a disk block are not discussed, nor
is the disk block technique fully evaluated. Our experience
indicates that efficient management of large inverted lists is
critical to performance, and we present experimental results
demonstrating the effectiveness of our solution.

Tomasic et al. [TGMS94] propose a new data structure
to support incremental indexing, and present a detailed sim-
ulation study over a variety of disk allocation schemes. The
study is extended with a larger synthetic document collec-
tion in [STGM94], and a comparison is made with the tra-
ditional indexing technique. Their data structure manages
small inverted lists in buckets (similar to the disk blocks
in [ZMSD92]) and dynamically selects large inverted lists
to be managed separately, not unlike our use of different ob-
ject pools for different sized lists [BCCM94]. Their simula-
tion results indicate that the best long list allocation scheme
for update performance is to write the new portion of a long
list in a new chunk at the end of the file. This is essentially
what we do with our linked lists. However, they predict
that query performance with this strategy will be poor. On
the contrary, we have shown with an actual implementation
that our linked list strategy can in fact provide good query
performance, while simultaneously providing superior up-
date performance. Moreover, their simulations assume that
all buckets can fit in main memory during indexing, po-
tentially requiring significant main memory resources. Our
scheme makes no such assumption, requiring substantially
less main memory.

Another scheme that handles large lists distinctly from
small lists is proposed by Faloutsos and Jagadish [FJ92a].
In their scheme, small lists are stored as inverted lists, while
large lists are stored as signature files. Again, we are pri-
marily concerned with inverted lists and do not consider sig-
nature file solutions. In [FJ92b], Faloutsos and Jagadish ex-
amine update and storage costs for a family of long inverted
list implementations, where the general case is their “HY-
BRID” scheme. The HYBRID scheme essentially chains
together chunks of the inverted list and provides a num-
ber of parameters to control the size of the chunks and the
length of the chains. At one extreme, limiting the length
of a chain to one and allowing chunks to grow results in
contiguous inverted lists, where relocation of the inverted
list into a larger chunk is required when the current chunk
is filled. At the other extreme, fixed size chunks and unlim-
ited chain lengths give a standard linked list. Our overall
scheme does not fit into this model since we initially grow
chunks and then chain fixed size chunks. However, our
small lists can be modeled as chains of length one where
chunks are doubled in size during relocation, and our large
lists can be modeled as unlimited length chains with fixed
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size chunks. Rather than argue analytically, we have shown
experimentally that our scheme provides good update and
search costs, with acceptable space overheads.

Cutting and Pedersen [CP90] investigate optimizations
for dynamic update of inverted lists managed with a B-
tree. For a speed optimization, they propose accumulating
postings in a main memory postings buffer, and give both
analytical and experimental results. It is difficult to make
comparisons with their experimental results due to the size
of the collections used. We present results for a collection
nearly 100 times larger. We agree that updates should be
batched, but our experience with an in-memory scheme
indicates that as soon as the batch becomes too large to
invert in main memory (i.e., partial inverted lists for the
batch must be flushed to the index before the rest of the batch
can be processed), an off-line scheme will provide better
performance. Again, this requires further research. They
also propose storing the smallest inverted lists directly in the
B-tree index. An equivalent scheme using our hash term
dictionary would be advantageous only if the dictionary
did not increase in size. Increasing I/O and main memory
costs for the term dictionary for the sake of rarely accessed
inverted lists would be disastrous.

A number of other approaches to document indexing
have been proposed. Fox and Lee [FL91] describe a tech-
nique that eliminates the sorting involved in indexing by
making multiple passes over the input documents. Index-
ing is divided into loads, where a load is a contiguous chunk
of the final inverted file. First, an initial pass over the input
is made to determine the load boundaries. Then, a sub-
sequent pass is made for each load, processing only terms
that fall within the boundaries of the load and building the
inverted lists for those terms in main memory. At the end
of the pass, the inverted lists for the load can simply be
appended to the inverted file.

Witten et al. [WMB94] present a variety of indexing al-
gorithms, including an extended version of Fox and Lee’s
algorithm. They also enhance the traditional sort-based
method with compression techniques and in-place and mul-
tiway merging to greatly improve efficiency in terms of
main memory, disk space, and time. Results of applying
some of these techniques to the TIPSTER document col-
lection are presented in [MZ94a].

All of these other approaches were developed for large
static document collections, and do not directly support in-
cremental indexing. Some of the techniques, such as the
sorting enhancements and making multiple passes through
the input to “pre-allocate” the output, might be usefully
incorporated into an incremental system. Their benefit,
however, would be dependent on the size of the incremen-
tal batches, with larger batches deriving more benefit. A
better integration might use one of the above algorithms
the first time a large collection is indexed, and switch to an
incremental technique thereafter.

Properly modeling the size distribution of inverted lists

is addressed by Wolfram in [Wol92a, Wol92b]. He suggests
that the informetric characteristics of document databases
should be taken into consideration when designing the files
used by an IR system. We follow this advice, as can be seen
in Section 3, with what we consider to be very satisfactory
results.

6 Conclusions

If IR systems are to satisfy the demand for applications that
can manage an ever increasing repository of information,
they must be able to efficiently add documents to large ex-
isting collections. The main bottleneck in that operation is
updating the index structure used to manage the collection.
The traditional solution to this problem is to re-index the
entire collection, an operation with costs proportional to
the size of the whole collection. This solution is clearly
unacceptable.

We have proposed an alternative solution that yields
costs proportional to the size of the update. Using the
data management facilities of a persistent object store, we
have designed a more sophisticated inverted file index that
provides fast incremental updates. More importantly, we
have implemented our scheme in an operational full-text
information retrieval system and verified its performance
empirically.

The results we present show that our scheme maintains
a nearly constant per posting update cost as the size of the
collection grows, indicating excellent potential for scale. In
fact, we have used our scheme to index the full 2 Gbyte TIP-
STER collection in 13 batches and have found the trends
described in Section 4 to hold. Our scheme requires con-
siderably less disk space during indexing than traditional
techniques, and allows much of the processing for a new
batch of documents to be done independently from the ex-
isting index. This last point is particularly important for
the eventual support of simultaneous query processing and
collection updating, since the period of time during which
index structures must be locked for updating can be mini-
mized.

We found that best performance is achieved when docu-
ments are added in the largest batches possible, both in terms
of incremental indexing time and resultant query process-
ing speed. We have also shown that our scheme provides
a good level of performance with small batch updates, and
have suggested techniques to improve both small batch up-
date and query processing performance. These techniques
bear further investigation and represent future work.

Finally, we have achieved these results using “off-the-
shelf” data management technology, continuing to show
that the data management facilities in IR systems need not
be custom built to achieve high performance.
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