Indri at TREC 2004: UMass Terabyte Track Overview

Don Metzler
University of Massachusetts, Amherst
Terabyte Track Summary

• GOV2 test collection
 – Collection size: 25205179 documents (426 GB)
 – Index size: 253 GB (includes compressed collection)
 – Index time: 6 hours (parallel across 6 machines) ~ 12GB/hr
 – Vocabulary size: 49,657,854
 – Total terms: 22,811,162,783

• Parsing
 – No index-time stopping
 – Porter stemmer
 – Normalization (U.S. => US, etc…)

• Topics
 – 50 .gov-related standard TREC ad hoc topics
UMass Runs

• indri04QL
 – query likelihood
• indri04QLRM
 – query likelihood + pseudo relevance feedback
• indri04AW
 – “adaptive window”
• indri04AWRM
 – “adaptive window” + pseudo relevance feedback
• indri04FAW
 – “adaptive window” + fields
indri04QL / indri04QLRM

- Query likelihood
 - Standard query likelihood run
 - Smoothing parameter trained on TREC 9 and 10 main web track data
 - Example:
    ```
    #combine( pearl farming )
    ```

- Pseudo-relevance feedback
 - Estimate relevance model from top n documents in initial retrieval
 - Augment original query with these terms
 - Formulation:
    ```
    #weight( 0.5 #combine( Q_{ORIGINAL} )
    0.5 #combine( Q_{RM} ) )
    ```
indri04AW / indri04AWRM

- **Goal:**
 - Given only a title query, automatically construct an Indri query
 - What’s the best we can do without query expansion techniques?

- **Can we model query term dependence using Indri proximity operators?**
 - Ordered window (\#N)
 - Unordered window (\#uwN)
Related Work

• InQuery query formulations
 – Hand crafted formulations
 – Used part of speech tagging and placed noun phrases into `#phrase` operator

• Dependence models
 – van Risjbergen’s tree dependence
 – Dependence language models

• Google
Terabyte TREC Homepage
... this topic, with the goal of the workshop being a TREC track proposal for a retrieval experiment using a document collection on the order of a terabyte in size ...
www-nlpir.nist.gov/projects/terabyte/ - 6k - Cached - Similar pages

Web Research Collections - Web Track
... a 2005 Enterprise Search Track and a 2005 Terabyte Track are currently (Oct 2004) being considered, along with other proposals, by the TREC program committee ...
es.cmis.csiro.au/TRECWeb/ - 4k - Cached - Similar pages

RMIT University at TREC 2004 Terabyte Track Experiments
File Format: Microsoft Powerpoint 97 - View as HTML
RMIT University at TREC 2004 Terabyte Track Experiments. Bodo Billerbeck, Adam Cannane, Abhijit Chatteraj, Nicholas Lester. William ...
goanna.cs.rmit.edu.au/~hugh/TREC.ppt - Similar pages

Nick Craswell's Home Page
... experiments. I am involved in the TREC Terabyte Track including the initial workshop (pdf) and formatting the terabyte collection itself ...
research.microsoft.com/users/nickcr/ - 28k - Dec 16, 2004 - Cached - Similar pages

Microsoft PowerPoint - ir16 trec2004
File Format: PDF/Adobe Acrobat - View as HTML
... Terabyte track • TREC pushed IR research into gigabyte range – Was nearly unthinkably huge at the time – Now seems quaint • What happens at jump to ...
cirr.cs.umass.edu/cmpsci645/Slides/ir16%20trec2004.pdf - Similar pages
Assumptions

• Assumption 1
 – Query terms are likely to appear in relevant documents

• Assumption 2
 – Query terms are likely to appear ordered in relevant documents

• Assumption 3
 – Query terms are likely to appear in close proximity to one another in relevant documents
Assumption 1

“Query terms are likely to appear in relevant documents”

• Proposed feature:
 – \(P_{TERM}(q|\theta_D) \)
 (for every term \(q \) in our query)

• Indri representation:
 – q

• Elements from our example:
 – TREC
 – terabyte
 – track
Assumption 2

“Query term are likely to appear ordered in relevant documents”

• Proposed feature:
 Proposed feature:
 \[P_{\text{ORDERED}}("q_i \cdots q_{i+k}" | \theta_D) \]
 (for every subphrase $q_i \cdots q_{i+k}$ for $k > 1$ in our query)

• Indri representation
 \[\#1(q_i \cdots q_{i+k}) \]

• Elements from our example:
 \[\#1(\text{TREC terabyte}) \]
 \[\#1(\text{terabyte track}) \]
 \[\#1(\text{TREC terabyte track}) \]
Assumption 3

“Query terms are likely to appear in close proximity to one another in relevant documents”

• Proposed feature:
 – \(P_{UNORDERED}(q_1 \cdots q_k | \theta_D) \)
 (for every non-singleton subset of query terms)

• Indri representation:
 – \#uwN(\quad q_1 \quad \cdots \quad q_k \quad)
 – \(N = 4^k \)

• Elements from our example:
 – \#8(TREC terabyte)
 – \#8(terabyte track)
 – \#8(TREC track)
 – \#12(TREC terabyte track)
Putting it all together...

- $\texttt{#weight}(w_0 \ TREC}$
 $w_1 \ \text{terabyte}$
 $w_2 \ \text{track}$
 $w_3 \ #1(\ TREC \ \text{terabyte})$
 $w_4 \ #1(\ \text{terabyte} \ \text{track})$
 $w_5 \ #1(\ TREC \ \text{terabyte} \ \text{track})$
 $w_6 \ #8(\ TREC \ \text{terabyte})$
 $w_7 \ #8(\ \text{terabyte} \ \text{track})$
 $w_8 \ #8(\ TREC \ \text{track})$
 $w_9 \ #12(\ TREC \ \text{terabyte} \ \text{track})$

- Too many parameters!
Parameter Tying

• Assume that all weights of the same type have equal value

• Resulting query:

\[
\text{#weight}(w_{\text{TERM}}) \quad \text{#combine}(\text{TREC terabyte track}) \\
\text{w}_{\text{ORDERED}} \quad \text{#combine}(\#1(\text{TREC terabyte}) \\
\quad \#1(\text{terabyte track}) \\
\quad \#1(\text{TREC terabyte track})) \\
\text{w}_{\text{UNORDERED}} \quad \text{#combine}(\#8(\text{TREC terabyte}) \\
\quad \#8(\text{terabyte track}) \\
\quad \#8(\text{TREC track}) \\
\quad \#12(\text{TREC terabyte track}))
\]

• Now only 3 parameters!
Setting the weights

• Training data: WT10g / TREC9 + 10 web queries
• Objective function: mean average precision
• Coordinate ascent via line search
• Likely to find local maxima
 – Global if MAP is a convex function of the weights
• Requires evaluating a lot of queries
 – Not really a problem with a fast retrieval engine
• Able to use all of the training data
• Other methods to try
 – MaxEnt (maximize likelihood)
 – SVM (maximize margin)
Weights

• The following weights were found:
 – $w_{\text{TERM}} = 1.5$
 – $w_{\text{ORDERED}} = 0.1$
 – $w_{\text{UNORDERED}} = 0.3$

• Indicative of relative importance of each feature

• Also indicative of how idf factors over weight phrases
indri04FAW

• Combines evidence from different fields
 – Fields indexed: anchor, title, body, and header (h1, h2, h3, h4)
 – Formulation:
 \[
 \texttt{#weight}(0.15 \texttt{Q}\textsubscript{ANCHOR} \\
 0.25 \texttt{Q}\textsubscript{TITLE} \\
 0.10 \texttt{Q}\textsubscript{HEADING} \\
 0.50 \texttt{Q}\textsubscript{BODY})
 \]

• Needs to be explore in more detail
Other Approaches

• Glasgow
 – Terrier
 – Divergence from randomness model
• University of Melbourne
 – Document-centric integral impacts
• CMU
 – Used Indri
• University of Amsterdam
 – Only indexed titles and anchor text
 – 20 minutes to index, 1 second to query
 – Very poor effectiveness
MAP

<table>
<thead>
<tr>
<th>fields -></th>
<th>T</th>
<th>TD</th>
<th>TDN</th>
</tr>
</thead>
<tbody>
<tr>
<td>QL</td>
<td>0.2565</td>
<td>0.2730</td>
<td>0.3088</td>
</tr>
<tr>
<td>QLRM</td>
<td>0.2529</td>
<td>0.2675</td>
<td>0.2928</td>
</tr>
<tr>
<td>AW</td>
<td>0.2839</td>
<td>0.2988</td>
<td>0.3293</td>
</tr>
<tr>
<td>AWRM</td>
<td>0.2874</td>
<td>0.2974</td>
<td>0.3237</td>
</tr>
</tbody>
</table>

Indri Terabyte Track Results

T = title
D = description
N = narrative

P10

<table>
<thead>
<tr>
<th>fields -></th>
<th>T</th>
<th>TD</th>
<th>TDN</th>
</tr>
</thead>
<tbody>
<tr>
<td>QL</td>
<td>0.4980</td>
<td>0.5510</td>
<td>0.5918</td>
</tr>
<tr>
<td>QLRM</td>
<td>0.4878</td>
<td>0.5673</td>
<td>0.5796</td>
</tr>
<tr>
<td>AW</td>
<td>0.5857</td>
<td>0.6184</td>
<td>0.6306</td>
</tr>
<tr>
<td>AWRM</td>
<td>0.5653</td>
<td>0.6102</td>
<td>0.6367</td>
</tr>
</tbody>
</table>

italicized values denote statistical significance over QL
Conclusions

• Indri was competitive both in terms of efficiency and effectiveness in the TB track arena

• “Adaptive window” approach is a promising way of formulating queries

• More work must be done on combining other forms of evidence to further improve effectiveness
 – Fields
 – Prior information
 – Link analysis