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Abstract

This paper presents the PIC matrices, a computationally efficient subclass of link matrices that may be
considered for the interpretation of query operators in the INQUERY inference network. The piC class of
matrices is formally defined; a O(n?) algorithm, PIC-EVAL, is presented for the evaluation of members of
this class; and a proof of the correctness of the algorithm is given. A further specialization of this class that
can be evaluated even more efficiently is discussed. Finally, a generalization of the pic class, for which
the input probabilities may be viewed as weighted, is defined, and a simple modification of the PIC-EVAL
algorithm that allows for the evaluation of matrices of this extended class is given.

1 Introduction

The search engine of the INQUERY system is based on the use of inference networks as developed in Howard
Turtle’s doctoral dissertation. This document presents ideas for the efficient evaluation of link matrices. We
begin with a brief description of how inference networks are used in INQUERY and the problems of efficient
computation that present themselves. We then introduce the notation that will be adopted for this paper and,
using it, give a formal definition of PIC matrices, the subclass of link matrices that will be the focus of our
attention.

1.1 link matrices in INQUERY

The retrieval mechanism in the INQUERY system is modeled as an inference network. An inference network is
a directed acyclic graph that is used to represent a discrete joint probability distribution, each node associated
with a distinct variable.

The topology of an inference network is interpreted as encoding a set of conditional independence conditions.
If the nodes corresponding to the variables, Py, ..., P,, are the immediate predecessors (parents) of a node,
Q,and 7y, ..., Z, are all other nodes that are not descendents of (i.e. are not reachable from) @, as shown in
figure 1, then @ is considered to be conditionally independent of Z4, ..., Z; given Py, ..., P,. Thatis:

pr(Qistrue | Py,..., Py, Z1,...,Zs) = pr(Qistrue | Pp,...,P,)



Figure 1: part of an inference net

Given probabilities for the root nodes (i.e. nodes with no parents), the network may be processed in a
top-down fashion in order to produce the probabilities relevant to each of its nodes. As a consequence of
the independence assumptions implicit in the network topology, once probabilities, p1,...,p,, have been
produced for the parents of a node, @, the probability that () takes the value y € D, is given by:

pr@=y)= Y pr@=y|Pi=w1,....,Pa=2n)pr(PL = 21) - pr(Py = )

where Dq,...,D,, D, are the sets of values that may be assumed by the variables, P, ..., P,, and Q,
respectively.

In INQUERY each node corresponds to a proposition; that is, a variable that may take on one of two values:
true or false. For example, in figure 1, each P; might correspond to the proposition that some document
under consideration is "about” some concept, ¢;, while @) corresponds to the proposition that the document
is relevant.

Since all the variables are binary valued in INQUERY, the dependence of a child on its parents can be given
via the specification of:

pr(Qistrue | PL =by,..., P, =by,) and
pr(Qisfalse | PL =by,...,P, =by)

for each:
< by,...,b, >€ {true, false}”

Equivalently, the values:

arp = pr(Qisfalse | i€ R= P;istrue
i ¢ R = P;isfalse) and
arp = pr(Qistrue | 1 € R= P;istrue
i ¢ R = P;isfalse)
must be specified for every possible subset, R, of {1,...,n}. In terms of these conditional properties, the
probability that a child node is true can be calculated once the probabilities of truth, pq, ..., p,, are known

for each of its parent nodes:

pr(Q is false)

Z dRHpiH(l — i) and

RC{1,...,n} i€R i¢R

> ar][m]J-p)

RC{1,...m} i€R igR

pr(Q is true)

The set of coefficients involved is conveniently organized as a 2 x 2™ matrix:



B..000 | Po...oo1 | Po...010 " P i
Q false || a..000 | G0...001 | Qo...010 Qaig..111
Q true || @o...000 | @0...001 | Qo...010 Q1..111

where oy, 5,,...5, 1S the probability that () is true subject to the condition that the parents P; such that b; =1
are true, and the parents P; such that b; = 0 are false; &, 5,,...5, 1S the corresponding probability that () is
false and is equal t0 1 — s, p,,...6,,. This matrix, known as a link matrix, may be visualized as linking the
child node with the parent nodes as is shown in figure 2 1.

\@\ .../@

V

@

Figure 2: link matrix links child to parents

INQUERY examines documents one by one. For each, the inference network is used to evaluate evidence
that the document satisfies an information need expressed by the user. A given link matrix form can be
viewed as defining an operator for combining evidence. For example, suppose the propositions Py, Ps, P3,
state that three queries q1, g2, q3, respectively, have been (in some sense) satisfied by the document currently
under scrutiny. A link matrix connecting the parents nodes, Py, P, P3, with the child node, @, can be
viewed as a way of forming a query, g, that is a composite of the individual sub-queries. The child node, @,
would correspond to the proposition that the combined query, ¢, has been satisfied. The specification of the
coefficients of the link matrix defines the way the sub-queries are combined in that it gives all the information
necessary for determining the probability that ¢ has been satisfied given the probabilities, py, p2, ps3, that the
individual subqueries have been satisfied.

One, admittedly arbitrary, way of defining a 3-ary query composition operator for forming the query, ¢, from
the sub-queries q1, g2, g3, might be to specify that q is to be considered satisfied with:

e 80% probability if ¢; is satisfied, independent of the whether or not ¢ and g5 are satisfied,;

e 50% probability if ¢; is not satisfied, but ¢» and g3 are both satisfied

¢ 10% probability in any other situation.

This particular operator corresponds to the link matrix:

Pooo | Poor | FPoo | Poir | Pioo | Pior | Pio | Pinn
1 A A 5 .8 .8 .8 .8

Where the column under P4, for example, gives the probability that Q is true given that P, is false, P,

is true, and Ps is true. Clearly, this link matrix has the desired effect. Typically, none of the parents will be
known to be either true or false with certainty. Rather, evidence corresponding to each of Py, P», P3 will,
in general, be estimated to be present with certain probabilities: p1, p2, p3. Given these probabilities, the
probability that @ is true can be calculated as:

pr(Q istrue) = - p1paps + .1 - pr1paps + .1 pipapPs + .5 - P1paps
+ .8-p1pop3 + .8 piPaps + .8 - p1pap3 + .8 - p1pap3

1Since the columns of alink matrix must sum to one, from this point on only the row corresponding to Q true will be shown.



1.2 efficiency of link matrix evaluation

Each distinct assignment of values to the coefficients of a link matrix defines a different operator. This
provides a large class of operators to choose from when determining, for example, what operators might be
made available to users for the composition of queries. Two problems with this class of operators present
themselves; both direct consequences of the number of coefficients in the link matrix. Since each parent is a
proposition that may assume 2 values, there are 2™ combinations of possible values for the set of n parents.
For each matrix, 2™ values must be specified. Equally problematic is that once the coefficients have been
specified, the calculations required for the evaluation of the child, @, given the probabilities, p1, . .., p,, for
the parents is exponential in the number of parents. For the general case, the n term product:

sz' H Di

i€ER i€{i1,...,ia}—R

must be calculated for each of the 2™ possible subsets of n. parents; i.e. each of the 2™ possible combinations
of true parents. The vast universe of possible operators from which to choose, coupled with the intractable
computational properties of these operators in the general case motivates the search for a subclass of link
matrices that:

e correspond to psychologically plausible ways of combining evidence, and
e can be put into a tractable computational form

In his dissertation, Howard Turtle refers to link matrix classes with the above two properties as canonical
forms. He presents four such canonical forms; each general in the sense that there is an operator (or set of
operators) for any number of parents. Here we see the form of these matrices for the case of n=3 parents:

Land:
Pooo | Poor | Powo | Porr | Pioo | Piot | Pio | Pinn
0 0 0 0 0 0 0 1
Lor:
Pooo | Poor | Poro | Porr | Pioo | Pior | Pio | Pinn
0 1 1 1 1 1 1 1
Lsum:
Pyoo | Poor | Poro | Porr | Pioo | Pior | Pio | Pinn
0 [ I Tz [ I [ Z | 2 1
3 3 3 3 3 3
Lweighted-sum’
Pooo | Poor | Poro | Porr | Pioo | Piox Py Py
0 wgt wot (wg+wg)t wilt (wi+wg)t | (wi+wo)t | (witwo+w3)t
where ¢t = — +1_“_‘_1+wn

These canonical forms were motivated by operators traditionally found in IR systems. L 54 and Lor can be
considered probabilistic versions of the AND and OR boolean operators offered in boolean retrieval systems.
It can easily be shown that, given probabilities, p1, ..., p,, for the n constituent queries being satisfied, the
probability that the composite query is satisfied can be calculated simply as:

pr(Qistrue) = pipz---pn

for Lypg, and
pr(Qistrue) = 1—(1—p1)(1—p2)...(1—pn)
for Lor.



The coefficient for a column of the general n-ary Lsym matrix for which i of the parents are true is, % If
the probabilities are viewed as weights of evidence, the matrix can be viewed as an operator which averages

these weights. That is:

pr(Q is true) = PL+Dp2+ ... +Dn
n

The Lweighted-sum matrix is a generalization of the Lsym matrix in that a weighted average is calculated
with, wy, . .., wy, being the, fixed but arbitrarily chosen, weights of the n parents, and w, a weight associated
with the child node which is applied to the resultant average.

pr(Qistrue) = (wip1 + waps + ..o + Wy pn)t
—  wipitwaps+...+WnpPn
- witwa+...+wn q

1.3 PIC matrices

One interesting class of link matrices worthy of study are those, such as the Lsym matrix discussed above,
that do not distinguish among the parents. In these matrices, the coefficient in each column is a function only
of the number of parents that are true for the corresponding event, independent of which parents they happen
to be. After introducing notational conventions that will be used throughout this discussion, a more formal
definition of this class of matrices is presented.

Notation: In this paper we will concentrate on the evaluation of one particular link matrix which we shall
refer to as Lo. We will consistently use n for the number of parent nodes associated with this matrix;
Py, ..., P, to represent the propositions corresponding to these parents nodes; and @ to represent the propo-
sition corresponding to the child node.

Notation: We shall use p; to denote the probability that the i** parent is true and ; to denote the probability
that it is false:

p; = pr(P;istrue)
pi = pr(Pisfalse) = (1 -p;)
Notation: Given an arbitrary subset, R, of {1,...,n}, ar shall denote the link matrix coefficient corre-

sponding to the conditional probability that () is true given that the parents, P; such that ¢ € R, are true and
the other parents are false:

ag =pr(Qistrue | Vi=1,...,n: i€ R= P;istrue,
i ¢ R = P;isfalse)

Definition: When the conditional probability that @ is true is a function only of the number of parents that
are true we shall say that the parent indifference criterion is met, or simply that the matrix is a pic matrix.
Equivalently,

VRi, Ry C{1,...,n}: |Ri|=|Ra| = an, =an,

Notation: When a matrix satisfies the parent indifference criterion, c; shall be used to denote the conditional
probability that @ is true given that exactly j of the parents are true.

a; = pr(Qistrue | [{0 <i < n|P;istrue}| = j)



The sequence of link matrix coefficients, a, . . . , a,, can be viewed as a function from the integers {0, 1, ..., n}
to the interval [0,1]. It is appropriate to note that we have in mind, and will be exploring, coefficients corre-
sponding to non-decreasing functions. Viewing the pic matrices as operators for the combination of evidence,
our interest is in those operators for which more pieces of individual evidence (i.e. greater number of true
parents) translates to greater probability that the combined evidence is present. Nonetheless, the formal de-
velopment to follow does not depend on this property of the functions, and so it has not been incorporated as
part of the definition of pic matrices.

1.4 this study

Howard Turtle has suggested further study of matrices which satisfy what | have called the parent indifference
criterion, which has been the initial impulse behind the work discussed here. It should be noted, that the
Lang and Lor matrices meet the parent indifference criterion. As such, they are special cases of the class of
matrices under study. A satisfactory approach to computing with Pic matrices will allow for the definition
of less stringent versions of these operators, which may be, Turtle speculates, more in accord with users’
intuitive understanding of what they are trying to express when they utilize them.

In what follows, I will present an algorithm for evaluating an arbitrary pic matrix which requires O(n?)
operations. Later | define a more general class of matrices for which the parent indifference criterion is
relaxed to allow for a weighting of the parents. A simple modification of the basic algorithm expands its
applicability to include this more general class.

Again following Howard Turtle’s suggestions, | also explore specializations of the pic matrix class. Viewing
the set of coefficients of a pic matrix as a function on the number of parents that are true, we take a look at
link matrices associated with piecewise linear functions. We see that these may be evaluated in O(n) time in
certain restricted cases.

2 Basic Algorithm

In this section, an algorithm, pic-EvaL, is presented for evaluating link matrices that meet the parent indiffer-
ence criterion. Starting with the original link matrix, Lo, Pic-EVAL, in effect, generates a sequence of smaller
and smaller link matrices, Ly, Lo, ..., L,. In the process, it eliminates from consideration each probability
in turn (Figure 3).

2.1 description of the pic-evaL algorithm

To begin, the probability associated with parent node, P;, is fixed and the matrix, Lg, with n + 1 coefficients
and n parents (figure 3a) is converted to an n coefficient link matrix with n — 1 parents (figure 3b). The
matrix, L, that results from this transformation is equivalent to the original matrix, Lg, in the following
sense:

for any set of probabilities for parents, Ps, ..., P,, L; yields the same pr(Q istrue) that Lg
would produce given the same probabilities for P, ..., P,, together with the probability p, for
P

Notation: With respect to the execution of the pic matrix evaluation algorithm: L; shall refer to the link

matrix generated during the ith iteration, and the coefficient of L; associated with j parents being true shall
be referred to as (<, 7). We note that for the initial matrix, Lo:

a(0,j) =a; Vi=0,...,n



pll plZ pf» ...t pln

a) initia problem | a(0,0) = ag,...,a(0,n) = an \

!

pr(Q’is true)

pf p3 pn pn
l nnn ll l
b) after 1iteration | a(1,0),...,a(l,n — 1) |

!

pr(Q’is true)

p3 pnl pn
c) after 2 iterations \ 10(2, 0),...:, a(2,ln - 2)l \
|0r(QliS true)
pn
d) after n-1 iterations | a(n-1,0), a(n-1,1) |

pr(Q’is true)

o a(n,0)
€) after niterations

pr(Q’is true)

Figure 3: iterations in the evaluation of a pic matrix

inputs:
e n + 1 coefficients, ag, . . ., ay,, Of & PIC matrix
o probabilities py, . . ., p,, for the n parent nodes.
output:
o the probability that the child node is true.

PIC-EVAL:
forj=0,...,n
[0, 5] = a;

fori=1,...,n
forj=0,...,n—1
a[z,]] (—Oé[l—].,]]*(].—pz) +Oé[2—1,]+].]*pz

return a[n, 0]

Figure 4: pic-evaL algorithm




As shown in figure 3, each matrix has one coefficient fewer than the previous one and connects with one fewer
parent node. After n iterations we arrive at L,, with exactly one coefficient, a(n,0), as seen in figure 3e.
Given that all parent probabilities have been accounted for, this coefficient may be interpreted as the desired
probability that the child is true. This general strategy is embodied in the pic-EvaL algorithm given in figure 4.

2.2 correctness of pic-evaL algorithm

The correctness of the pic algorithm follows directly from Lemma 1, which is more easily expressed by
adopting the following notation.

Notation: Givenan arbitrary subset, R, of {i1,...,42}, ng"""i’} shall denote the probability that precisely
the parents, P; such thati € R, are true, while those parents, P; such that: ¢ R, are false. Equivalently:

S I | B

i€R  i€{i1,...,ia}—R

Notation: The notation aJ{.il""’i2} will be used to denote the probability that exactly j of the propositions
of {P;,,..., P} are true. We observe that:

It is worth noting that the probability that @ is true can be given by:

z [ar H pi H Di

RC{1,....n} i€R i€{l,...,.2}—R

pr(Q is true)

g

I
7
Q
|
3

And that when the parent indifference criterion is met:

n

pr(Q is true) = Z[aRﬂl{gmn}] _ Z Z[OLRW}{;,...,TL}]

|R|=j
n
_ {1,...,n}
= E[O‘j E:”R ]
i=0  RC{1,..,n}
|R|=3j

_ A{1,...n}
= ZO‘J%‘
j=0

Lemma 1 Assuming all coefficients (i, j) are those produced by the pic-EvaL algorithm, thenVi = 0,1,...,n

Za(i,j)oj{-iﬂ"“’"} = pr(Q is true)

j=0



Lemma 1 effectively states that the set of coefficients, a(i,0), ..., a(i,n — i), can be interpreted as specify-
ing a pic matrix, L;, connecting parent nodes P;1, ..., Py, to @, and that this matrix is, in a sense, equivalent
to the original matrix, L.

proof: This lemma is proved by induction on the value of i. For ¢ = 0, we have:

300, = Ya Yol
i=0 j=0

RC{1,...,n}

= Z > ler [] p: [] 2

i=0 RC{1,..,n} iER i¢R

= Z[aRHpiHﬁi]

RC{l,...,n} iER i¢R
= pr(Q istrue)

Assume the theorem to be true for i = k:
Za(k,j)a}l"”’n} = pr(Q is true)

Thenthe sumfori =k + 1 is:

n—k—1

3 alk +1,5)0i
i=0
n—k—1
= Z [a(k,j)ﬁk+1+a(k7j+ )Pk 1] {k+27 ,n}
i=0
(by step (5) of the algorithm)
n—k—1 n—k—1
= Y alki)peraof N 43 alk, o+ Dpprao
i=0 im0
n—k—1 ek
= Y alk o 1 Y ek dpeo
i=0 =1
(as a result of changing the variable for the second summation)
= a(k,0)ppro8 > O

n—k—1 n—k—1

+ Z (k,J) pk+10{k+2 SRR Z (k,J) Pk+10{k+ ot

j=1 j=1

+a(k,n — k)pgio it

The term a{k+2’ ont , expresses the probability that none of the propositions, Pyy2, ..., Py, is true. It is

composed of only one product. Hence, the first term of ( 1) reduces to:

n
a(k, 0)pisrof ™ = a(k,0)pe [[ A
I=k+2

Oé(k, 0) H D

I=k+1
= a(k,0)5" @



Similarly, o

{k+2,...,n}
n—k+1

are true, is composed of only one product. Therefore, the last term of ( 1) reduces to:

alk,n = B)pearot 3™ = alkn—Kpea [[ »
I=k+2
= a(k,n—k H b
I=k+1

= a(k,n—k) lekl’ »n}

, which expresses the probability that all n — & + 1 of the propositions { Py, . . .

Combining the middle two terms of ( 1):

n—k—1
z ok, J)pk+10{k+2 -t 4 Z (k,7) pk+1a{k+2 n}
j=1 j=1
n—k—1
= Y ok, DErnao ) + prpo )
j=1
n—k—1
N5 k+2,..., k+2,...,
= Z a(k, j)[(Pr+1 Z Wj{g n})+(pk+1 Z 7r{ "}
i=1 RC{k+2,...,n} RC{k+2
|R|=j |R|=j—1
n—k—1
. _ k+2,..., k+2,...,
= Za(k,])[( Z Prarmy ™) 4 ( Z prpam o)
j=1 RC{k+1,...,n} RC{k+1,...,n}
|R|=j |R|=j—1
n—k—1
. k+1,..., k+1,...,
= ekl X agtome 3T Al
j=1 RC{k+1,..., n} RC{k+1,..., n}
|R|=jAk+1¢R |R|=jAk+1€R
n—k—1
. k+1,...,
= Y lakg) Y afttemh
j=1 RC{k+1,..., n}
|R|=j
n—k—1

_ Z (k ]) {k+1, .m}

j=1

Finally, applying equations ( 2), ( 3), and ( 4) to equation ( 1), we have:

n—k—1
3" alk +1,j)of
j=0
= a(k,0)of T 4| Z o] ok — K)o T
n—k N
. k+1,...,n
= S alk,j)ofrtmt
i=0
= pr(Qistrue) (by the induction hypothesis)

» Pn}

@)

(4)

Setting ¢ = n in Lemma 1 immediately yields the following theorem which states that the pic-evaL algorithm

is correct.

Theorem 1 Given that «(n, 0) has been produced by the pic-evaL algorithm:

a(n,0) = pr(Q is true)

10



2.3 efficiency of the ric-evac algorithm

The pic-evaL algorithm is clearly executed in O(n?) time. The initialization requires 0(n) and the main loop
is executed precisely

n n—i n n+1
. Zl:Z(n—i-i—l)ZZi:(n+2)(n+1)/2=O(n2)

times. Also, the constant factor is small. On top of the base iteration control overhead, two multiplications
and one addition are required in each iteration.

Although, for the purposes of exposition, the algorithm has been shown as requiring O(n?) space as well as
time, O(n) space is easily achieved since only one row’s worth of cells need be maintained at any one time.

3 Piecewise Linear Functions

In this section we will look at certain PIC matrices for which the evaluation algorithm can be made more
efficient.

The pic-EvAL algorithm can be viewed as filling a triangular portion of a square matrix as shown in figure 5a.
The first row is initialized with the o; values and then each row from 1 to n is processed in turn. Within each
row, the cells are set from left to right, with each cell set to the sum of:

e the cell immediately above it, and

e the cell above it and to the right.
As a consequence of this, the value of each cell, a(i, j), is dependent only on the values of cells in a triangle
extending directly above it on the left and at a 45° angle to the right, as is shown in figure 5b. That is, «(i, )
depends on only those a(k, [) such that:

< k < i
j <1l < j4+m—i
When a subsequence of the PIC matrix coefficients forms an arithmetic progression,
Qs O + Ay + 2A, .. ayy + SA

the cell values in the triangular subsection immediately below these coefficients can be expressed directly in
terms of a,,, A, and the parent probabilities, p1, ..., ps. Of these cell values, the only ones that are needed
for calculations outside of the triangle are those on the leftmost edge:

(0, 4),---,a(i,j)

Hence, if there were a direct method for determining these cell values, the rest of the cells in the triangle
need not be calculated at all. Exactly, how this may be accomplished follows from the following Lemma.

Lemma 1 Given a PIC matrix whose coefficients,

Oy O 41, Om4-25 -+ - s At

are of the form:
Qs O + Ao, + 2A, ...y, + SA

i.e., are such that:
Omtj =0m +JA Vji=0,..,5

11



a) cellsevauated by algorithm

cells evaluated

b) cell dependencies

B dependson

c) evaluation for geometric series

[ geometric series

need not be evaluated

evaluated independently

EE

Figure 5: cell evaluation during execution of pic-EvAL
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then,Vi =0,...,s Vj=0,...,5—1:

a(i,m+j) = am + jA+ A p;

=1

proof: By induction on i. The base case follows directly from the hypothesis of the lemma.
a(0,m+j)=omt; = am+jA
0
= ap+jA+ Azpj

=1

Assuming the lemma to be true for i=k-1:

alk,m+j)
k—1 k—1
= (am+JA+AY p)(1—p) + (em+(G+DA+AD pps
=1 =1
k—1 k—1

= am + @GA+AY p)A-p) + ((G+DA+AY p)ps

= am + JA+(AY p)—idpe— (A pi)pw
=1 =1
+ G+ DApe + (A p)ps
k—1 =t
= am + JA+(AY p)—ilpe+ (G +1)Ap
=

= am + JA+(AY p)+Ap

=1

= am + jA—l—(AZpl)

=1

In particular, each of the cells at the left edge of the triangle can be computed as:

a(i,m) = am+0A+(A2pk)

k=1
i—1

= am+0A+ (A pr) + Api = a(i — 1,m)p; + Ap;
k=1
which requires a total of only s additions and s multiplications, replacing the Ele = s(s +1)/2 general
cell computations which would normally be executed.

This technique can result in substantial savings if the number of coefficients involved, and hence the size of
the triangle involved, is large. In his notes, Howard Turtle, has suggested looking at the case where the pIC
matrix coefficients correspond to a piecewise linear function on the number of true parents. For example,
figure 6a, shows a function with three linear pieces. The matrix coefficients in this case comprise three
arithmetic series, each associated with a corresponding savings in cost of evaluation. Since the domain of the
function is discrete, it is not strictly necessary that the pieces connect. Therefore, when speaking of piecewise
linear functions, we shall also consider functions such as that shown in figure 6b.

The form of the 2-piece piecewise linear functions shown in figures 6¢ and 6d are of interest because they can
be interpreted as generalizations of the Ly,,q and Lor link matrices. We will see in a moment that evaluation

13



a) 3 piecefunction

U 1
0
1 -~~~ """ ~" - - - -- - —— - i
b) also 3 piece function l ‘
| |
| |
| / 1
L/ :
Lo |
0
c) generalizatin of AND et >
1 <
| ' |
I : |
| : |
| : |
0 m
L 1=~~~ ~""" " """ """ °"°7°7°7° |
d) generlization of OR o ‘
| : |
I ' I
L 1
R
0

Figure 6: piecewise linear functions
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of these functions is particularly efficient. The function shown in figure 6c, for instance, generalizes the L 54
matrix in that the conditional probability that @ is true may:
o take on a (presumably small) value greater than 0 when all parents are false.

e rise (presumably slowly) at a constant rate as more parents are known to be true.

e rise suddenly for some number of true parents m less than n - although m must be less than n by some
(presumably small) constant value, independent of n.

e rise at a constant rate as the number of parents known to be true goes from m to n

o take on avalue less than 1 when all parents are true.
In a similar fashion, the form shown in figure 6d, generalizes the Lor matrix.

Figure 7: evaluation of generalized OR

Although the savings realized for a piecewise linear function may be significant, the asymptotic cost of
execution will not be affected unless all of the pieces save one cover a constant number of coefficients 2. If
Qmy Q15 - - -, Qs, 1S @N arithmetic series, then s(s + 1)/2 cell operations can be eliminated in favor of s
additions. This leaves,

nn+1)/2-5(s+1)/2 = (n>+n—s>—35)/2

ns—s2+ n?—ns+n+s>—ns—s)/2
(n—s8)s+(nn—s+1)—s(n-—s+1)/2
(n—s8)s+(n—s)(n—s+1)/2

When (n — s) is constant, the second term is constant and the first term grows with s. Since s must grow with
n, if n — s is to be kept constant, the cost of evaluation is O(n). Figure 7 shows, pictorially, how the array
for the generalized OR function is evaluated. The cells which are evaluated are restricted to a fixed width
strip at the left of the array whose length grows with n.

4 Weighted Parents

In the previous section we defined, and developed an O(n2) algorithm for, the class of link matrices for which
the conditional probabilities are dependent only on the number of parents that are true. In this section, we
generalize this result, beginning with the class of link matrices under consideration.

The goal of this generalization is to allow for the possibility that the truth of each proposition, P;, may have a
different impact on the probability, pr(Q is true). There will always be one parent whose impact is at least as
great as any other. For the purposes of this exposition we will assume, without loss of generality, that parent,
Py, has this property. The impact of each other parent may, then, be weighted by some factor, 0 < w; < 1.0.
For generality, we will say that all parents are weighted and that the weight, w,, of parent P; is equal to 1.
We shall say that a link matrix, satisfies the weighted-parent indifference criterion when the probability that

2Prof. David Barrington has pointed out that computational improvement may be realizable even if this condition is not fully met.
For example, if one piece grows with n, while all others grow only aslog(n), the asymptotic running time will be only O(nlog(n)).
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the child is true is strictly a function of the number of parents that are true, once the weights of the parents
have been taken into consideration. Formally,

Definition: We shall say that the weighted-parent indifference criterion is met when:
= (w1 = 10,
0<wsy,...,w, <1.0
0<ag,...,a, <1.0)

VRC{l,...,n} agzaiji

iER

inputs:
e n + 1 coefficients, ayg, . . ., ay,, Of & PIC matrix
o probabilities py, . . ., p,, for the n parent nodes.
output:

o the probability that the child node is true.

PIC-EVAL:
forj=0,...,n
[0, 5] = a;
fori=1,...,n

forj=0,...,n—1
Q[Z,]] Ha[l_laj]*(l_pl) +04[2—1;J+1]*wz*1%

return a[n, 0]

Figure 8: wpic-EvAL algorithm

We shall refer to a link matrix satisfying the weighted-parent indifference criterion as a wriC matrix. A WPIC
matrix is completely determined when two sets of parameters have been given: ay, ..., a, and wi, .. ., wy.
When all the parents have a weight of, w; = 1, the wPIC matrix reduces to a simple PIC matrix, where the
coefficient, «;, specifies the probability that ¢ is true when it is known that j parents are true.

For the general wpric matrix, however, rather than specify what the probability that @ is true is, for j true
parents, the coefficient, a5, specifies what that probability would be for j true parents, if all the parents had
the same impact; that is, if all the weights were 1. A weight, w; < 1, indicates that when P; is one of the true
parents, the probability, pr(Q@ is true), is less than it would be were P; to have the same weight as P;. The
weight, w;, gives the factor by which pr(@ is true) must be discounted when P;, rather than a parent whose
impact is equal to that of P;, is one of the true parents °.

The basic algorithm requires only a minor modification in order that wpiC matrices be processed correctly.
The wric-EvAaL algorithm incorporating the necessary modification is given in figure ??.

Lemma 1 and Theorem 1, used to demonstrate the correctness of the pic-evaL algorithm, can be modified to
contemplate weights. The reasoning used for their proofs applies with very minor modifications. Appendix A,
presents generalized versions of the notation introduced for PIC matrices and a modified version of Lemma 1.
For reference, the complete proof for the new version of the lemma is included, although it is essentially the
same as that given for Lemma 1 in section 2.

SAnother way of understanding the wpiC matrices is in terms of gated inputs. Each parent is viewed as one input to an AND gate
whose other input corresponds to an independent activation variable. Only when both the parent and the activation variable are both
true is a value of true seen by the @ node. The parent weight becomes the probability that the activation variable is true. From this,
we see that the class of wWPIC matrices can be viewed as a generdization of the noisy or matrices often utilized in Bayesian Network
applications.
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It should be observed here that, with respect to computational efficiency, the only difference between the
two versions of the algorithms is that the weighted algorithm requires an extra multiplication during each
execution of the main loop.

5 Summary

In this paper | have described:

o the PIC matrices, a subclass of link matrices which would appear to correspond to a natural class of retrieval
operators.

e an O(n?) algorithm, pic-evaL, for the evaluation of arbitrary PIc matrices.

e an improvement to the general pic-evaL algorithm when a subsequence of the link matrix coefficients form
an arithmetic series. This improvement results in an O(n) algorithm for certain forms of link matrices
which may be considered generalizations of Turtle’s L 5,4 and Lor matrices.

o the wpric matrices, which allow for the weighting of parent nodes and a simple modification to the basic
algorithm which adjusts for this generalization.

In closing, some aspects of the link matrix evaluation problem intimately related to the ideas presented here,
can be mentioned.

Piecewise linear functions may be evaluated more efficiently, in some cases much more efficiently, than an
arbitrary pic matrix. Unfortunately it does not immediately follow that these gains in efficiency may be
realized when the parents are weighted. A closer look at this problem may yield an interesting subclass of
the wpIC matrices that may also be evaluated more efficiently.

When a subsequence of the pic matrix coefficients form an arithmetic series, the need for a full evaluation
of the triangle underneath the subsequence is eliminated. It may be fruitful to investigate other properties
that might result in similar shortcuts to the computation of the entire O(n2) matrix that is required for the
evaluation of an arbitrary PIC matrix.

In a recent discussion with Prof. Eliot Moss, he suggested to me an interesting approach to the efficient
evaluation of wpiC matrices. He suggests using

j= sz’pi
i=1

as an estimate of the number of parents that are true. An arbitrary function on the real interval [0, 1] now
takes the place of the link matrix. This function is evaluated at j to yield an approximation of the probability,
pr(@ istrue). While this technique is not equivalent to the specification of a link matrix, under appropriate
conditions it might provide a practical alternative.

6 Acknowledgments

This material is based on work supported in part by the National Science Foundation, Library of Congress
and Department of Commerce under cooperative agreement number EEC-9209623. Any opinions, findings
and conclusions or recommendations expressed in this material are the author(s) and do not necessarily reflect
those of the sponsor. This material is also based on work supported in part by Defense Advanced Research
Projects Agency/ITO under ARPA order number D468, issued by ESC/AXS contract number F19628-95-C-
0235.

17



7 Appendix A: Correctness of weic-evat

Notation: For the purposes of the analysis of wric-EvaL, we will adopt the following notation which
modifies that used previously for the analysis of the pic-EvAL version.

{21 seemsiz} H i H i

i€R  i€{i1,..,iz}—R

{il,...,iz} —_ {il,...,iQ}
g; = Z TR

Lemma 1 Assuming all coefficients (4, j) are those produced by the wric-EvaL algorithm, we have: Vi =
0,1,...,n

n—i

Z (i,5)0; {i+tm} — b (Q s true)

j=0

proof: This lemma is proved by induction on the value of i. For ¢ = 0, we have:

n

Za(o’j)aj{'l,...,n} — Z ZT({I,...,TL}
j=0

j=0

- Y Ywlwn]ln

i=0 RC{1,..,n} i€R i¢R

= Y Yl [[w w2

i=0 RC{1,..,n»} i€ER i€ER  i¢R
|R|=3

= i Z OR HPiHﬁi]

j=0 RC{1,..,n} P€ER i¢R
|R|=j

= e ][] r:]] P

RC{1,...,n} i€ER i¢R
= pr(Q istrue)

Assume the theorem to be true for s = k:
n—k
Za(k,j)aj{-l""’n} = pr(Q is true)
j=0

Thenthesumfori =k + 1is:

n—k—1
3 alk +1,5)0i ™
j=0
n—k—1
= Z [k, §)Pry1 + a(k, § + Dwit1prslo) {k+2,...,n}
j=0
(by step (5) of the algorithm)
n—k—1 n—k—1
- Z ok, J)Pk+10{ T2ty Z (k,j +1)wk+1pk+1a{ 42,00}
=0 i=0

18



n—k—1

> alk, Dprpro
i=0
(as a result of changing the v

a(k, 0)prriog" "

n—k—1

ey k+2,...,
+ Z ok, )prsro T2t 4 Z ok, )wi1peiaoi T
k+2,...,
+a(k,n — K)wpr1pepo 2y "}
The term o{k“’ ont , expresses the probability that none of the propositions, Pgy2,..., Py, is true.

g Za (k,5) wk+1pk+10}{

j=1

ariable for the second summation)

2,...,n}
1

n—k=—1

composed of only one product. Hence, the first term of ( ??) reduces to:

a(k,0)prirog

{k+2,...,n}

Similarly, o, ",

o™ a(k,0)pr+1 H Dl

I=k+2

Oé(k, 0) H D

I=k+1
(k 0) {k+1,..

n}

, which expresses the probability that all n — & + 1 of the propositions { Py, . . .

are true, is composed of only one product. Therefore, the last term of ( ??) reduces to:

a(k,n — k)wk+1pk+lar{l :#1 = a(k,n — k)wky1Pr41 H w;pi
I=k+2
= a(kn—k H wipr
I=k+1
= alk,n—k)o ikzl’ ont
Combining the middle two terms of ( ??):
n—k—1
3 alk, j)prrof e 4 z (k, wpr1ppaoi T2
j=1 j=1
n—k—1
= Z a(k;j)[(PkHU{ 2 ’n}) (wk+1pk+10;{ 1 2 ,n})]
i=1
n—k—1
NI = k+2,..., k+2,...,
= Z ok, ) [(Pr+1 Z aH T2 4 (g 1peta Z mheonh)
j=1 RC{k+2,..., n} RC{k+2,..., n}
|R|=j |R|=j—1
n—k—1
. _ k+2,..., k+2,...,
= > ak)H( > Praamiy T2 4 ( > We 1 pria T T2
j=1 RC{k+1,..., n} RC{k+1,..., n}
|R|=j |R|=7—1
n—k—1
. k+1,..., k+1,...,
= Y akpl D ompthme 3 At
j=1 RC{k+1,..., n} RC{k+1,..., n}
|R|=jAk+1¢R |R|=jAk+1€ER
n—k—1
. k+1,...,
= > latky) Y wptth
j=1 RC{k+1,..., n}
|R|=j
n—k—1
k+1,...,
= Y alk oyttt
=1
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Finally, applying equations ( ??), ( ??), and ( ??) to equation ( ??), we have:

Z alk + l,j)a}kw""’"}

j=0

n—k—1
= a(k’o)aék+l,...,n} +] Z a(k’j)aj{k+l,...,n}] +a(k,n— k)o_ikjl-cl,...,n}
i=1

n—k

j=0

= pr(Q istrue) (by the induction hypothesis)
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