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Abstract
We propose an approach to learning the semantics of images which al-
lows us to automatically annotate an image with keywords and to retrieve
images based on text queries. We do this using a formalism that models
the generation of annotated images. We assume that every image is di-
vided into regions, each described by a continuous-valued feature vector.
Given a training set of images with annotations, we compute a joint prob-
abilistic model of image features and words which allow us to predict the
probability of generating a word given the image regions. This may be
used to automatically annotate and retrieve images given a word as a
query. Experiments show that our model significantly outperforms the
best of the previously reported results on the tasks of automatic image
annotation and retrieval.

1 Introduction
Historically, librarians have retrieved images by first manually annotating them with key-
words. Given a query, these annotations are used to retrieve appropriate pictures. Under-
lying this approach is the belief that the words associated (manually) with a picture essen-
tially capture the semantics of the picture and any retrieval based on these keywords will,
therefore, retrieve relevant pictures. Since manual image annotation is expensive, there has
been great interest in coming up with automatic ways to retrieve images based on content.
Queries based on image concepts like color or texture have been proposed for retrieving
images by content but most users find it difficult to query using such visual attributes. Most
people would prefer to pose text queries and find images relevant to those queries. For
example, one should be able to pose a query like “find me cars on a race track”. This is
difficult if not impossible with many of the current image retrieval systems and hence has
not led to widespread adoption of these systems. We propose a model which looks at the
probability of associating words with image regions. Single pixels and regions are often
hard to interpret. The surrounding context often simplifies the interpretation of regions as
a specific objects. For example, the association of a region with the word tiger is increased
by the fact that there is a grass region and a water region in the same image and should be
decreased if instead there is a region corresponding to the interior of an aircraft. Thus the
association of different regions provides context while the association of words with image
regions provides meaning. Our model computes a joint probability of image features over
different regions in an image using a training set and uses this joint probability to annotate
and retrieve images.

More formally, we propose a statistical generative model to automatically learn the seman-
tics of images - that is, for annotating and retrieving images based on a training set of
images. We assume that an image is segmented into regions (although the regions could



simply be a partition of the image) and that features are computed over each of these re-
gions. Given a training set of images with annotations, we show that probabilistic models
allow us to predict the probability of generating a word given the features computed over
different regions in an image. This may be used to automatically annotate and retrieve im-
ages given a word as a query. We show that the continuous relevance model - a statistical
generative model related to relevance models in information retrieval - allows us to derive
these probabilities in a natural way. The model proposed here directly associates continu-
ous features with words and does not require an intermediate clustering stage. Experiments
show that the annotation performance of this continuous relevance model is substantially
better than any other model tested on the same data set. It is almost an order of magnitude
better (in terms of mean precision) than a model based on word-blob co-occurrence model,
more than two and a half times better than a state of the art model derived from machine
translation and 1.6 times as good as a discrete version of the relevance model. The model
also allows ranked retrieval in response to a text query and again performs much better than
any other model in this regard. Our model permits us to automatically associate semantics
(in terms of words) with pictures and is an important building step in performing automatic
object recognition.

2 Related Work
Recently, there has been some work on automatically annotating images by looking at
the probability of associating words with image regions. Mori et al. [9] proposed a Co-
occurrence Model in which they looked at the co-occurrence of words with image regions
created using a regular grid. Duygulu et al [4] proposed to describe images using a vocab-
ulary of blobs. First, regions are created using a segmentation algorithm like normalized
cuts. For each region, features are computed and then blobs are generated by clustering
the image features for these regions across images. Each image is generated by using a
certain number of these blobs. Their Translation Model applies one of the classical statis-
tical machine translation models to translate from the set of keywords of an image to the
set of blobs forming the image. Jeon et al [5] instead assumed that this could be viewed as
analogous to the cross-lingual retrieval problem and used a cross-media relevance model
(CMRM) to perform both image annotation and ranked retrieval. They showed that the
performance of the model on the same dataset was considerably better than the models
proposed by Duygulu et al [4] and Mori et al. [9]. Blei and Jordan [3] extended the Latent
Dirichlet Allocation (LDA) Model and proposed a Correlation LDA model which relates
words and images. This model assumes that a Dirichlet distribution can be used to generate
a mixture of latent factors. This mixture of latent factors is then used to generate words and
regions. EM is again used to estimate this model. Blei and Jordan show a few examples
for labeling specific regions in an image.

The model proposed in this paper is called Continuous-space Relevance Model (CRM).
The model is closely related to models proposed by [3, 5], but there are several important
differences which we will highlight in the remainder of this section.

On the surface, CRM appears to be very similar to one of the intermediate models con-
sidered by Blei and Jordan [3]. Specifically, their GM-mixture model employs a nearly
identical dependence structure among the random variables involved. However, the topo-
logical structure of CRM is quite different from the one employed by [3]. GM-mixture
assumes a low-dimensional topology, leading to a fully-parametric model where 200 or so
“latent aspects” are estimated using the EM algorithm. To contrast that, CRM makes no as-
sumptions about the topological structure, and leads to a doubly non-parametric approach,
where expectations are computed over every individual point in the training set. In that
regard, CRM appears very similar to the cross-media relevance model (CMRM) [5], which
is also doubly non-parametric. There are two significant differences between CRM and
CMRM. First, CMRM is a discrete model and cannot take advantage of continuous fea-
tures. In order to use CMRM for image annotation we have to quantize continuous feature
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Figure 1: A generative model of annotated images. Words ��� in the annotation are i.i.d.
sampled from the underlying multinomial. Image pixels are produced by first picking a
set of i.i.d. feature vectors ���	��
�
�
 ��
�� , then generating image regions ������
�
�
 ��
�� from the
feature vectors, and finally stacking the regions on top of each other.

vectors into a discrete vocabulary (similarly to the co-ocurrence and translation [4] mod-
els). CRM, on the other hand, directly models continuous features. The second difference
is that CMRM relies on clustering of the feature vectors into blobs. Annotation quality
of the CMRM is very sensitive to clustering errors, and depends on being able to a-priori
select the right cluster granularity: too many clusters will result in exptreme sparseness of
the space, while too few will lead us to confuse different objects in the images. CRM does
not rely on clustering and consequently does not suffer from the granularity issues.

We would like to stress that the difference between CRM and previously discussed models
is not merely conceptual. In section 4 we will show that CRM performs significantly better
than all previosly proposed models on the tasks of image annotation and retrieval. To ensure
a fair comparison, we use exactly the same data set and same feature representations as
were used in [3, 4, 5, 9].

3 A Model of Annotated Images
The purpose of this section is to introduce a statistical formalism that will allow us to
model a relationship between the contents of a given image and the annotation of that
image. We will describe an approach to learning a joint probability disdribution �����������
over the regions � of some image and the words � in its annotation. Knowing the joint
distribution ������� ��� is the key to solving two important real-world problems:

1. Image Annotation. Suppose we are given a new image for which no annotation
is provided. That is, we know � , but do not know � . Having a joint distribution
allows us to compute a conditional likelihood �����"! �#� which can then be used to
guess the most likely annotation � for the image in question. The new annotation
can be presented to a user, indexed, or used for retrieval purposes.

2. Image Retrieval. Suppose we are given a collection of un-annotated images and
a text query ��$ % & consisting of a few keywords. Knowing the joint model of
images and annotations, we can compute the query likelihood ����� $ % & ! �('�� for
every image ) in the dataset. We can then rank images in the collection according
to their likelihood of having the query as annotation, resulting in a special case of
the popular Language Modeling approach to Information Retrieval [6].

The remainder of this section is organized as follows. In section 3.1 we discuss our choice
of representation for images and their annotations. Section 3.2 presents a generative frame-
work for relating image regions with image annotations. Section 3.3 provides detailed
estimates for the components of our model.

3.1 Representation of Images and Annotations
Let * denote the finite set of all possible pixel colors. We assume that * includes one
“transparent” color +-, , which will be handy when we have to layer image regions. As



a matter of convenience, we assume that all images are of a fixed size .0/21 .1 This
assumption allows us to represent any image as an element of a finite set 3547698;:=< . We
assume that each image contains several distinct regions

�#>�?�@�@�@ >�A � . Each region is itself
an element of 3 and contains the pixels of some prominent object in the image, all pixels
around the object are set to be transparent. For example, in Figure 1 we have a hypothetical
picture containing three prominent objects: a tiger, the sun and some grass. Each object is
represented by its own region:

>(?
for the sun,

>�B
for the grass, and

>�C
for the tiger. The final

image is the result of stacking or layering the regions on top of each other, as shown on the
right side of Figure 1.

In our model of images, a central part will be played by a special function D which maps
image regions

>"E 3 to real-valued vectors F EHG IKJ
. The value DML >(N represents a set of

features, or characteristics of an image region. The features could reflect the position of
an object region, its relative size, a crude reflection of shape, as well as predominant colors
and textures. For example, in Figure 1 the region

>�?
(sun) is a round object, located in the

upper-right portion of the image, yellowish in color with a smooth texture. When we model
image generation we will treat the output of D as a generator or a “recipe” for producing
a certain type of image. For example, a feature vetor F ? 4ODML >#?�N can be thought of as a
generator for any image region resembling a sun-like object in the upper-left corner.

Finally, an annotation for a given image is a set of words
��P ? @�@�@ P�Q � drawn from some

finite vocabulary R . We assume that the annotation describes the objects represented by
regions

�#>�?�@�@�@ >�A � . However, contrary to prior work [4, 3] we do not assume an underlying
one-to-one correspondence between the objects in the image annotation and words in the
annotation. Instead, we are interested in modeling a joint probability for observing a set of
image regions

��> ? @�@�@ > A � together with the set of annotation words
�#P ? @�@�@ P�Q � .

3.2 A Model for Generating Annotated Images
Suppose S is the training set of annotated images, and let T be an element of S . Ac-
cording to the previous section T is represented as a set of image regions U�VW4 ��> ? @�@�@ > A �
along with the corresponding annotation X V 4 ��PY?�@�@�@ P Q � . We assume that the process
that generated T is based on three distinct probability distributions. First, we assume that
the words in X�V are an i.i.d. random sample from some underlying multinomial distribu-
tion Z\[]L_^�` T N

. Second, the regions U�V are produced from a corresponding set of generator
vectors F ?�@�@�@ F A according to a process Z\abL >�c ` F cdN which is independent of T . Finally, the
generator vectors F ? @�@�@ F A are themselves an i.i.d. random sample from some underlying
multi-variate density function Z9efLg^h` T N

.
Now let U�ij4 ��>�?#@�@�@ >�A�k � denote the regions of some image l , which is not in the train-
ing set S . Similarly, let X�mn4 ��PY?�@�@�@ PoAqp � be some arbitrary sequence of words. We
would like to model Z�LrU its X i N

, the joint probability of observing an image defined by U i
together with annotation words X m . We hypothesize that the observation

� U ius X m � came
from the same process that generated one of the images Tuv in the training set S . However,
we don’t know which process that was, and so we compute an expectation over all imagesT E S . The overall process for jointly generating X m and U i is as follows:

1. Pick a training image T E S with some probability ZtwxLdT N
2. For yo4{z @�@�@}| m :

(a) Pick the annotation word
PY~

from the multinomial distribution Z�[uL_^�` T N
.

3. For ��4�z @�@�@}| i :
(a) Sample a generator vector F�� from the probability density Z9e�L_^�` T N

.
(b) Pick the image region

> � according to the probability Z a L > ��` F�� N
1The assumptions of finite colormap and fixed image size can easily be relaxed but require argu-

ments that are beyond the scope of this paper.



Figure 1 shows a graphical dependency diagram for the generative process outlined above.
We show the process of generating a simple image consisting of three regions and a corre-
sponding 3-word annotation. Note that the number of words in the annotation

| m does not
have to be the same as the number of image regions

| i . Formally, the probability of a joint
observation

� U ius X m � is given by:

Z�L�U i]s X m N 4��V��qw Z\wYLdT N A p�~d� ? Z�[uL Px~ ` T N A k�� � ?��	� ��� Z a L > ��` F�� N Z�e�L�F��=` T N}� F�� (1)

3.3 Estimating Parameters of the Model
In this section we will discuss simple but effective estimation techniques for the four com-
ponents of the model: Z w , Z [ , Z e and Z�a . Z w LdT N

is the probability of selecting the
underlying model of image T to generate some new observation U s X . In the absence of
any task knowledge we use a uniform prior ZtwxL�T N 4Oz�����w , where ��w is the size of the
training set.Z�aKL > ` F N is a global probability distribution responsible for mapping generator vectorsF EfG I�J

to actual image regions
>�E 3 . In our case for every image region

>
there is only

one corresponding generator F�4ODML >(N , so we can assume a particularly simple form for
the distribution Z a : Z a L > ` F N 4�� z��-��� if DML >#N 4jF�

otherwise (2)

where � � is the number of all regions
>(�

in 3 such that DML >#�hN 4�F . For the scope of
the current paper we do not attempt to reliably estimate � � , instead we assume it to be a
constant independent of F .Z e Lg^h` T N

is a density function responsible for generating the feature vectors F ?�@�@�@ F A , which
are later mapped to image regions UqV according to Z a . We use a non-parametric kernel-
based density estimate for the distribution Z9e . Assuming U(V�4 �#> ? @�@�@ > A � to be the set of
regions of image T we estimate:Z e LhFf` T N 4 z| A� c � ? z�   J�¡�J ` ¢�`r£-¤	¥�¦ LhFK§¨DML >�c_N N}© ¢Yª ? L�FK§«DML >�c_N}N�¬ (3)

Equation (3) arises out of placing a Gaussian kernel over the feature vector DML > c N of every
region of image T . Each kernel is parametrized by the feature covariance matrix ¢ . As
a matter of convenience we assumed ¢�4�­u^ G , where

G
is the identity matrix. ­ playes

the role of kernel bandwidth: it determines the smoothness of Z e around the support pointDML > c N . The value of ­ is selected empirically on a held-out portion of the training set S .Z\[tL_^�` T N
is the multinomial distribution that is assumed to have generated the annotationX®V of image T E S . We use a Bayesian framework for estimating Z9[uL_^�` T N

. Let
G Z [ be

the simplex of all multinomial distributions over R . We assume a Dirichlet prior over
G Z [

that has parameters
��¯	°²±b³�´µE Rx� . Here

¯
is a constant, selected empirically, and

°¶±
is the

relative frequency of observing the word
´

in the training set. Introducing the observationX®V results in a Dirichlet posterior over
G Z [ with parameters

��¯	° ±Y· � ±�¸ V ³²´�E Rx� . Here� ±�¸ V is the number of times
´

occurs in the observation X¹V . Computing the expectation
over this Dirichlet posterior gives us the following Bayesian estimate for Z [ :Z\[uL ´ ` T N 4 ¯	° ±�· � ±�¸ V¯ ·jº ±�» � ± » ¸ V (4)

4 Experimental Results
To provide a meaningful comparison with previously-reported results, we use, without any
modification, the dataset provided by Duygulu et al.[4] 2. This allows us to compare the

2Available at http://www.cs.arizona.edu/people/kobus/ research/data/eccv 2002



Models Co-occurence Translation CMRM CRM
#words with recall ¼ �

19 49 66 107 +62%
Results on 49 best words, as in[1, 5]

Mean per-word Recall - 0.34 0.48 0.70 +46%
Mean per-word Precision - 0.20 0.40 0.59 +48%

Results on all 260 words
Mean per-word Recall 0.02 0.04 0.09 0.19 +111%
Mean per-word Precision 0.03 0.06 0.10 0.16 +60 %

Table 1: Comparing recall and precision of the four models on the task of automatic im-
age annotation. Our model (CRM) substantially outperforms all other models. Percent
improvements are over the best previously-reported results (CMRM).

performance of models in a strictly controlled manner. The dataset consists of 5,000 images
from 50 Corel Stock Photo cds. Each cd includes 100 images on the same topic. Each
image contains an annotation of 1-5 keywords. Overall there are 371 words. Prior to
modeling, every image in the dataset is pre-segmented into regions using general-purpose
algorithms, such as normalized cuts [11]. We use pre-computed feature vector DML >(N for
every segmented region

>
. The feature set consists of 36 features: 18 color features, 12

texture features and 6 shape features. For details of the features refer to [4]. Since we
directly model the generation of feature vectors, there is no need to quantize feature data,
as was done in [1, 4, 5]. We divided the dataset into 3 parts - with 4,000 training set images,
500 evaluation set images and 500 images in the test set. The evaluation set is used to find
system parameters. After fixing the parameters, we merged the 4,000 training set and 500
evaluation set images to make a new training set. This corresponds to the training set of
4500 images and the test set of 500 images used by Duygulu et al [4].

4.1 Results: Automatic Image Annotation

In this section we evaluate the performance of our model on the task of automatic image
annotation. We are given an un-annotated image T and are asked to automatically produce
an annotation X ��½�¾�¿ . The automatic annotation is then compared to the held-out human
annotation X�V . We follow the experimental methodology used by[4, 5]. Given a set of
image regions U�V we use equation (1) to arrive at the conditional distribution Z�L P ` UqV N . We
take the top 5 words from that distribution and call them the automatic annotation of the
image in question. Then, following [4], we compute annotation recall and precision for
every word in the testing set. Recall is the number of images correctly annotated with a
given word, divided by the number of images that have that word in the human annotation.
Precision is the number of correctly annotated images divided by the total number of images
annotated with that particular word (correctly or not). Recall and precision values are
averaged over the set of testing words.

We compare the annotation performance of the four models: the Co-occurrence Model
[9], the Translation Model [4], CMRM [5] and the model proposed in this paper (CRM).
We report the results on two sets of words: the subset of 49 best words which was used
by[4, 5], and the complete set of all 260 words that occur in the testing set. Table 1 shows
the performance on both word sets. The figures clearly show that the model presented here
(CRM) substabtially outperforms the other models and is the only one of the four capable of
producing reasonable mean recall and mean precision numbers when every word in the test
set is used. In Figure2 we provide sample annotations for the two best models in the table,
CMRM and CRM, showing that the model in this paper is considerably more accurate.
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Figure 2: The generative model based on contiuous features (CRM) that is proposed here
performs substantially better than the discrete cross-media relevance model (CMRM) for
annotating images in the test set.

Query length 1 word 2 words 3 words 4 words
Number of queries 179 386 178 24
Relevant images 1675 1647 542 67

Precision after 5 retrieved images
CMRM 0.1989 0.1306 0.1494 0.2083
CRM 0.2480 +25% 0.1902 +45% 0.1888 +26% 0.2333 +12%

Mean Average Precision
CMRM 0.1697 0.1642 0.2030 0.2765
CRM 0.2353 +39% 0.2534 +54% 0.3152 +55% 0.4471 +61%

Table 2: Comparing our model to the Cross-Media Relevance Model (CMRM) on the task
of image retrieval. Our model outperforms the CMRM model by a wide margin on all
query sets. Boldface figures mark improvements that are statistically significant according
to sign test with a confidence of 99% (

°
-value À � @ � z N .

4.2 Results: Ranked Retrieval of Images
In this section we turn our attention to the problem of ranked retrieval of images. In the
retrieval setting we are given a text query X®Á Â Ã and a testing collection of un-annotated
images. For each testing image T we use equation (1) to get the conditional probabilityZ�L�X Á Â Ã ` U V N . All images in the collection are ranked according to the conditional likeli-
hood Z�L�X®Á}Â�Ã=` U(V N . This can be thought of as a special case of the popular Langauge Mod-
eling approach to Information Retrieval, proposed by Ponte and Croft[6]. In our retrieval
experiments we do our best to reproduce the same settings that were used by Jeon et.al[5]
in their work. Following[5], we use four sets of queries, constructed from all 1-, 2-, 3- and
4-word combinations of words that occur at least twice in the testing set. An image is con-
sidered relevant to a given query if its manual annotation contains all of the query words.
As our evaluation metrics we use precision at 5 retrieved images and non-interpolated av-
erage precision3, averaged over the entire query set. Precision at 5 documents is a good
measure of performance for a casual user who is interested in retrieving a couple of rele-
vant items without looking at too much junk. Average precision is more appropriate for a
professional user who wants to find a large proportion of relevant items.

Table 2 shows the performance of our model on the four query sets, contrasted with per-
formance of the CMRM[5] baseline on the same data. Baseline performance figures are
quoted directly from the tables in[5]. We observe that our model substantially outperforms
the CMRM baseline on every query set. Improvements in average precision are particularly
impressive, our model outperforms the baseline by 40 - 60 percent. All improvements on
1-, 2- and 3-word queries are statistically significant based on a sign test with a

°
-value of

3Average precision is the average of precision values at the ranks where relevant items occur.



Figure 3: Example: top 5 images retrieved in responce to text query “cars track”

0.01. We are also very encouraged by the precision our model shows at 5 retrieved images:
precision values around 0.2 suggest that an average query always has a relevant image in
the top 5. Figure 3 shows top 5 images retrieved in response to the text query “cars track”.

5 Conclusions and Future Work
We have proposed a new statistical generative model for learning the semantics of images.
We showed that this model works significantly better than a number of other models for
image annotation and retrieval. Our model works directly on the continuous features. Fu-
ture work will include the extension of this work to larger datasets (both training and test
data). We believe this is needed both for better coverage and an evaluation of how such
algorithms extend to large data sets. Improved feature sets may also lead to substantial
improvements in performance.
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